1
|
Schwarz G, Basel DG, Schwahn BC, Spiegel R, Wong FY, Bliss R, Squires L. Increased Survival in Patients With Molybdenum Cofactor Deficiency Type A Treated With Cyclic Pyranopterin Monophosphate. J Inherit Metab Dis 2025; 48:e70000. [PMID: 40132614 PMCID: PMC11936520 DOI: 10.1002/jimd.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/20/2024] [Accepted: 01/08/2025] [Indexed: 03/27/2025]
Abstract
Molybdenum cofactor deficiency (MoCD) Type A is an ultrarare disorder causing neurodegeneration and early death. Cyclic pyranopterin monophosphate (cPMP), a molybdenum cofactor precursor, is a therapeutic option for patients with MoCD Type A. In this study, efficacy in patients with MoCD Type A treated with recombinant cPMP (rcPMP) and/or fosdenopterin, a synthetic form of cPMP, from one retrospective and two prospective open-label studies (N = 14), was compared with a retrospective/prospective natural history study (untreated; N = 37). Safety was evaluated in treated patients. Patients treated with fosdenopterin/rcPMP had significantly reduced risk of premature/early death versus untreated patients (Cox proportional hazards 5.1; 95% CI 1.32-19.36; p = 0.01). MoCD disease biomarkers of urinary S-sulfocysteine and xanthine returned to near-normal from baseline to last visit in treated patients but remained abnormal in untreated patients. At 12 months, in treated patients, 43% could sit unassisted, 44% were ambulatory, and 57% could feed orally. Initiating fosdenopterin/rcPMP treatment ≤ 14 days after birth appeared to result in better clinical outcomes than initiating > 14 days after birth. Most patients (13/14) had a treatment-emergent adverse event; most were unrelated to fosdenopterin/rcPMP, were mild to moderate in severity, and none led to treatment discontinuation. These results demonstrate that patients with MoCD Type A who received fosdenopterin/rcPMP versus untreated patients were more likely to survive. Some treated patients were able to feed orally and achieve developmental milestones including walking. Fosdenopterin/rcPMP was generally well-tolerated. Improved outcomes in patients treated early support the importance of identifying MoCD in neonates and initiating treatment as soon as possible.
Collapse
Affiliation(s)
- Guenter Schwarz
- Department of Chemistry and Biochemistry and Center for Molecular Medicine CologneUniversity of CologneCologneGermany
| | - Donald G. Basel
- Department of PediatricsMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Bernd C. Schwahn
- Manchester Centre for Genomic Medicine, St Mary's HospitalManchester University NHS Foundation Trust, Health Innovation ManchesterManchesterUK
| | - Ronen Spiegel
- Department of Pediatrics B, Emek Medical Center, AfulaRappaport Faculty of MedicineