1
|
Donbaloglu Z, Gullu M, Tekin S, Karaguzel G, Parlak M, Tuhan H, Turkkahraman D. Neonatal severe hyperparathyroidism with inactivating calcium sensing receptor (CaSR) mutation (p.I81K). J Pediatr Endocrinol Metab 2025; 38:533-538. [PMID: 39840426 DOI: 10.1515/jpem-2024-0569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/10/2025] [Indexed: 01/23/2025]
Abstract
OBJECTIVES Neonatal severe hyperparathyroidism (NSHPT) is a rare condition characterized by inactivating mutations in the calcium-sensing receptor (CaSR) gene, leading to significant hypercalcemia and related complications. CASE PRESENTATION We present a case of a six-day-old male infant with weakness, jaundice, and hypotonia, later diagnosed with NSHPT due to a known homozygous CaSR mutation (c.242T>A; p.I81K). Initial laboratory findings revealed markedly elevated serum calcium levels and high parathyroid hormone levels which were compatible with primary hyperparathyroidism. After initial management, bisphosphonates were administered, resulting in the patient remaining normocalcemic for 11 months, although hyperparathyroidism persisted. Then, due to the ongoing hyperparathyroidism, cinacalcet was added and continued for nine months. Finally, a total parathyroidectomy was performed. Postoperatively, the patient developed hypoparathyroidism, necessitating long-term supplementation with calcium and calcitriol. By the last follow-up at 3 years, the patient exhibited normal growth parameters and no neurodevelopmental deficits. CONCLUSIONS This case underscores the importance of early diagnosis and intervention in NSHPT and highlights the critical role of medical treatment, surgical management and long-term follow-up in optimising patient outcomes. Continued research is essential to enhance understanding and treatment strategies for NSHPT.
Collapse
Affiliation(s)
- Zeynep Donbaloglu
- Department of Pediatric Endocrinology, Akdeniz University Hospital, Antalya, Türkiye
| | - Merve Gullu
- Department of Pediatric Endocrinology, Antalya Training and Research Hospital, University of Health Sciences, Antalya, Türkiye
| | - Suat Tekin
- Department of Pediatric Endocrinology, Antalya Training and Research Hospital, University of Health Sciences, Antalya, Türkiye
| | - Gungor Karaguzel
- Department of Pediatric Surgery, Akdeniz University Hospital, Antalya, Türkiye
| | - Mesut Parlak
- Department of Pediatric Endocrinology, Akdeniz University Hospital, Antalya, Türkiye
| | - Hale Tuhan
- Department of Pediatric Endocrinology, Akdeniz University Hospital, Antalya, Türkiye
| | - Doga Turkkahraman
- Department of Pediatric Endocrinology, Antalya Training and Research Hospital, University of Health Sciences, Antalya, Türkiye
| |
Collapse
|
2
|
Cetani F, Dinoi E, Pierotti L, Pardi E. Familial states of primary hyperparathyroidism: an update. J Endocrinol Invest 2024; 47:2157-2176. [PMID: 38635114 DOI: 10.1007/s40618-024-02366-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/24/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Familial primary hyperparathyroidism (PHPT) includes syndromic and non-syndromic disorders. The former are characterized by the occurrence of PHPT in association with extra-parathyroid manifestations and includes multiple endocrine neoplasia (MEN) types 1, 2, and 4 syndromes, and hyperparathyroidism-jaw tumor (HPT-JT). The latter consists of familial hypocalciuric hypercalcemia (FHH) types 1, 2 and 3, neonatal severe primary hyperparathyroidism (NSHPT), and familial isolated primary hyperparathyroidism (FIHP). The familial forms of PHPT show different levels of PHPT penetrance, developing earlier and with multiglandular involvement compared to sporadic counterpart. All these diseases exhibit Mendelian inheritance patterns, and for most of them, the genes responsible have been identified. DNA testing for predisposing mutations is helpful in index cases or in individuals with a high suspicion of the disease. Early recognition of hereditary disorders of PHPT is of great importance for the best clinical and surgical approach. Genetic testing is useful in routine clinical practice because it will also involve appropriate screening for extra-parathyroidal manifestations related to the syndrome as well as the identification of asymptomatic carriers of the mutation. PURPOSE The aim of the review is to discuss the current knowledge on the clinical and genetic profile of these disorders along with the importance of genetic testing in clinical practice.
Collapse
Affiliation(s)
- F Cetani
- Endocrine Unit 2, University Hospital of Pisa, Via Paradisa 2, 56124, Pisa, Italy.
| | - E Dinoi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - L Pierotti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - E Pardi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
3
|
Tian L, Andrews C, Yan Q, Yang JJ. Molecular regulation of calcium-sensing receptor (CaSR)-mediated signaling. Chronic Dis Transl Med 2024; 10:167-194. [PMID: 39027195 PMCID: PMC11252437 DOI: 10.1002/cdt3.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 07/20/2024] Open
Abstract
Calcium-sensing receptor (CaSR), a family C G-protein-coupled receptor, plays a crucial role in regulating calcium homeostasis by sensing small concentration changes of extracellular Ca2+, Mg2+, amino acids (e.g., L-Trp and L-Phe), small peptides, anions (e.g., HCO3 - and PO4 3-), and pH. CaSR-mediated intracellular Ca2+ signaling regulates a diverse set of cellular processes including gene transcription, cell proliferation, differentiation, apoptosis, muscle contraction, and neuronal transmission. Dysfunction of CaSR with mutations results in diseases such as autosomal dominant hypocalcemia, familial hypocalciuric hypercalcemia, and neonatal severe hyperparathyroidism. CaSR also influences calciotropic disorders, such as osteoporosis, and noncalciotropic disorders, such as cancer, Alzheimer's disease, and pulmonary arterial hypertension. This study first reviews recent advances in biochemical and structural determination of the framework of CaSR and its interaction sites with natural ligands, as well as exogenous positive allosteric modulators and negative allosteric modulators. The establishment of the first CaSR protein-protein interactome network revealed 94 novel players involved in protein processing in endoplasmic reticulum, trafficking, cell surface expression, endocytosis, degradation, and signaling pathways. The roles of these proteins in Ca2+-dependent cellular physiological processes and in CaSR-dependent cellular signaling provide new insights into the molecular basis of diseases caused by CaSR mutations and dysregulated CaSR activity caused by its protein interactors and facilitate the design of therapeutic agents that target CaSR and other family C G-protein-coupled receptors.
Collapse
Affiliation(s)
- Li Tian
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| | - Corey Andrews
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| | - Qiuyun Yan
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| | - Jenny J. Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Advanced Translational Imaging FacilityGeorgia State UniversityAtlantaGeorgiaUSA
| |
Collapse
|
4
|
English KA, Lines KE, Thakker RV. Genetics of hereditary forms of primary hyperparathyroidism. Hormones (Athens) 2024; 23:3-14. [PMID: 38038882 PMCID: PMC10847196 DOI: 10.1007/s42000-023-00508-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023]
Abstract
Primary hyperparathyroidism (PHPT), a relatively common disorder characterized by hypercalcemia with raised or inappropriately normal serum parathyroid hormone (PTH) concentrations, may occur as part of a hereditary syndromic disorder or as a non-syndromic disease. The associated syndromic disorders include multiple endocrine neoplasia types 1-5 (MEN1-5) and hyperparathyroidism with jaw tumor (HPT-JT) syndromes, and the non-syndromic forms include familial hypocalciuric hypercalcemia types 1-3 (FHH1-3), familial isolated hyperparathyroidism (FIHP), and neonatal severe hyperparathyroidism (NS-HPT). Such hereditary forms may occur in > 10% of patients with PHPT, and their recognition is important for implementation of gene-specific screening protocols and investigations for other associated tumors. Syndromic PHPT tends to be multifocal and multiglandular with most patients requiring parathyroidectomy with the aim of limiting end-organ damage associated with hypercalcemia, particularly osteoporosis, nephrolithiasis, and renal failure. Some patients with non-syndromic PHPT may have mutations of the MEN1 gene or the calcium-sensing receptor (CASR), whose loss of function mutations usually cause FHH1, a disorder associated with mild hypercalcemia and may follow a benign clinical course. Measurement of the urinary calcium-to-creatinine ratio clearance (UCCR) may help to distinguish patients with FHH from those with PHPT, as the majority of FHH patients have low urinary calcium excretion (UCCR < 0.01). Once genetic testing confirms a hereditary cause of PHPT, further genetic testing can be offered to the patients' relatives and subsequent screening can be carried out in these affected family members, which prevents inappropriate testing in normal individuals.
Collapse
Affiliation(s)
- Katherine A English
- OCDEM, Radcliffe Department of Medicine, Churchill Hospital, University of Oxford, Oxford, OX3 7LJ, UK
| | - Kate E Lines
- OCDEM, Radcliffe Department of Medicine, Churchill Hospital, University of Oxford, Oxford, OX3 7LJ, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, OX3 7LE, UK
| | - Rajesh V Thakker
- OCDEM, Radcliffe Department of Medicine, Churchill Hospital, University of Oxford, Oxford, OX3 7LJ, UK.
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, OX3 7LE, UK.
| |
Collapse
|
5
|
Lin CM, Ding YX, Huang SM, Chen YC, Lee HJ, Sung CC, Lin SH. Identification and characterization of a novel CASR mutation causing familial hypocalciuric hypercalcemia. Front Endocrinol (Lausanne) 2024; 15:1291160. [PMID: 38487341 PMCID: PMC10937390 DOI: 10.3389/fendo.2024.1291160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/22/2024] [Indexed: 03/17/2024] Open
Abstract
Context Although a monoallelic mutation in the calcium-sensing receptor (CASR) gene causes familial hypocalciuric hypercalcemia (FHH), the functional characterization of the identified CASR mutation linked to the clinical response to calcimimetics therapy is still limited. Objective A 45-year-old male presenting with moderate hypercalcemia, hypocalciuria, and inappropriately high parathyroid hormone (PTH) had a good response to cinacalcet (total serum calcium (Ca2+) from 12.5 to 10.1 mg/dl). We identified the genetic mutation and characterized the functional and pathophysiological mechanisms, and then linked the mutation to calcimimetics treatment in vitro. Design Sanger sequencing of the CASR, GNA11, and AP2S1 genes was performed in his family. The simulation model was used to predict the function of the identified mutant. In vitro studies, including immunoblotting, immunofluorescence, a cycloheximide chase study, Calbryte™ 520 Ca2+ detection, and half-maximal effective concentration (EC50), were examined. Results This proband was found to carry a de novo heterozygous missense I554N in the cysteine-rich domain of CASR, which was pathogenic based on the different software prediction models and ACGME criteria. The simulation model showed that CASR I554N mutation decreased its binding energy with Ca2+. Human CASR I554N mutation attenuated the stability of CASR protein, reduced the expression of p-ERK 1/2, and blunted the intracellular Ca2+ response to gradient extracellular Ca2+ (eCa2+) concentration. The EC50 study also demonstrated the correctable effect of calcimimetics on the function of the CASR I554N mutation. Conclusion This novel CASR I554N mutation causing FHH attenuates CASR stability, its binding affinity with Ca2+, and the response to eCa2+ corrected by therapeutic calcimimetics.
Collapse
Affiliation(s)
- Chien-Ming Lin
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Xuan Ding
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Ying-Chuan Chen
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan
| | - Hwei-Jen Lee
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Chien Sung
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
6
|
Oh GJ, Butani L. Nephrocalcinosis in Neonates. Neoreviews 2024; 25:e88-e98. [PMID: 38296790 DOI: 10.1542/neo.25-2-e88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Nephrocalcinosis occurs in as many as 40% of preterm neonates. Many causes and contributors predispose neonates to develop nephrocalcinosis, including metabolic, genetic, and iatrogenic factors. Because nephrocalcinosis can be a manifestation of an underlying genetic disorder, neonates with nephrocalcinosis must undergo an evaluation to identify and address contributors, to prevent further renal calcium deposition that can potentially lead to renal dysfunction. In this article, we review the epidemiology, pathogenesis, diagnosis, and evaluation of nephrocalcinosis in neonates. We also summarize the natural history of nephrocalcinosis of prematurity as well as the management of this condition.
Collapse
Affiliation(s)
- Gia J Oh
- Department of Pediatrics, Division of Pediatric Nephrology, University of California, Davis, Children's Hospital, Sacramento, CA
| | - Lavjay Butani
- Department of Pediatrics, Division of Pediatric Nephrology, University of California, Davis, Children's Hospital, Sacramento, CA
| |
Collapse
|
7
|
Gupta P, Tak SA, S AV, Misgar RA, Agarwala S, Jain V, Sharma R. A Case of Neonatal Severe Hyperparathyroidism: Challenges in Management. Indian J Pediatr 2022; 89:1025-1027. [PMID: 35380381 PMCID: PMC8981180 DOI: 10.1007/s12098-022-04169-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/25/2022] [Indexed: 03/14/2023]
Abstract
Neonatal severe hyperparathyroidism is a rare disorder arising from inherited defects in the calcium sensing receptor (CaSR) that presents early in life with severe hypercalcemia, failure to thrive, and developmental retardation. The authors describe an infant with neonatal severe hyperparathyroidism due to homozygous CaSR gene mutation presenting with recurrent episodes of severe hypercalcemia, growth retardation, and developmental delay. Medical management served as an effective bridge therapy to surgery. Total parathyroidectomy with right hemithyroidectomy was performed at 7 mo of age and resulted in successful cure and normalization of growth and developmental milestones. Timely medical and surgical management can help prevent mortality and morbidity in the form of neurodevelopmental sequelae. Life-long monitoring and treatment is mandatory for the resultant hypoparathyroidism.
Collapse
Affiliation(s)
- Priyanka Gupta
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Shafat Ahmad Tak
- Department of Pediatrics, Government Medical College, Srinagar, Jammu and Kashmir, India
| | - Arun Viswanath S
- Department of Endocrinology, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir, India
| | - Raiz Ahmad Misgar
- Department of Endocrinology, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir, India
| | - Sandeep Agarwala
- Department of Pediatric Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Vandana Jain
- Division of Pediatric Endocrinology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Rajni Sharma
- Division of Pediatric Endocrinology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
8
|
Wade L, Aindow A, Isherwood L, Mughal MZ, Ramakrishnan R. Successful use of cinacalcet monotherapy in the management of siblings with homozygous calcium-sensing receptor mutation. J Pediatr Endocrinol Metab 2022; 35:549-556. [PMID: 35073615 DOI: 10.1515/jpem-2021-0632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/29/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Neonatal severe hyperparathyroidism (NSHPT) due to pathogenic mutations in the calcium-sensing receptor (CASR) is a serious medical condition that can lead to symptomatic hypercalcaemia and has detrimental effects on a child's growth and development. What is new: This report adds to evidence that homozygous CASR mutations can be managed with cinacalcet monotherapy as an alternative to parathyroidectomy. And, early use of cinacalcet in NSHPT can result in improvements in symptoms, growth and developmental milestones. CASE PRESENTATION We present two siblings with NSHPT due to homozygous mutation in the CASR gene with moderate hypercalcaemia. Both were treated with cinacalcet monotherapy and showed significant improvement in growth parameters including head circumference, developmental milestones and hypercalcaemic symptoms, once their calcium and parathyroid hormone levels normalised. CONCLUSIONS This report highlights the role of cinacalcet in managing elevated serum calcium levels in a select group of infants with NSHPT due to homozygous CASR mutations, resulting in improvement in hypercalcaemic symptoms, growth and neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Laura Wade
- Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Anita Aindow
- Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | | | - M Zulf Mughal
- Manchester Foundation NHS Trust, Manchester, UK.,Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | | |
Collapse
|
9
|
Palmieri S, Grassi G, Guarnieri V, Chiodini I, Arosio M, Eller-Vainicher C. Case Report: Unusual Presentations of Loss-of-Function Mutations of the Calcium-Sensing Receptor. Front Med (Lausanne) 2022; 8:809067. [PMID: 35141253 PMCID: PMC8818680 DOI: 10.3389/fmed.2021.809067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
BackgroundIn recent years, heterozygous loss-of-function mutations of the Calcium Sensing Receptor gene (CaSR) were implicated in different hypercalcemic syndromes besides familial hypocalciuric hypercalcemia (FHH), including neonatal severe primary hyperparathyroidism (NSHPT) and primary hyperparathyroidism (PHPT).Cases presentationHere we describe two unusual presentations of heterozygous inactivating CaSR mutations. Case 1: a case of NSHPT due to a de novo, p.(ArgR185Gln) CaSR mutation and successfully treated with cinacalcet monotherapy for 8 years until definitive surgical resolution. Case 2: a 37 years-old woman with PHPT complicated with hypercalcemia and nephrocalcinosis with a novel heterozygous p.(Pro393Arg) CaSR mutation and cured with parathyroidectomy.ConclusionsThese cases reinforce the fact that the clinical spectrum of inactivating mutations of the CaSR has widened and, although carrying a mutation suggestive of FHH, some patients may have different clinical phenotypes and complications requiring individualized therapies.
Collapse
Affiliation(s)
- Serena Palmieri
- Unit of Endocrinology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda—Ospedale Maggiore Policlinico, Milan, Italy
- *Correspondence: Serena Palmieri
| | - Giorgia Grassi
- Unit of Endocrinology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda—Ospedale Maggiore Policlinico, Milan, Italy
| | - Vito Guarnieri
- Division of Medical Genetics, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Milan, Italy
| | - Iacopo Chiodini
- Department of Endocrine and Metabolic Diseases, IRCCS, Istituto Auxologico Italiano, Milan, Italy
- Departments of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Maura Arosio
- Unit of Endocrinology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda—Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Cristina Eller-Vainicher
- Unit of Endocrinology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda—Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
10
|
Tanné C, Pracros JP, Dijoud F, Mure PY, Bordet F, Duncan A, Bacchetta J. Severe neonatal hypercalcemia revealing congenital mesoblastic nephroma: A case report and management of neonatal hypercalcemia: Severe neonatal hypercalcemia revealing congenital mesoblastic nephroma. Arch Pediatr 2022; 29:153-156. [PMID: 35039190 DOI: 10.1016/j.arcped.2021.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/03/2021] [Accepted: 11/30/2021] [Indexed: 11/15/2022]
Abstract
Congenital mesoblastic nephroma is a rare pediatric renal tumor and has been reported in patients presenting with palpable abdominal mass, arterial hypertension, hematuria, polyuria, or hypercalcemia. Here we present the case of a 1-month-old neonate with suspected parathyroid hormone (PTH)-related peptide (PTH-rp)-mediated severe hypercalcemia revealing congenital mesoblastic nephroma. Preoperatively, hypercalcemia was corrected with hydration, furosemide, pamidronate, and low-calcium infant formula. Unilateral nephrectomy led to the resolution of hypercalcemia, transient hyperparathyroidism, and transient vitamin D and mineral supplementation. We conclude that congenital mesoblastic nephroma can secrete PTH-rp that can cause severe hypercalcemia.
Collapse
Affiliation(s)
- C Tanné
- Pediatric and Neonatology Unit, Hôpitaux du Pays du Mont Blanc, Sallanches, France; Reference Center for Rare Diseases of Calcium and Phosphate, Reference Center for Rare Renal Diseases, ORKID, OSCAR and ERK-Net Networks for Rare Diseases, Pediatric Nephrology, Rheumatology and Dermatology Unit, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France.
| | - J-P Pracros
- Department of Pediatric Radiology, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - F Dijoud
- Institut de Pathologie Multisite, Groupement Hospitalier Est, Hospices Civils de Lyon, France, Université Claude Bernard Lyon 1, France
| | - P-Y Mure
- Service de Chirurgie Viscérale Pédiatrique, Groupement Hospitalier Est, Hospices Civils de Lyon, France; Faculté de Médecine Lyon Est, Université Lyon 1, 69008, Lyon, France
| | - F Bordet
- Pediatric Intensive Care, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, Bron, France
| | - A Duncan
- Reference Center for Rare Diseases of Calcium and Phosphate, Reference Center for Rare Renal Diseases, ORKID, OSCAR and ERK-Net Networks for Rare Diseases, Pediatric Nephrology, Rheumatology and Dermatology Unit, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
| | - J Bacchetta
- Reference Center for Rare Diseases of Calcium and Phosphate, Reference Center for Rare Renal Diseases, ORKID, OSCAR and ERK-Net Networks for Rare Diseases, Pediatric Nephrology, Rheumatology and Dermatology Unit, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France; Faculté de Médecine Lyon Est, Université Lyon 1, 69008, Lyon, France
| |
Collapse
|
11
|
Bernardor J, Flammier S, Salles JP, Amouroux C, Castanet M, Lienhardt A, Martinerie L, Damgov I, Linglart A, Bacchetta J. Off-label use of cinacalcet in pediatric primary hyperparathyroidism: A French multicenter experience. Front Pediatr 2022; 10:926986. [PMID: 36090548 PMCID: PMC9449487 DOI: 10.3389/fped.2022.926986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/11/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cinacalcet is a calcimimetic approved in adults with primary hyperparathyroidism (PHPT). Few cases reports described its use in pediatric HPT, with challenges related to the risk of hypocalcemia, increased QT interval and drug interactions. In this study, we report the French experience in this setting. METHODS We retrospectively analyzed data from 18 pediatric patients from 7 tertiary centers who received cinacalcet for PHPT. The results are presented as median (interquartile range). RESULTS At a median age of 10.8 (2.0-14.4) years, 18 patients received cinacalcet for primary HPT (N = 13 inactive CASR mutation, N = 1 CDC73 mutation, N = 1 multiple endocrine neoplasia type 1, N=3 unknown etiology). Cinacalcet was introduced at an estimated glomerular filtration rate (eGFR) of 120 (111-130) mL/min/1.73 m2, plasma calcium of 3.04 (2.96-3.14) mmol/L, plasma phosphate of 1.1 (1.0-1.3) mmol/L, age-standardized (z score) phosphate of -3.0 (-3.5;-1.9), total ALP of 212 (164-245) UI/L, 25-OHD of 37 (20-46) ng/L, age-standardized (z score) ALP of -2.4 (-3.7;-1.4), PTH of 75 (59-123) ng/L corresponding to 1.2 (1.0-2.3)-time the upper limit for normal (ULN). The starting daily dose of cinacalcet was 0.7 (0.6-1.0) mg/kg, with a maximum dose of 1.0 (0.9-1.4) mg/kg per day. With a follow-up of 2.2 (1.3-4.3) years on cinacalcet therapy, PTH and calcium significantly decreased to 37 (34-54) ng/L, corresponding to 0.8 (0.5-0.8) ULN (p = 0.01), and 2.66 (2.55-2.90) mmol/L (p = 0.002), respectively. In contrast, eGFR, 25-OHD, ALP and phosphate and urinary calcium levels remained stable. Nephrocalcinosis was not reported but one patient displayed nephrolithiasis. Cinacalcet was progressively withdrawn in three patients; no side effects were reported. CONCLUSIONS Cinacalcet in pediatric HPT can control hypercalcemia and PTH without significant side effects.
Collapse
Affiliation(s)
- Julie Bernardor
- Centre de Référence des Maladies Rares du Calcium et du Phosphore, Centre de Référence des Maladies Rénales Rares, Filières de Santé Maladies Rares OSCAR, ORKID et ERKNet, Service de Néphrologie Rhumatologie et Dermatologie Pédiatriques, Hôpital Femme Mère Enfant, Bron, France.,INSERM UMR S1033 Research Unit, Lyon, France.,Service de Néphrologie Pédiatrique, CHU de Nice, Hôpital Archet, Nice, France.,Faculté de Médecine, Université Côte d'Azur, Nice, France
| | - Sacha Flammier
- Centre de Référence des Maladies Rares du Calcium et du Phosphore, Centre de Référence des Maladies Rénales Rares, Filières de Santé Maladies Rares OSCAR, ORKID et ERKNet, Service de Néphrologie Rhumatologie et Dermatologie Pédiatriques, Hôpital Femme Mère Enfant, Bron, France
| | - Jean-Pierre Salles
- Centre de Référence des Maladies Rares du Calcium et du Phosphore, Unité d'Endocrinologie, Génétique et Pathologies Osseuses, Filières Santé Maladies Rares OSCAR et BOND, Hôpital des Enfants, Toulouse, France
| | - Cyril Amouroux
- Service d'Endrocrinologie et Néphrologie Pédiatrique, Filière de Santé Maladies Rares OSCAR, Hôpital Arnaud de Villeneuve - CHU Montpellier, Université de Montpellier, Montpellier, France
| | - Mireille Castanet
- Centre de Référence des Maladies Rares du Calcium et du Phosphore, Département de Pédiatrie, Filière Santé Maladies Rares OSCAR, CHU Rouen, Rouen, France
| | | | - Laetitia Martinerie
- Service d'Endocrinologie Pédiatrique, Centre de Référence des Maladies Endocriniennes Rares de la Croissance et du Développement (CRMERCD), Hôpital Robert Debré, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Ivan Damgov
- Center for Pediatric and Adolescent Medicine, University of Heidelberg, Heidelberg, Germany.,Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Agnès Linglart
- AP-HP, Centre de référence des maladies rares du métabolisme du calcium et du phosphate, Plateforme d'expertise maladies rares Paris Saclay, filière OSCAR, EndoRare and BOND ERN, Hôpital de Bicêtre Paris Saclay, Le Kremlin-Bicêtre, France.,Université Paris-Saclay, AP-HP, Service d'endocrinologie et diabète de l'enfant, Service de médecine des adolescents, Hôpital de Bicêtre Paris Saclay, INSERM U1185, Le Kremlin-Bicêtre, France
| | - Justine Bacchetta
- Centre de Référence des Maladies Rares du Calcium et du Phosphore, Centre de Référence des Maladies Rénales Rares, Filières de Santé Maladies Rares OSCAR, ORKID et ERKNet, Service de Néphrologie Rhumatologie et Dermatologie Pédiatriques, Hôpital Femme Mère Enfant, Bron, France.,INSERM UMR S1033 Research Unit, Lyon, France.,Faculté de Médecine Lyon Est, Université de Lyon, Lyon, France
| |
Collapse
|
12
|
Gulcan-Kersin S, Kirkgoz T, Eltan M, Rzayev T, Ata P, Bilgen H, Ozek E, Bereket A, Turan S. Cinacalcet as a First-Line Treatment in Neonatal Severe Hyperparathyroidism Secondary to Calcium Sensing Receptor (CaSR) Mutation. Horm Res Paediatr 2021; 93:313-321. [PMID: 33147586 DOI: 10.1159/000510623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 07/31/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Neonatal severe hyperparathyroidism (NSHPT) is a rare cause of neonatal hypercalcemia caused by a loss of function mutation in the calcium-sensing receptor (CaSR). Hypercalcemia in NSHPT can be life-threatening. Maintenance of serum calcium within a safe range is the primary goal of treatment through hydration, forced diuresis, and bisphosphonate treatment, nevertheless most cases require parathyroidectomy. We report a case with NSHPT diagnosed on the first day of life (DoL) and successfully treated with cinacalcet as the first-line treatment from the 2nd DoL up to the age of 18 months. CASE REPORT A full-term baby evaluated for weight loss at postnatal 14th hour and found to have hypercalcemia (14.4 mg/dL, reference range [RR]: 8.0-11.3). Despite hydration and diuresis, hypercalcemia persisted. Further evaluation revealed a parathyroid hormone (PTH) level of 1,493 pg/mL (RR: 15-65) and urine Ca/Cr of 0.09 mg/mg (RR: 0.03-0.81). Cinacalcet treatment was initiated on the 2nd DoL with the diagnosis of NSHPT due to hypocalciuric hypercalcemia and elevated PTH level. Ca levels decreased to normal levels on the 7th DoL. She was discharged from hospital at postnatal day 15 on cinacalcet treatment and still continued at 18 months of age. Sequencing of CaSR revealed a novel homozygous c.1836G>A (p.G613E) mutation in the patient, for which the parents and sister were heterozygous. CONCLUSION This case represents the youngest age at cinacalcet initiation and the longest duration without parathyroidectomy in a homozygous NSHPT and demonstrates that cinacalcet is an effective first-line treatment in patients who are responsive to this treatment modality and allows avoiding/delay in surgical intervention in NSHPT.
Collapse
Affiliation(s)
- Sinem Gulcan-Kersin
- Department of Neonatology, Marmara University School of Medicine, Istanbul, Turkey
| | - Tarik Kirkgoz
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey
| | - Mehmet Eltan
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey
| | - Turkay Rzayev
- Department of Neonatology, Marmara University School of Medicine, Istanbul, Turkey
| | - Pinar Ata
- Department of Medical Genetics, Marmara University School of Medicine, Istanbul, Turkey
| | - Hulya Bilgen
- Department of Neonatology, Marmara University School of Medicine, Istanbul, Turkey
| | - Eren Ozek
- Department of Neonatology, Marmara University School of Medicine, Istanbul, Turkey
| | - Abdullah Bereket
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey
| | - Serap Turan
- Department of Pediatric Endocrinology and Diabetes, Marmara University School of Medicine, Istanbul, Turkey,
| |
Collapse
|
13
|
Prenatal features and neonatal management of severe hyperparathyroidism caused by the heterozygous inactivating calcium-sensing receptor variant, Arg185Gln: A case report and review of the literature. Bone Rep 2021; 15:101097. [PMID: 34169121 PMCID: PMC8209172 DOI: 10.1016/j.bonr.2021.101097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 12/27/2022] Open
Abstract
Background Loss-of-function variants in the calcium-sensing receptor (CASR) gene are known to be involved in a clinical spectrum ranging from asymptomatic familial hypocalciuric hypercalcemia (FHH) to neonatal severe hyperparathyroidism (NSHPT). Homozygous or compound heterozygous variants are usually responsible for severe neonatal forms, whereas heterozygous variants cause benign forms. One recurrent pathogenic variant, p.Arg185Gln, has been reported in both forms, in a heterozygous state. This variant can be a de novo occurrence or can be inherited from a father with FHH. NSHPT leads to global hypotonia, failure to thrive, typical X-ray anomalies (diffuse demineralization, fractures, metaphyseal irregularities), and acute respiratory distress which can be fatal. Phosphocalcic markers show severe hypercalcemia, abnormal urinary calcium resorption, and hyperparathyroidism as major signs. Classical treatment involves calcium restriction, hyperhydration, and bisphosphonates. Unfortunately, the disease often leads to parathyroidectomy. Recently, calcimimetics have been used with variable efficacy. Efficacy in NSHPT seems to be particularly dependent on CASR genotype. Case presentation We describe the antenatal presentation of a male with short ribs, initially suspected having skeletal ciliopathy. At birth, he presented with NSHPT linked to the pathogenic heterozygous CASR variant, Arg185Gln, inherited from his father who had FHH. Postnatal therapy with cinacalcet was successful. Discussion An exhaustive literature review permits a comparison with all reported cases of Arg185Gln and to hypothesize that cinacalcet efficacy depends on CASR genotype. This confirms the importance of pedigree and parental history in antenatal short rib presentation and questions the feasibility of phosphocalcic exploration during pregnancy or prenatal CASR gene sequencing in the presence of specific clinical signs. It could in fact enable early calcimimetic treatment which might be effective in the CASR variant Arg185Gln.
Collapse
|
14
|
Wen T, Wang Z, Chen X, Ren Y, Lu X, Xing Y, Lu J, Chang S, Zhang X, Shen Y, Yang X. Structural basis for activation and allosteric modulation of full-length calcium-sensing receptor. SCIENCE ADVANCES 2021; 7:7/23/eabg1483. [PMID: 34088669 PMCID: PMC8177707 DOI: 10.1126/sciadv.abg1483] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Calcium-sensing receptor (CaSR) is a class C G protein-coupled receptor (GPCR) that plays an important role in calcium homeostasis and parathyroid hormone secretion. Here, we present multiple cryo-electron microscopy structures of full-length CaSR in distinct ligand-bound states. Ligands (Ca2+ and l-tryptophan) bind to the extracellular domain of CaSR and induce large-scale conformational changes, leading to the closure of two heptahelical transmembrane domains (7TMDs) for activation. The positive modulator (evocalcet) and the negative allosteric modulator (NPS-2143) occupy the similar binding pocket in 7TMD. The binding of NPS-2143 causes a considerable rearrangement of two 7TMDs, forming an inactivated TM6/TM6 interface. Moreover, a total of 305 disease-causing missense mutations of CaSR have been mapped to the structure in the active state, creating hotspot maps of five clinical endocrine disorders. Our results provide a structural framework for understanding the activation, allosteric modulation mechanism, and disease therapy for class C GPCRs.
Collapse
Affiliation(s)
- Tianlei Wen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Ziyu Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Xiaozhe Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Yue Ren
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Xuhang Lu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Yangfei Xing
- State Key Laboratory of Medical Genomics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Jing Lu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China
| | - Shenghai Chang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China
| | - Xing Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuequan Shen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China.
- Synergetic Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| | - Xue Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300350, China.
| |
Collapse
|
15
|
A novel case of neonatal severe hyperparathyroidism successfully treated with a type II calcimimetic drug. Bone Rep 2021; 14:100761. [PMID: 33748353 PMCID: PMC7972953 DOI: 10.1016/j.bonr.2021.100761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 11/24/2022] Open
Abstract
We report a boy with hypercalcemia due to neonatal severe hyperparathyroidism (NSHPT) caused by a compound heterozygous mutation in the calcium sensing receptor (CaSR) managed successfully on a type II calcimimetic drug. The hypercalcemia was temporarily treated by hyperhydration, bisphosphonate and calcium depleted milk. At 29 days of age cinacalcet was introduced. The starting dose was 0.5 mg/kg/day and was subsequently titrated to the point of efficacy (5.2 mg/kg/day) when a persuasive reduction in parathyroid hormone and calcium concentrations was observed. We propose a trial of type II calcimimetics in newborns with NSHPT irrespective of the genetic mutation and advocate that residual functionality of the CaSR predict the drug efficacy.
Collapse
|
16
|
Diao J, DeBono A, Josephs TM, Bourke JE, Capuano B, Gregory KJ, Leach K. Therapeutic Opportunities of Targeting Allosteric Binding Sites on the Calcium-Sensing Receptor. ACS Pharmacol Transl Sci 2021; 4:666-679. [PMID: 33860192 DOI: 10.1021/acsptsci.1c00046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 01/24/2023]
Abstract
The CaSR is a class C G protein-coupled receptor (GPCR) that acts as a multimodal chemosensor to maintain diverse homeostatic functions. The CaSR is a clinical therapeutic target in hyperparathyroidism and has emerged as a putative target in several other diseases. These include hyper- and hypocalcaemia caused either by mutations in the CASR gene or in genes that regulate CaSR signaling and expression, and more recently in asthma. The development of CaSR-targeting drugs is complicated by the fact that the CaSR possesses many different binding sites for endogenous and exogenous agonists and allosteric modulators. Binding sites for endogenous and exogenous ligands are located throughout the large CaSR protein and are interconnected in ways that we do not yet fully understand. This review summarizes our current understanding of CaSR physiology, signaling, and structure and how the many different binding sites of the CaSR may be targeted to treat disease.
Collapse
Affiliation(s)
- Jiayin Diao
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Aaron DeBono
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.,Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Tracy M Josephs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Jane E Bourke
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, 9 Ancora Imparo Way, Clayton, Victoria 3800, Australia
| | - Ben Capuano
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.,Department of Pharmacology, Biomedicine Discovery Institute, Monash University, 9 Ancora Imparo Way, Clayton, Victoria 3800, Australia
| | - Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.,Department of Pharmacology, Biomedicine Discovery Institute, Monash University, 9 Ancora Imparo Way, Clayton, Victoria 3800, Australia
| |
Collapse
|
17
|
Abstract
Parathyroid glands are critical for calcium and phosphate homeostasis. Parathyroid disease is relatively rare in the pediatric population, but there are some important pediatric-specific considerations and conditions. This article reviews parathyroid physiology, disorders of hyper- and hypo- function, operative management, and uniquely pediatric diagnoses such as neonatal severe hyperparathyroidism. Advances in preoperative imaging, intra-operative gland identification, and management of post-thyroidectomy hypocalcemia are also presented in detail. This article combines a review of fundamentals with recent advances in care, emphasizing pediatric-specific publications.
Collapse
|
18
|
Sadacharan D, Mahadevan S, Rao SS, Kumar AP, Swathi S, Kumar S, Kannan S. Neonatal Severe Primary Hyperparathyroidism: A Series of Four Cases and their Long-term Management in India. Indian J Endocrinol Metab 2020; 24:196-201. [PMID: 32699790 PMCID: PMC7333741 DOI: 10.4103/ijem.ijem_53_20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/03/2020] [Accepted: 03/04/2020] [Indexed: 11/04/2022] Open
Abstract
CONTEXT Neonatal severe primary hyperparathyroidism (NSPHPT) is an extremely rare autosomal recessive disorder, requiring a high index of suspicion. Infants affected with this disorder present with severe life-threatening hypercalcemia early in life, requiring adequate preoperative medical management followed by surgery. AIMS We report four newborns with NSPHPT who were managed over 10 years. SUBJECTS AND METHODS Demography, clinical presentation, treatment, and follow-up data were retrospectively studied with descriptive analysis to highlight the utility of long-term medical management, surgery, and genetic testing reported in the literature. STATISTICAL ANALYSIS USED Descriptive Analysis. RESULTS We had three males and one female infant with a mean age of diagnosis at 28.7 days, calcium 29.2+/-2.8 mg/dL, and parathormone (PTH) 1963+/-270.4 pg/mL. All four infants presented with failure to thrive, hypotonia, and respiratory distress. All infants were treated medically followed by total parathyroidectomy plus transcervical thymectomy, with an additional hemithyroidectomy in one of them. Imaging was negative in all four cases. Three babies became hypocalcemic while the fourth infant had a drop in PTH and is on the tab. cinacalcet 30 mg/day. CaSR mutation was positive in three infants. CONCLUSIONS Diagnosing NSPHPT needs expert clinical acumen. It requires emergency medical management to control calcium levels. The crisis may present later, necessitating parathyroidectomy in these cases once the child is fit for surgery. Surgery offers a cure for this unusual lethal hypercalcemia while the role of cinacalcet needs a special mention. Sound knowledge in endocrinology with parathyroid embryology and morphology is of paramount importance. Our case series might add a few insights into managing this unusual genetic disorder.
Collapse
Affiliation(s)
- Dhalapathy Sadacharan
- Department of Endocrine Surgery, Rajiv Gandhi Govt. General Hospital, Madras Medical College, Porur, Chennai, India
| | - Shriraam Mahadevan
- Department of Endocrinology, Diabetes and Metabolism, Sri Ramachandra Medical Centre, Porur, Chennai, India
| | - Smitha S. Rao
- Department of Endocrine Surgery, Rajiv Gandhi Govt. General Hospital, Madras Medical College, Porur, Chennai, India
| | - A Prem Kumar
- Diaplus Clinic, Salem, Anna Nagar, Chennai, India
| | - S Swathi
- Sundaram Medical Foundation, Anna Nagar, Chennai, India
| | - Senthil Kumar
- Ramalingam Hospital, Itteri Road, Salem, Tamil Nadu, India
| | - Subramanian Kannan
- Department of Endocrinology, Diabetes and Metabolism, Narayana Hrudayala Hospitals, Hosur Road, Bengaluru, Karnataka, India
| |
Collapse
|
19
|
Current status in therapeutic interventions of neonatal bone mineral metabolic disorders. Semin Fetal Neonatal Med 2020; 25:101075. [PMID: 31879202 DOI: 10.1016/j.siny.2019.101075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neonatal care has significantly improved in the past decade with improved survival of preterm and sick neonates. Similarly, the field of bone and mineral disorders is continuing to accelerate with better understanding of pathophysiology and genetic basis of diseases, as well as availability of newer diagnostic and therapeutic modalities. In this extensive and rapidly expanding field, metabolic bone disease specialists are frequently called upon to translate progress into better care for neonates with bone and mineral disorders. Accordingly, this chapter provides a review of clinical manifestations and evidence-based investigation and management (where available) of common, rare and ultra-rare disorders of bone and mineral metabolism manifesting in the neonatal period. Besides medical treatment we emphasise the crucial role of the multidisciplinary team, which include physical therapists, occupational therapists and dieticians, in the care of neonates with bone disorders such as osteogenesis imperfecta and achondroplasia.
Collapse
|
20
|
Abdullayev T, Korkmaz M, Kul M, Koray N. A rare cause of neonatal hypercalcemia: Neonatal severe primary hyperparathyroidism: A case report and review of the literature. Int J Surg Case Rep 2019; 66:365-369. [PMID: 31931451 PMCID: PMC6957862 DOI: 10.1016/j.ijscr.2019.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 11/06/2022] Open
Abstract
Neonatal severe primary hyperparathyroidism is an exceedingly rare condition that has high mortality and morbidity if left untreated. Medical therapy must be initiated as soon as the condition is diagnosed, and early surgery must be performed in patients who are refractory to the medical therapy. Scintigraphic studies might sometimes fail to detect ectopic parathyroid glands. Intraoperative parathormone monitoring is particularly important to ensure complete removal of the parathyroid glands.
Introduction Neonatal severe primary hyperthyroidism is an extremely rare disorder that occurs in the first six months of life. Early recognition and prompt surgical intervention are of vital importance for survival and to avoid neurological sequel. Hypotonia, lethargy, respiratory distress, and growth and developmental delay occur in association with elevated serum parathormone levels and hypercalcemia (Gannon et al., 2014). Definitive therapy involves total parathyroidectomy. Case presentation We are presenting a patient with Neonatal severe primary hyperparathyroidism, who successfully underwent total parathyroidectomy. The patient had been followed up with medical therapy until he was seven months old, with no adequate clinical response to medical therapy. Parathormone levels rapidly declined following total parathyroidectomy, and the parathormone level fell to zero after removal of the ectopic tissue with a second surgery, and the patient was discharged with full recovery. Discussion Sestamibi scintigraphy might not always show an ectopic parathyroid gland. In such conditions, confirmation of parathyroid glands excised with total parathyroidectomy by frozen biopsy is not sufficient to terminate surgery. Intraoperative parathormone monitoring is particularly important at this point. Persistently elevated parathormone levels should suggest a remnant parathyroid tissue at the surgical site or an ectopic parathyroid gland that needs to be excised. Conclusion Neonatal severe primary hyperparathyroidism is a life-threatening condition. Early surgery is life-saving in cases in whom medical therapy fails to control the disease.
Collapse
Affiliation(s)
- Tural Abdullayev
- Department of Pediatric Surgery, Medical Park Gebze Hospital, Güzeller, Kavak Cd. No: 5, 41400, Gebze, Kocaeli, Turkey.
| | - Mevlit Korkmaz
- Department of Pediatric Surgery, EMSEY Hospital, Çamlık Mah. Selçuklu Cad. No: 22 Pendik, İstanbul, Turkey.
| | - Mustafa Kul
- Departments of Neonatal İntensive Care Unit, Emsey Hospital, Çamlık Mah. Selçuklu Cad. No: 22 Pendik, Istanbul, Turkey.
| | - Nuray Koray
- Departments of General Surgery, Private Korfez Marmara Hospital, Güney, Albay Sk. No: 7, 41780, Körfez, Kocaeli, Turkey.
| |
Collapse
|
21
|
Forman TE, Niemi AK, Prahalad P, Shi RZ, Nally LM. Cinacalcet therapy in an infant with an R185Q calcium-sensing receptor mutation causing hyperparathyroidism: a case report and review of the literature. J Pediatr Endocrinol Metab 2019; 32:305-310. [PMID: 30730839 DOI: 10.1515/jpem-2018-0307] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/27/2018] [Indexed: 12/27/2022]
Abstract
Background Neonatal severe hyperparathyroidism (NSHPT) is commonly treated with either parathyroidectomy or pharmacologic agents with varying efficacy and numerous side effects. Reports of using cinacalcet for NSHPT have increased, however, the effective dose for pediatric patients from the onset of symptoms through infancy has not been established. Case presentation We describe the clinical course of a newborn with a de novo R185Q mutation in the calcium-sensing receptor (CASR) gene, causing NSHPT. The infant received cinacalcet from the first days of life until 1 year of age. Conclusions Cinacalcet therapy effectively controlled the patient's serum calcium, phosphorus, and parathyroid hormone (PTH) levels without side effects.
Collapse
Affiliation(s)
- Thomas E Forman
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Anna-Kaisa Niemi
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Priya Prahalad
- Department of Pediatrics, Division of Pediatric Endocrinology, Stanford University School of Medicine, Stanford, CA, USA
| | - Run Zhang Shi
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Laura M Nally
- Department of Pediatrics, Division of Pediatric Endocrinology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Pediatrics, Division of Pediatric Endocrinology, Yale School of Medicine, 333 Cedar Street, LMP 3103E, P.O. Box 208064, New Haven, CT 06520, USA, Phone: 203-785-5809, Fax: 203-764-9149
| |
Collapse
|
22
|
Sun X, Huang L, Wu J, Tao Y, Yang F. Novel homozygous inactivating mutation of the calcium-sensing receptor gene in neonatal severe hyperparathyroidism responding to cinacalcet therapy: A case report and literature review. Medicine (Baltimore) 2018; 97:e13128. [PMID: 30407334 PMCID: PMC6250440 DOI: 10.1097/md.0000000000013128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
RATIONALE Calcium-sensing receptor (CaSR) mutations can cause life-threatening neonatal severe hyperparathyroidism (NSHPT). The medical management of NSHPT is often challenging and complex. Here, we present a case of NSHPT caused by a novel homozygous CaSR mutation. PATIENT CONCERNS A Chinese female infant presented with poor feeding, constipation, severe hypotonia, and periodic bradycardia. Biochemistry tests revealed markedly elevated serum levels of Ca and parathyroid hormone (PTH). DIAGNOSES Genetic sequencing revealed a previously undescribed CaSR mutation in exon 3 (c.242T>A; p.I81K). A diagnosis of NSHPT secondary to homozygously inherited familial hypocalciuric hypercalcemia syndrome was established. INTERVENTIONS Cinacalcet was administered after the common treatments (low-calcium intake, hydration, and furosemide), calcitonin, and pamidronate therapy all failed. OUTCOMES Serum Ca decreased and stabilized with cinacalcet therapy. During a 10-month follow-up, total calcium was maintained within the high-normal range and PTH was normalized. LESSONS A trial of cinacalcet therapy might be undertaken in cases of NSHPT while definitive results of the genetic analysis are awaited.
Collapse
MESH Headings
- Calcimimetic Agents/therapeutic use
- Calcium/blood
- Cinacalcet/therapeutic use
- Female
- Genetic Testing
- Homozygote
- Humans
- Hyperparathyroidism, Primary/diagnosis
- Hyperparathyroidism, Primary/drug therapy
- Hyperparathyroidism, Primary/genetics
- Infant
- Infant, Newborn
- Infant, Newborn, Diseases/diagnosis
- Infant, Newborn, Diseases/drug therapy
- Infant, Newborn, Diseases/genetics
- Mutation
- Parathyroid Hormone/blood
- Receptors, Calcium-Sensing/genetics
Collapse
Affiliation(s)
- Xiaomei Sun
- Department of Pediatrics
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education
| | - Liang Huang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education
- Department of Pharmacy/Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jin Wu
- Department of Pediatrics
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education
| | - Yuhong Tao
- Department of Pediatrics
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education
| | - Fan Yang
- Department of Pediatrics
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education
| |
Collapse
|
23
|
Capozza M, Chinellato I, Guarnieri V, Di Lorgi N, Accadia M, Traggiai C, Mattioli G, Di Mauro A, Laforgia N. Case report: acute clinical presentation and neonatal management of primary hyperparathyroidism due to a novel CaSR mutation. BMC Pediatr 2018; 18:340. [PMID: 30376845 PMCID: PMC6208175 DOI: 10.1186/s12887-018-1319-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/23/2018] [Indexed: 11/18/2022] Open
Abstract
Background Neonatal severe primary hyperparathyroidism (NSHPT) is a rare autosomal recessive disorder of calcium homeostasis, characterized by striking hyperparathyroidism, marked hypercalcemia and hyperparathyroid bone disease. We report the case of a newborn with a novel homozygous mutation of the CaSR, treated by successful subtotal parathyroidectomy, who had an acute presentation of the disease, i.e. out-of hospital cardiorespiratory arrest. . Case presentation A 8-day-old female newborn was admitted to the NICU of University of Bari “Aldo Moro” (Italy) after a cardiorespiratory arrest occurred at home. Severe hypercalcemia was found and different drug therapies were employed (Furosemide, Cinacalcet and bisphosphonate), as well as hyperhydration, until subtotal parathyroidectomy, was performed at day 32. Our patient’s mutation was never described before so that a strict and individualized long-term follow-up was started. Conclusions This case of NSHPT suggests that a near-miss event, labelled as a possible case of SIDS, could also be due to severe hypercalcemia and evidentiates the difficulties of the neonatal management of NSHPT. Furthermore, the identification of the specific CaSR mutation provides the substrate for prenatal diagnosis.
Collapse
Affiliation(s)
- Manuela Capozza
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science ad Human Oncology, University of Bari "Aldo Moro", Bari, Italy. .,Policlinico Hospital, Piazza Giulio Cesare n. 11, 70124, Bari, Italy.
| | | | - Vito Guarnieri
- Medical Genetics, IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Foggia, Italy
| | - Natascia Di Lorgi
- Department of Pediatrics, Endocrine, Diabetes and Metabolic Unit, Istituto Giannina Gaslini, University of Genova, Genoa, Italy
| | - Maria Accadia
- Medical Genetics, IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Foggia, Italy
| | - Cristina Traggiai
- Neonatology and Neonatal Intensive Care Unit, Istituto Giannina Gaslini, Genoa, Italy
| | - Girolamo Mattioli
- Pediatric Surgery Unit, Istituto Giannina Gaslini, University of Genoa, Genoa, Italy
| | - Antonio Di Mauro
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science ad Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Nicola Laforgia
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science ad Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
24
|
Auron A, Alon US. Hypercalcemia: a consultant's approach. Pediatr Nephrol 2018; 33:1475-1488. [PMID: 28879535 DOI: 10.1007/s00467-017-3788-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/24/2017] [Accepted: 08/11/2017] [Indexed: 12/11/2022]
Abstract
Due to their daily involvement in mineral metabolism, nephrologists are often asked to consult on children with hypercalcemia. This might become even more pertinent when the hypercalcemia is associated with acute kidney injury and/or hypercalciuria and renal calcifications. The best way to assess the severity of hypercalcemia is by measurement of plasma ionized calcium, and if not available by adjusting serum total calcium to albumin concentration. The differential diagnosis of the possible etiologies of the disturbance in the mineral homeostasis starts with the assessment of serum parathyroid hormone concentration, followed by that of vitamin D metabolites in search of both genetic and acquired etiologies. Several tools are available to acutely treat hypercalcemia with the current main components being fluids, loop diuretics, and antiresorptive agents. This review will address the pathophysiologic mechanisms, clinical manifestations, and treatment modalities involved in hypercalcemia.
Collapse
Affiliation(s)
- Ari Auron
- Bone and Mineral Disorders Clinic, Division of Pediatric Nephrology, Children's Mercy Hospital, University of Missouri at Kansas City School of Medicine, 2401 Gillham Road, Kansas City, MO, 64108, USA
| | - Uri S Alon
- Bone and Mineral Disorders Clinic, Division of Pediatric Nephrology, Children's Mercy Hospital, University of Missouri at Kansas City School of Medicine, 2401 Gillham Road, Kansas City, MO, 64108, USA.
| |
Collapse
|
25
|
Sisk BA, Collins GS, Dillenbeck C, Malatack JJ. Appropriateness of Pediatrics Case Reports Citations. Pediatrics 2018; 141:S526-S529. [PMID: 29610185 DOI: 10.1542/peds.2018-0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/07/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND We determined types of peer-reviewed articles that cited Pediatrics case reports and whether citations were "appropriate" or "inappropriate." METHODS The 20 most highly cited Pediatrics case reports published between January 2011 and April 2016 were identified. All articles referencing these 20 case reports were analyzed for appropriateness of the citation. Appropriate citations referred to the original article specifically as a case report or cited the case report in support of general knowledge. Inappropriate citations used case reports to infer causation, support proof of mechanism, or were deemed irrelevant to claims being supported. Two authors independently coded all citations. RESULTS These 20 case reports were cited in 479 articles (median: 24 citations per case report). In most articles (83.6%, n = 367), case reports were cited appropriately; in 53.4% (n = 196) of articles, a case report was specifically referred to, and in 46.6% (n = 171) of articles, the case report was used to support general knowledge. For inappropriate citations, in 63.3% (n = 50) of articles, case reports were used to infer causation; in 15.2% (n = 12) of articles, they were used as proof of mechanism of pathogenesis or treatment; and in 21.5% (n = 17) of articles, they were irrelevant. Case reports were most commonly cited in review articles (38.7%, n = 170) and original studies (31%, n = 136). "Original studies" were articles in which authors reported original data, excluding case reports. CONCLUSIONS These results reveal that most citations of Pediatrics case reports are appropriate.
Collapse
Affiliation(s)
- Bryan A Sisk
- Department of Pediatrics, School of Medicine, Washington University, St Louis, Missouri;
| | - Griffin S Collins
- Department of Pediatrics, St Louis Children's Hospital, St Louis, Missouri
| | - Claire Dillenbeck
- College of Arts and Sciences, Emory University, Atlanta, Georgia; and
| | - J Jeffrey Malatack
- Department of Pediatrics, Sidney Kimmel Medical College, Thomas Jefferson University, Wilmington, Delaware
| |
Collapse
|
26
|
Stokes VJ, Nielsen MF, Hannan FM, Thakker RV. Hypercalcemic Disorders in Children. J Bone Miner Res 2017; 32:2157-2170. [PMID: 28914984 PMCID: PMC5703166 DOI: 10.1002/jbmr.3296] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/07/2017] [Accepted: 09/13/2017] [Indexed: 12/20/2022]
Abstract
Hypercalcemia is defined as a serum calcium concentration that is greater than two standard deviations above the normal mean, which in children may vary with age and sex, reflecting changes in the normal physiology at each developmental stage. Hypercalcemic disorders in children may present with hypotonia, poor feeding, vomiting, constipation, abdominal pain, lethargy, polyuria, dehydration, failure to thrive, and seizures. In severe cases renal failure, pancreatitis and reduced consciousness may also occur and older children and adolescents may present with psychiatric symptoms. The causes of hypercalcemia in children can be classified as parathyroid hormone (PTH)-dependent or PTH-independent, and may be congenital or acquired. PTH-independent hypercalcemia, ie, hypercalcemia associated with a suppressed PTH, is commoner in children than PTH-dependent hypercalcemia. Acquired causes of PTH-independent hypercalcemia in children include hypervitaminosis; granulomatous disorders, and endocrinopathies. Congenital syndromes associated with PTH-independent hypercalcemia include idiopathic infantile hypercalcemia (IIH), William's syndrome, and inborn errors of metabolism. PTH-dependent hypercalcemia is usually caused by parathyroid tumors, which may give rise to primary hyperparathyroidism (PHPT) or tertiary hyperparathyroidism, which usually arises in association with chronic renal failure and in the treatment of hypophosphatemic rickets. Acquired causes of PTH-dependent hypercalcemia in neonates include maternal hypocalcemia and extracorporeal membrane oxygenation. PHPT usually occurs as an isolated nonsyndromic and nonhereditary endocrinopathy, but may also occur as a hereditary hypercalcemic disorder such as familial hypocalciuric hypercalcemia, neonatal severe primary hyperparathyroidism, and familial isolated primary hyperparathyroidism, and less commonly, as part of inherited complex syndromic disorders such as multiple endocrine neoplasia (MEN). Advances in identifying the genetic causes have resulted in increased understanding of the underlying biological pathways and improvements in diagnosis. The management of symptomatic hypercalcemia includes interventions such as fluids, antiresorptive medications, and parathyroid surgery. This article presents a clinical, biochemical, and genetic approach to investigating the causes of pediatric hypercalcemia. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Victoria J Stokes
- Academic Endocrine UnitRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Morten F Nielsen
- Academic Endocrine UnitRadcliffe Department of MedicineUniversity of OxfordOxfordUK
- Department of Clinical ResearchFaculty of HealthUniversity of Southern DenmarkOdenseDenmark
| | - Fadil M Hannan
- Academic Endocrine UnitRadcliffe Department of MedicineUniversity of OxfordOxfordUK
- Department of Musculoskeletal BiologyInstitute of Ageing and Chronic DiseaseUniversity of LiverpoolOxfordUK
| | - Rajesh V Thakker
- Academic Endocrine UnitRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
27
|
Glaudo M, Letz S, Quinkler M, Bogner U, Elbelt U, Strasburger CJ, Schnabel D, Lankes E, Scheel S, Feldkamp J, Haag C, Schulze E, Frank-Raue K, Raue F, Mayr B, Schöfl C. Heterozygous inactivating CaSR mutations causing neonatal hyperparathyroidism: function, inheritance and phenotype. Eur J Endocrinol 2016; 175:421-31. [PMID: 27666534 DOI: 10.1530/eje-16-0223] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/30/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Homozygous inactivating mutations of the calcium-sensing receptor (CaSR) lead to neonatal severe hyperparathyroidism (NSHPT), whereas heterozygous inactivating mutations result in familial hypocalciuric hypercalcemia (FHH). It is unknown why in some cases heterozygous CaSR mutations cause neonatal hyperparathyroidism (NHPT) clinically similar to NSHPT but with only moderately elevated serum calcium. METHODS A literature survey was conducted to identify patients with heterozygous CaSR mutations and NHPT. The common NHPT CaSR mutants R185Q and R227L were compared with 15 mutants causing only FHH in the heterozygous state. We studied in vitro calcium signaling including the functional consequences of co-expression of mutant and wild-type (wt) CaSR, patients' phenotype, age of disease manifestation and mode of inheritance. RESULTS All inactivating CaSR mutants impaired calcium signaling of wt-CaSR regardless of the patients' clinical phenotype. The absolute intracellular calcium signaling response to physiologic extracellular calcium concentrations in vitro showed a high correlation with patients' serum calcium concentrations in vivo, which is similar in NHPT and FHH patients with the same genotype. Pedigrees of FHH families revealed that paternal inheritance per se does not necessarily lead to NHPT but may only cause FHH. CONCLUSIONS There is a significant correlation between in vitro functional impairment of the CaSR at physiologic calcium concentrations and the severity of alterations in calcium homeostasis in patients. Whether a particular genotype leads to NHPT or FHH appears to depend on additional predisposing genetic or environmental factors. An individual therapeutic approach appears to be warranted for NHPT patients.
Collapse
Affiliation(s)
- Markus Glaudo
- Division of Endocrinology and DiabetesDepartment of Medicine I, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Saskia Letz
- Division of Endocrinology and DiabetesDepartment of Medicine I, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | | | - Ulf Elbelt
- Department of EndocrinologyDiabetes and Nutrition
| | | | - Dirk Schnabel
- Center for Chronic Sick ChildrenPediatric Endocrinology and Diabetes, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Erwin Lankes
- Center for Chronic Sick ChildrenPediatric Endocrinology and Diabetes, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sandra Scheel
- Endocrinology and DiabetologyKlinikum Bielefeld, Bielefeld, Germany
| | - Joachim Feldkamp
- Endocrinology and DiabetologyKlinikum Bielefeld, Bielefeld, Germany
| | | | | | | | | | - Bernhard Mayr
- Division of Endocrinology and DiabetesDepartment of Medicine I, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christof Schöfl
- Division of Endocrinology and DiabetesDepartment of Medicine I, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
28
|
Hannan FM, Babinsky VN, Thakker RV. Disorders of the calcium-sensing receptor and partner proteins: insights into the molecular basis of calcium homeostasis. J Mol Endocrinol 2016; 57:R127-42. [PMID: 27647839 PMCID: PMC5064759 DOI: 10.1530/jme-16-0124] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/08/2016] [Indexed: 12/20/2022]
Abstract
The extracellular calcium (Ca(2+) o)-sensing receptor (CaSR) is a family C G protein-coupled receptor, which detects alterations in Ca(2+) o concentrations and modulates parathyroid hormone secretion and urinary calcium excretion. The central role of the CaSR in Ca(2+) o homeostasis has been highlighted by the identification of mutations affecting the CASR gene on chromosome 3q21.1. Loss-of-function CASR mutations cause familial hypocalciuric hypercalcaemia (FHH), whereas gain-of-function mutations lead to autosomal dominant hypocalcaemia (ADH). However, CASR mutations are only detected in ≤70% of FHH and ADH cases, referred to as FHH type 1 and ADH type 1, respectively, and studies in other FHH and ADH kindreds have revealed these disorders to be genetically heterogeneous. Thus, loss- and gain-of-function mutations of the GNA11 gene on chromosome 19p13.3, which encodes the G-protein α-11 (Gα11) subunit, lead to FHH type 2 and ADH type 2, respectively; whilst loss-of-function mutations of AP2S1 on chromosome 19q13.3, which encodes the adaptor-related protein complex 2 sigma (AP2σ) subunit, cause FHH type 3. These studies have demonstrated Gα11 to be a key mediator of downstream CaSR signal transduction, and also revealed a role for AP2σ, which is involved in clathrin-mediated endocytosis, in CaSR signalling and trafficking. Moreover, FHH type 3 has been demonstrated to represent a more severe FHH variant that may lead to symptomatic hypercalcaemia, low bone mineral density and cognitive dysfunction. In addition, calcimimetic and calcilytic drugs, which are positive and negative CaSR allosteric modulators, respectively, have been shown to be of potential benefit for these FHH and ADH disorders.
Collapse
Affiliation(s)
- Fadil M Hannan
- Academic Endocrine UnitRadcliffe Department of Medicine, University of Oxford, Oxford, UK Department of Musculoskeletal BiologyInstitute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Valerie N Babinsky
- Academic Endocrine UnitRadcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Rajesh V Thakker
- Academic Endocrine UnitRadcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
29
|
Savas-Erdeve S, Sagsak E, Keskin M, Magdelaine C, Lienhardt-Roussie A, Kurnaz E, Cetinkaya S, Aycan Z. Treatment experience and long-term follow-up data in two severe neonatal hyperparathyroidism cases. J Pediatr Endocrinol Metab 2016; 29:1103-10. [PMID: 27390877 DOI: 10.1515/jpem-2015-0261] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 05/26/2016] [Indexed: 12/20/2022]
Abstract
The calcium sensing receptor (CASR) is expressed most abundantly in the parathyroid glands and the kidney. CASR regulates calcium homeostasis through its ability to modulate parathormone secretion and renal calcium reabsorption. Inactivating mutations in the CASR gene may result in disorders of calcium homeostasis manifesting as familial benign hypocalciuric hypercalcemia (FBHH) and neonatal severe hyperparathyroidsm (NSHPT). Two cases were referred with severe hypercalcemia in the neonatal period. Laboratory evaluation revealed severe hypercalcemia and elevated PTH. The parents also had mild hypercalcemia. The serum calcium level did not normalize with conventional hypercalcemia treatment and there was also no response to cinacalcet in case 1. Total parathyroidectomy was performed when the patient was 70 days old. Genetic analysis revealed a novel homozygous p.Arg544* mutation in the CASR gene. Case 2 underwent total parathyroidectomy and autoimplantation when she was 97 days old, but the parathyroid gland implanted into the forearm was removed 27 days later because the hypercalcemia continued. Genetic evaluation revealed a novel homozygous p.Pro682Leu mutation with normal anthropometric measurements. The neurological development is consistent with age in both cases while case 2 has mild mental retardation. No bone deformity or fracture is present in either case and normocalcemia is ensured with calcitriol in both cases.
Collapse
|
30
|
Mayr B, Schnabel D, Dörr HG, Schöfl C. GENETICS IN ENDOCRINOLOGY: Gain and loss of function mutations of the calcium-sensing receptor and associated proteins: current treatment concepts. Eur J Endocrinol 2016; 174:R189-208. [PMID: 26646938 DOI: 10.1530/eje-15-1028] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/08/2015] [Indexed: 12/26/2022]
Abstract
The calcium-sensing receptor (CASR) is the main calcium sensor in the maintenance of calcium metabolism. Mutations of the CASR, the G protein alpha 11 (GNA11) and the adaptor-related protein complex 2 sigma 1 subunit (AP2S1) genes can shift the set point for calcium sensing causing hyper- or hypo-calcemic disorders. Therapeutic concepts for these rare diseases range from general therapies of hyper- and hypo-calcemic conditions to more pathophysiology oriented approaches such as parathyroid hormone (PTH) substitution and allosteric CASR modulators. Cinacalcet is a calcimimetic that enhances receptor function and has gained approval for the treatment of hyperparathyroidism. Calcilytics in turn attenuate CASR activity and are currently under investigation for the treatment of various diseases. We conducted a literature search for reports about treatment of patients harboring inactivating or activating CASR, GNA11 or AP2S1 mutants and about in vitro effects of allosteric CASR modulators on mutated CASR. The therapeutic concepts for patients with familial hypocalciuric hypercalcemia (FHH), neonatal hyperparathyroidism (NHPT), neonatal severe hyperparathyroidism (NSHPT) and autosomal dominant hypocalcemia (ADH) are reviewed. FHH is usually benign, but symptomatic patients benefit from cinacalcet. In NSHPT patients pamidronate effectively lowers serum calcium, but most patients require parathyroidectomy. In some patients cinacalcet can obviate the need for surgery, particularly in heterozygous NHPT. Symptomatic ADH patients respond to vitamin D and calcium supplementation but this may increase calciuria and renal complications. PTH treatment can reduce relative hypercalciuria. None of the currently available therapies for ADH, however, prevent tissue calcifications and complications, which may become possible with calcilytics that correct the underlying pathophysiologic defect.
Collapse
Affiliation(s)
- Bernhard Mayr
- Division of Endocrinology and DiabetesDepartment of Medicine I, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Ulmenweg 18, 91054 Erlangen, GermanyCenter for Chronic Sick ChildrenPediatric Endocrinology and Diabetes, Charité University Medicine Berlin, Berlin, GermanyDivision of Paediatric Endocrinology and DiabetesDepartment of Paediatrics, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Dirk Schnabel
- Division of Endocrinology and DiabetesDepartment of Medicine I, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Ulmenweg 18, 91054 Erlangen, GermanyCenter for Chronic Sick ChildrenPediatric Endocrinology and Diabetes, Charité University Medicine Berlin, Berlin, GermanyDivision of Paediatric Endocrinology and DiabetesDepartment of Paediatrics, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Helmuth-Günther Dörr
- Division of Endocrinology and DiabetesDepartment of Medicine I, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Ulmenweg 18, 91054 Erlangen, GermanyCenter for Chronic Sick ChildrenPediatric Endocrinology and Diabetes, Charité University Medicine Berlin, Berlin, GermanyDivision of Paediatric Endocrinology and DiabetesDepartment of Paediatrics, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Christof Schöfl
- Division of Endocrinology and DiabetesDepartment of Medicine I, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Ulmenweg 18, 91054 Erlangen, GermanyCenter for Chronic Sick ChildrenPediatric Endocrinology and Diabetes, Charité University Medicine Berlin, Berlin, GermanyDivision of Paediatric Endocrinology and DiabetesDepartment of Paediatrics, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
31
|
Vyas N, Kaminski B, MacLeish S. A Rare Case Report of Immobility-Induced Hypercalcemia in an Infant. Pediatrics 2016; 137:peds.2015-0879. [PMID: 26993128 DOI: 10.1542/peds.2015-0879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/23/2015] [Indexed: 11/24/2022] Open
Abstract
Immobility-induced hypercalcemia is a rare cause of hypercalcemia in children, and to our knowledge it has never been reported in an infant. Infants and children are in a state of high bone turnover. Therefore, they are prone to the imbalance of osteoblastic and osteoclastic activity that occurs with prolonged immobilization, leading to hypercalcemia. Here we present the case of an infant with hypercalcemia who presented with fatigue, irritability, and failure to thrive after prolonged immobilization. Therapeutic interventions were conservative and included hydration and increased mobility leading to complete resolution. This case highlights the importance of including this rare entity in a differential diagnosis of hypercalcemia as well as screening postsurgical patients with prolonged immobility for hypercalcemia.
Collapse
Affiliation(s)
- Neha Vyas
- Department of Pediatrics, Rainbow Babies and Children's Hospital , Cleveland, Ohio
| | - Beth Kaminski
- Department of Pediatrics, Rainbow Babies and Children's Hospital , Cleveland, Ohio
| | - Sarah MacLeish
- Department of Pediatrics, Rainbow Babies and Children's Hospital , Cleveland, Ohio
| |
Collapse
|
32
|
Murphy H, Patrick J, Báez-Irizarry E, Lacassie Y, Gómez R, Vargas A, Barkemeyer B, Kanotra S, Zambrano RM. Neonatal severe hyperparathyroidism caused by homozygous mutation in CASR: A rare cause of life-threatening hypercalcemia. Eur J Med Genet 2016; 59:227-31. [PMID: 26855056 DOI: 10.1016/j.ejmg.2016.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 01/27/2016] [Accepted: 02/01/2016] [Indexed: 11/15/2022]
Abstract
Neonatal severe hyperparathyroidism (NSHPT) is a rare, life-threatening condition that presents with severe hypercalcemia, hyperparathyroidism, and osteopenia in the newborn period. Treatment of NSHPT traditionally includes hydration and bisphosphonates; however newer calcimimetic agents, such as cinacalcet, are now being utilized to prevent or delay parathyroidectomy which is technically difficult in the newborn. Medical treatment success is related to calcium sensing receptor (CaSR) genotype. We report a 4-day-old infant who presented with hyperbilirubinemia, poor feeding, weight loss, severe hypotonia and was ultimately diagnosed with NSHPT. The patient's total serum calcium level of 36.8 mg/dL (reference range: 8.5-10.4 mg/dL) is, to our knowledge, the highest ever documented in this setting. Exome data previously obtained on the infant's parents was re-analyzed demonstrating bi-parental heterozygosity for a mutation of the CASR gene: c.206G > A, and Sanger sequencing data confirmed the patient was a homozygote for the same mutation. Though a patient with the same CaSR gene mutation described here has responded to cinacalcet, our patient did not respond and required parathyroidectomy. Though this case has previously been published as a surgical case report, a full report of the medical management and underlying genetic etiology is warranted; this case underscores the importance of disclosing bi-parental heterozygosity for a gene causing severe neonatal disease particularly when treatment is available and illustrates the need for further in vitro studies of this CaSR mutation.
Collapse
Affiliation(s)
- Heidi Murphy
- Department of Pediatrics, Louisiana State University Health Science Center, USA
| | - Jessica Patrick
- Division of Neonatology, Department of Pediatrics, Louisiana State University Health Science Center, USA
| | - Eileen Báez-Irizarry
- Division of Endocrinology, Department of Pediatrics, Louisiana State University Health Science Center, USA
| | - Yves Lacassie
- Division of Genetics, Department of Pediatrics, Louisiana State University Health Science Center, USA; Department of Genetics, Children's Hospital of New Orleans, USA
| | - Ricardo Gómez
- Division of Endocrinology, Department of Pediatrics, Louisiana State University Health Science Center, USA; Department of Endocrinology, Children's Hospital of New Orleans, USA
| | - Alfonso Vargas
- Division of Endocrinology, Department of Pediatrics, Louisiana State University Health Science Center, USA; Department of Endocrinology, Children's Hospital of New Orleans, USA
| | - Brian Barkemeyer
- Division of Neonatology, Department of Pediatrics, Louisiana State University Health Science Center, USA; Department of Neonatology, Children's Hospital of New Orleans, USA
| | - Sohit Kanotra
- Division of Otorlaryngology, Department of Pediatrics, Louisiana State University Health Science Center, USA; Department of Otolaryngology Children's Hospital of New Orleans, USA
| | - Regina M Zambrano
- Division of Genetics, Department of Pediatrics, Louisiana State University Health Science Center, USA; Department of Genetics, Children's Hospital of New Orleans, USA.
| |
Collapse
|
33
|
Iacobone M, Carnaille B, Palazzo FF, Vriens M. Hereditary hyperparathyroidism--a consensus report of the European Society of Endocrine Surgeons (ESES). Langenbecks Arch Surg 2015; 400:867-86. [PMID: 26450137 DOI: 10.1007/s00423-015-1342-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 09/15/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Hereditary hyperparathyroidism has been reported to occur in 5-10 % of cases of primary hyperparathyroidism in the context of multiple endocrine neoplasia (MEN) types 1, 2A and 4; hyperparathyroidism-jaw tumour (HPT-JT); familial isolated hyperparathyroidism (FIHPT); familial hypocalciuric hypercalcaemia (FHH); neonatal severe hyperparathyroidism (NSHPT) and autosomal dominant moderate hyperparathyroidism (ADMH). This paper aims to review the controversies in the main genetic, clinical and pathological features and surgical management of hereditary hyperparathyroidism. METHODS A peer review literature analysis on hereditary hyperparathyroidism was carried out and analyzed in an evidence-based perspective. Results were discussed at the 2015 Workshop of the European Society of Endocrine Surgeons devoted to hyperparathyroidism due to multiple gland disease. RESULTS Literature reports scarcity of prospective randomized studies; thus, a low level of evidence may be achieved. CONCLUSIONS Hereditary hyperparathyroidism typically presents at an earlier age than the sporadic variants. Gene penetrance and expressivity varies. Parathyroid multiple gland involvement is common, but in some variants, it may occur metachronously often with long disease-free intervals, simulating a single-gland involvement. Bilateral neck exploration with subtotal parathyroidectomy or total parathyroidectomy + autotransplantation should be performed, especially in MEN 1, in order to decrease the persistent and recurrent hyperparathyroidism rates; in some variants (MEN 2A, HPT-JT), limited parathyroidectomy can achieve long-term normocalcemia. In FHH, surgery is contraindicated; in NSHPT, urgent total parathyroidectomy is required. In FIHPT, MEN 4 and ADMH, a tailored case-specific approach is recommended.
Collapse
Affiliation(s)
- Maurizio Iacobone
- Endocrine Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, Via Giustiniani 2, 35128, Padova, Italy.
| | - Bruno Carnaille
- Department of Endocrine Surgery, Université de Lille, Lille, France
| | - F Fausto Palazzo
- Department of Endocrine and Thyroid Surgery, Hammersmith Hospital and Imperial College, London, UK
| | - Menno Vriens
- Department of Surgical Oncology and Endocrine Surgery, Cancer Center, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
34
|
Fisher MM, Cabrera SM, Imel EA. Successful treatment of neonatal severe hyperparathyroidism with cinacalcet in two patients. Endocrinol Diabetes Metab Case Rep 2015; 2015:150040. [PMID: 26161261 PMCID: PMC4496565 DOI: 10.1530/edm-15-0040] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/18/2015] [Indexed: 11/27/2022] Open
Abstract
Neonatal severe hyperparathyroidism (NSHPT) is a rare disorder caused by inactivating calcium-sensing receptor (CASR) mutations that result in life-threatening hypercalcemia and metabolic bone disease. Until recently, therapy has been surgical parathyroidectomy. Three previous case reports have shown successful medical management of NSHPT with cinacalcet. Here we present the detailed description of two unrelated patients with NSHPT due to heterozygous R185Q CASR mutations. Patient 1 was diagnosed at 11 months of age and had developmental delays, dysphagia, bell-shaped chest, and periosteal bone reactions. Patient 2 was diagnosed at 1 month of age and had failure to thrive, osteopenia, and multiple rib fractures. Cinacalcet was initiated at 13 months of age in patient 1, and at 4 months of age in patient 2. We have successfully normalized their parathyroid hormone and alkaline phosphatase levels. Despite the continuance of mild hypercalcemia (11–12 mg/dl), both patients showed no hypercalcemic symptoms. Importantly, patient 1 had improved neurodevelopment and patient 2 never experienced any developmental delays after starting cinacalcet. Neither experienced fractures after starting cinacalcet. Both have been successfully managed long-term without any significant adverse events. These cases expand the current literature of cinacalcet use in NSHPT to five successful reported cases. We propose that cinacalcet may be considered as an option for treating the severe hypercalcemia and metabolic bone disease found in infants and children with inactivating CASR disorders.
Collapse
Affiliation(s)
- Marisa M Fisher
- Division of Pediatric Endocrinology, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine , 705 Riley Hospital Drive, Room 5960, Indianapolis, Indiana, 46220 , USA
| | - Susanne M Cabrera
- Division of Pediatric Endocrinology, Department of Pediatrics, Medical College of Wisconsin, Children's Hospital of Wisconsin , 9000 W. Wisconsin Avenue, PO Box 1997, Milwaukee, Wisconsin, 53201 , USA
| | - Erik A Imel
- Division of Pediatric Endocrinology, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine , 705 Riley Hospital Drive, Room 5960, Indianapolis, Indiana, 46220 , USA ; Division of Endocrinology, Department of Medicine, Indiana University School of Medicine , 541 North Clinical Drive, Indianapolis, Indiana, 46202 , USA
| |
Collapse
|
35
|
Abstract
The extracellular calcium-sensing receptor, CaSR, is a member of the G protein-coupled receptor superfamily and has a critical role in modulating Ca(2+) homeostasis via its role in the parathyroid glands and kidneys. New evidence suggests that CaSR expression in cartilage and bone also directly regulates skeletal homeostasis. This Review discusses the role of CaSR in chondrocytes, through which CaSR contributes to the development of the cartilaginous growth plate, as well as in osteoblasts and osteoclasts, through which CaSR has effects on skeletal development and bone turnover in young and mature animals. The interaction of skeletal CaSR activation with parathyroid hormone (PTH), which is secreted by the parathyroid gland, can lead to net bone formation in trabecular bone or net bone resorption in cortical bone. Allosteric modulators of CaSR are beneficial in some clinical conditions, with effects that are mediated by the ability of these agents to alter levels of PTH and improve Ca(2+) homeostasis. However, further insights into the action of CaSR in bone cells might lead to CaSR-based drugs that maximize not only the effects of the receptor on the parathyroid glands and kidneys but also on bone.
Collapse
Affiliation(s)
- David Goltzman
- Department of Medicine, McGill University, 687 Pine Avenue West, Montreal, QC H3A 1A1, Canada
| | - Geoffrey N Hendy
- Department of Medicine, McGill University, 687 Pine Avenue West, Montreal, QC H3A 1A1, Canada
| |
Collapse
|
36
|
Aljahdali A. Severe neonatal hypercalcemia in 4-month-old, presented with respiratory distress and chest wall deformity. JOURNAL OF PEDIATRIC SURGERY CASE REPORTS 2015. [DOI: 10.1016/j.epsc.2014.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
37
|
Kovacs CS. Bone development and mineral homeostasis in the fetus and neonate: roles of the calciotropic and phosphotropic hormones. Physiol Rev 2014; 94:1143-218. [PMID: 25287862 DOI: 10.1152/physrev.00014.2014] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mineral and bone metabolism are regulated differently in utero compared with the adult. The fetal kidneys, intestines, and skeleton are not dominant sources of mineral supply for the fetus. Instead, the placenta meets the fetal need for mineral by actively transporting calcium, phosphorus, and magnesium from the maternal circulation. These minerals are maintained in the fetal circulation at higher concentrations than in the mother and normal adult, and such high levels appear necessary for the developing skeleton to accrete a normal amount of mineral by term. Parathyroid hormone (PTH) and calcitriol circulate at low concentrations in the fetal circulation. Fetal bone development and the regulation of serum minerals are critically dependent on PTH and PTH-related protein, but not vitamin D/calcitriol, fibroblast growth factor-23, calcitonin, or the sex steroids. After birth, the serum calcium falls and phosphorus rises before gradually reaching adult values over the subsequent 24-48 h. The intestines are the main source of mineral for the neonate, while the kidneys reabsorb mineral, and bone turnover contributes mineral to the circulation. This switch in the regulation of mineral homeostasis is triggered by loss of the placenta and a postnatal fall in serum calcium, and is followed in sequence by a rise in PTH and then an increase in calcitriol. Intestinal calcium absorption is initially a passive process facilitated by lactose, but later becomes active and calcitriol-dependent. However, calcitriol's role can be bypassed by increasing the calcium content of the diet, or by parenteral administration of calcium.
Collapse
Affiliation(s)
- Christopher S Kovacs
- Faculty of Medicine-Endocrinology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
38
|
Leach K, Sexton PM, Christopoulos A, Conigrave AD. Engendering biased signalling from the calcium-sensing receptor for the pharmacotherapy of diverse disorders. Br J Pharmacol 2014; 171:1142-55. [PMID: 24111791 DOI: 10.1111/bph.12420] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/22/2013] [Accepted: 08/26/2013] [Indexed: 12/14/2022] Open
Abstract
The human calcium-sensing receptor (CaSR) is widely expressed in the body, where its activity is regulated by multiple orthosteric and endogenous allosteric ligands. Each ligand stabilizes a unique subset of conformational states, which enables the CaSR to couple to distinct intracellular signalling pathways depending on the extracellular milieu in which it is bathed. Differential signalling arising from distinct receptor conformations favoured by each ligand is referred to as biased signalling. The outcome of CaSR activation also depends on the cell type in which it is expressed. Thus, the same ligand may activate diverse pathways in distinct cell types. Given that the CaSR is implicated in numerous physiological and pathophysiological processes, it is an ideal target for biased ligands that could be rationally designed to selectively regulate desired signalling pathways in preferred cell types.
Collapse
Affiliation(s)
- K Leach
- Pharmaceutical Sciences, Monash University, Melbourne, Vic., Australia
| | | | | | | |
Collapse
|
39
|
García-García E, Domínguez-Pascual I, Requena-Díaz M, Cabello-Laureano R, Fernández-Pineda I, Sánchez-Martín MJ. Intraoperative parathyroid hormone monitoring in neonatal severe primary hyperparathyroidism. Pediatrics 2014; 134:e1203-5. [PMID: 25180273 DOI: 10.1542/peds.2013-3668] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neonatal severe primary hyperparathyroidism presents in the first days of life with severe life-threatening hypercalcemia. It is associated with an inactivating homozygous mutation of the calcium sensing receptor gene. Total parathyroidectomy is the treatment of choice, so the surgeon must identify all the parathyroid tissue, including supernumerary and ectopic glands. We present the case of an infant who underwent total parathyroidectomy at age 4 months in which intraoperative parathyroid hormone monitoring provided immediate confirmation of surgical cure.
Collapse
|
40
|
Callender GG, Udelsman R. Surgery for primary hyperparathyroidism. Cancer 2014; 120:3602-16. [DOI: 10.1002/cncr.28891] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 03/24/2014] [Accepted: 03/31/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Glenda G. Callender
- Department of Surgery; Section of Endocrine Surgery, Yale University School of Medicine; New Haven Connecticut
| | - Robert Udelsman
- Department of Surgery; Section of Endocrine Surgery, Yale University School of Medicine; New Haven Connecticut
| |
Collapse
|
41
|
Atay Z, Bereket A, Haliloglu B, Abali S, Ozdogan T, Altuncu E, Canaff L, Vilaça T, Wong BYL, Cole DEC, Hendy GN, Turan S. Novel homozygous inactivating mutation of the calcium-sensing receptor gene (CASR) in neonatal severe hyperparathyroidism-lack of effect of cinacalcet. Bone 2014; 64:102-7. [PMID: 24735972 DOI: 10.1016/j.bone.2014.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/21/2014] [Accepted: 04/07/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND NSHPT is a life-threatening disorder caused by homozygous inactivating calcium-sensing receptor (CASR) mutations. In some cases, the CaSR allosteric activator, cinacalcet, may reduce serum PTH and calcium levels, but surgery is the treatment of choice. OBJECTIVE To describe a case of NSHPT unresponsive to cinacalcet. PATIENT AND RESULTS A 23-day-old girl was admitted with hypercalcemia, hypotonia, bell-shaped chest and respiratory distress. The parents were first-degree cousins once removed. Serum Ca was 4.75 mmol/l (N: 2.10-2.62), P: 0.83 mmol/l (1.55-2.64), PTH: 1096 pg/ml (9-52) and urinary Ca/Cr ratio: 0.5mg/mg. First, calcitonin was given (10 IU/kg × 4/day), and then 2 days later, pamidronate (0.5mg/kg) for 2 days. Doses of cinacalcet were given daily from day 28 of life starting at 30 mg/m2 and increasing to 90 mg/m2 on day 43. On day 33, 6 days after pamidronate, serum Ca levels had fallen to 2.5 mmol/l but, thereafter, rose to 5 mmol/l despite the cinacalcet. Total parathyroidectomy was performed at day 45. Hungry bone disease after surgery required daily Ca replacement and calcitriol for 18 days. At 3 months, the girl was mildly hypercalcemic, with no supplementation, and at 6 months, she developed hypocalcemia and has since been maintained on Ca and calcitriol. By CASR mutation analysis, the infant was homozygous and both parents heterozygous for a deletion-frameshift mutation. CONCLUSION The predicted nonfunctional CaSR is consistent with lack of response to cinacalcet, but total parathyroidectomy was successful. An empiric trial of the drug and/or prompt mutation testing should help minimize the period of unnecessary pharmacotherapy.
Collapse
Affiliation(s)
- Zeynep Atay
- Department of Pediatric Endocrinology, Marmara University, Pendik, Istanbul 34899, Turkey.
| | - Abdullah Bereket
- Department of Pediatric Endocrinology, Marmara University, Pendik, Istanbul 34899, Turkey
| | - Belma Haliloglu
- Department of Pediatric Endocrinology, Marmara University, Pendik, Istanbul 34899, Turkey
| | - Saygin Abali
- Department of Pediatric Endocrinology, Marmara University, Pendik, Istanbul 34899, Turkey
| | - Tutku Ozdogan
- Department of Neonatology, Marmara University, Pendik, Istanbul 34899, Turkey
| | - Emel Altuncu
- Department of Neonatology, Marmara University, Pendik, Istanbul 34899, Turkey
| | - Lucie Canaff
- Department of Medicine, Physiology and Human Genetics, McGill University, Montreal, Quebec H3A 0G4, Canada; Calcium Research Laboratory and Hormones and Cancer Research Unit, Royal Victoria Hospital, Montreal, Quebec H3A 1A1, Canada
| | - Tatiane Vilaça
- Department of Medicine, Physiology and Human Genetics, McGill University, Montreal, Quebec H3A 0G4, Canada; Department of Medicine, Physiology and Human Genetics, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Betty Y L Wong
- Departments of Laboratory Medicine and Pathobiology, Medicine, and Genetics, University of Toronto, Toronto, Ontario M5G IL5, Canada
| | - David E C Cole
- Departments of Laboratory Medicine and Pathobiology, Medicine, and Genetics, University of Toronto, Toronto, Ontario M5G IL5, Canada
| | - Geoffrey N Hendy
- Department of Medicine, Physiology and Human Genetics, McGill University, Montreal, Quebec H3A 0G4, Canada; Calcium Research Laboratory and Hormones and Cancer Research Unit, Royal Victoria Hospital, Montreal, Quebec H3A 1A1, Canada
| | - Serap Turan
- Department of Pediatric Endocrinology, Marmara University, Pendik, Istanbul 34899, Turkey
| |
Collapse
|
42
|
Gannon AW, Monk HM, Levine MA. Cinacalcet monotherapy in neonatal severe hyperparathyroidism: a case study and review. J Clin Endocrinol Metab 2014; 99:7-11. [PMID: 24203066 PMCID: PMC3879678 DOI: 10.1210/jc.2013-2834] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
CONTEXT Neonatal severe hyperparathyroidism (NSHPT) is a severe form of familial hypocalciuric hypercalcemia characterized by severe hypercalcemia and skeletal demineralization. In most cases, NSHPT is due to biallelic loss-of-function mutations in the CASR gene encoding the calcium-sensing receptor (CaSR), but some patients have heterozygous mutations. Conventional treatment consists of iv saline, bisphosphonates, and parathyroidectomy. OBJECTIVE The aim of this project was to characterize the molecular basis for NSHPT in an affected newborn and to describe the response to monotherapy with cinacalcet. METHODS Clinical and biochemical features were monitored as cinacalcet therapy was initiated and maintained. Genomic DNA was obtained from the proband and parents. The CASR gene was amplified by PCR and sequenced directly. RESULTS The patient was a full-term male who developed hypotonia and respiratory failure soon after birth. He was found to have multiple fractures and diffuse bone demineralization, with a marked elevation in serum ionized calcium (1.99 mmol/L) and elevated serum levels of intact PTH (1154 pg/mL); serum 25-hydroxyvitamin D was low, and fractional excretion of calcium was reduced. The serum calcium level was not reduced by iv saline infusion. Based on an extensive family history of autosomal dominant hypercalcemia, a diagnosis of NSHPT was made, and cinacalcet therapy was initiated with a robust and durable effect. Molecular studies revealed a heterozygous R185Q missense mutation in the CASR in the patient and his father, whereas normal sequences for the CASR gene were present in the patient's mother. CONCLUSIONS We describe the first use of cinacalcet as monotherapy for severe hypercalcemia in a newborn with NSHPT. The rapid and durable response to cinacalcet suggests that a trial of calcimimetic therapy should be considered early in the course of NSHPT.
Collapse
Affiliation(s)
- Anthony W Gannon
- Division of Endocrinology and Diabetes (A.W.G., M.A.L.), and Department of Pharmacy Services (H.M.M.), The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104; and Department of Pediatrics (A.W.G., M.A.L.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | | | | |
Collapse
|
43
|
Breitwieser GE. Pharmacoperones and the calcium sensing receptor: exogenous and endogenous regulators. Pharmacol Res 2013; 83:30-7. [PMID: 24291533 DOI: 10.1016/j.phrs.2013.11.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 01/05/2023]
Abstract
Calcium sensing receptor (CaSR) mutations or altered expression cause disorders of calcium handling. Recent studies suggest that reduced targeting to the plasma membrane is a feature common to many CaSR loss-of-function mutations. Allosteric agonists (calcimimetics) can rescue signaling of a subset of CaSR mutants. This review evaluates our current understanding of the subcellular site(s) for allosteric modulator rescue of CaSR mutants. Studies to date make a strong case for calcimimetic potentiation of signaling not only at plasma membrane-localized CaSR, but at the endoplasmic reticulum, acting as pharmacoperones to assist in navigation of multiple quality control checkpoints. The possible role of endogenous pharmacoperones, calcium and glutathione, in folding and stabilization of the CaSR extracellular and transmembrane domains are considered. Finally, the possibility that dihydropyridines act as unintended pharmacoperones of CaSR is proposed. While our understanding of pharmacoperone rescue of CaSR requires refinement, promising results to date argue that this may be a fruitful avenue for drug discovery.
Collapse
Affiliation(s)
- Gerda E Breitwieser
- Weis Center for Research, Geisinger Clinic, 100N. Academy Avenue, Danville PA 17822-2604, USA.
| |
Collapse
|
44
|
Nemeth EF, Shoback D. Calcimimetic and calcilytic drugs for treating bone and mineral-related disorders. Best Pract Res Clin Endocrinol Metab 2013; 27:373-84. [PMID: 23856266 DOI: 10.1016/j.beem.2013.02.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The calcium-sensing receptor (CaSR) plays a pivotal role in regulating systemic Ca(2+) homeostasis and is a target for drugs designed to treat certain disorders of bone and mineral metabolism. Calcimimetics are agonists or positive allosteric modulators of the CaSR; they inhibit parathyroid hormone (PTH) secretion and stimulate renal Ca(2+) excretion. The first calcimimetic drug is cinacalcet, a positive allosteric modulator of the CaSR that is approved for treating secondary hyperparathyroidism (HPT) in patients on renal replacement therapy and for some forms of primary HPT characterized by clinically significant hypercalcemia. Cinacalcet is also being investigated as a therapy for other hypercalcemic conditions and certain hypophosphatemic disorders. Calcilytics are CaSR inhibitors that stimulate the secretion of PTH and decrease renal excretion of Ca(2+). Although calcilytics have failed thus far as anabolic therapies for osteoporosis, they are currently being evaluated as novel therapies for new indications involving hypocalcemia and/or hypercalciuria.
Collapse
Affiliation(s)
- Edward F Nemeth
- MetisMedica, 13 Poplar Plains Road, Toronto, ON M4V 2M7, Canada.
| | | |
Collapse
|
45
|
Leach K, Wen A, Cook AE, Sexton PM, Conigrave AD, Christopoulos A. Impact of clinically relevant mutations on the pharmacoregulation and signaling bias of the calcium-sensing receptor by positive and negative allosteric modulators. Endocrinology 2013; 154:1105-16. [PMID: 23372019 DOI: 10.1210/en.2012-1887] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cinacalcet is predominantly used to treat secondary hyperparathyroidism due to end-stage renal failure, but, more recently, its potential clinical efficacy in treating patients with loss-of-function mutations in the calcium-sensing receptor (CaSR) has been recognized. Many clinically relevant CaSR mutations are located in the heptahelical membrane spanning and extracellular loop regions of the receptor, where allosteric modulators are predicted to bind. The aim of the present study was to investigate the impact of such mutations on the pharmacoregulation of the CaSR by the positive and negative allosteric modulators, cinacalcet and NPS-2143, respectively. Both cinacalcet and NPS-2143 effectively rescued mutants whose cell surface expression was substantially impaired, suggesting that both classes of drug can stabilize a receptor conformation that is trafficked more effectively to the cell surface. In addition, functional impairments in almost all mutant CaSRs were rescued by either cinacalcet or NPS-2143 via restoration of intracellular signaling. There was a significantly greater ability of both compounds to modulate agonist-stimulated intracellular Ca(2+) mobilization than ERK1/2 phosphorylation, indicating that the allosteric modulators engender bias in agonist-stimulated CaSR signaling to different pathways. Three mutations (G(670)R, P(748)R, and L(773)R) altered the binding affinity of allosteric modulators to the CaSR, and 3 mutations (V(817)I, L(773)R, and E(767)K) altered the cooperativity between the allosteric modulator and Ca(2+)(o). These findings have important implications for the treatment of diseases associated with CaSR mutations using allosteric CaSR modulators and for analyzing the effects of mutations on the function and pharmacoregulation of the CaSR.
Collapse
Affiliation(s)
- Katie Leach
- Monash Institute of Pharmaceutical Sciences, 399 Royal Parade, Parkville, 3052, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
46
|
García Soblechero E, Ferrer Castillo MT, Jiménez Crespo B, Domínguez Quintero ML, González Fuentes C. Neonatal hypercalcemia due to a homozygous mutation in the calcium-sensing receptor: failure of cinacalcet. Neonatology 2013; 104:104-8. [PMID: 23817301 DOI: 10.1159/000350540] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 03/01/2013] [Indexed: 11/19/2022]
Abstract
A neonate affected by a novel inactivating mutation in the calcium-sensing receptor (CASR) gene is presented. This mutation is homozygously inherited and has not been previously described. A deletion in exon 5 (c.1392_1404del13) of the gene causes a loss of function of the receptor, which results in neonatal severe hyperparathyroidism and an ensuing extreme hypercalcemia. In a case of homozygosis of the CASR gene, the use of cinacalcet is the second reported calcimimetic treatment attempt and the first treatment attempt prior to surgery. However, because of the type of mutation, parathyroid surgery was necessary at 4 months of age after therapeutic failure. Because there are multiple mutations that affect the CASR gene in different ways, treatment with cinacalcet as an alternative to surgery may be valuable in homozygous cases that are caused by different mutations than the reported case.
Collapse
|
47
|
Grant MP, Stepanchick A, Breitwieser GE. Calcium signaling regulates trafficking of familial hypocalciuric hypercalcemia (FHH) mutants of the calcium sensing receptor. Mol Endocrinol 2012; 26:2081-91. [PMID: 23077345 DOI: 10.1210/me.2012-1232] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Calcium-sensing receptors (CaSRs) regulate systemic Ca(2+) homeostasis. Loss-of-function mutations cause familial benign hypocalciuric hypercalcemia (FHH) or neonatal severe hyperparathyroidism (NSHPT). FHH/NSHPT mutations can reduce trafficking of CaSRs to the plasma membrane. CaSR signaling is potentiated by agonist-driven anterograde CaSR trafficking, leading to a new steady state level of plasma membrane CaSR, which is maintained, with minimal functional desensitization, as long as extracellular Ca(2+) is elevated. This requirement for CaSR signaling to drive CaSR trafficking to the plasma membrane led us to reconsider the mechanism(s) contributing to dysregulated trafficking of FHH/NSHPT mutants. We simultaneously monitored dynamic changes in plasma membrane levels of CaSR and intracellular Ca(2+), using a chimeric CaSR construct, which allowed explicit tracking of plasma membrane levels of mutant or wild-type CaSRs in the presence of nonchimeric partners. Expression of mutants alone revealed severe defects in plasma membrane targeting and Ca(2+) signaling, which were substantially rescued by coexpression with wild-type CaSR. Biasing toward heterodimerization of wild-type and FHH/NSHPT mutants revealed that intracellular Ca(2+) oscillations were insufficient to rescue plasma membrane targeting. Coexpression of the nonfunctional mutant E297K with the truncation CaSRΔ868 robustly rescued trafficking and Ca(2+) signaling, whereas coexpression of distinct FHH/NSHPT mutants rescued neither trafficking nor signaling. Our study suggests that rescue of FHH/NSHPT mutants requires a steady state intracellular Ca(2+) response when extracellular Ca(2+) is elevated and argues that Ca(2+) signaling by wild-type CaSRs rescues FHH mutant trafficking to the plasma membrane.
Collapse
Affiliation(s)
- Michael P Grant
- Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania 17822-2604, USA
| | | | | |
Collapse
|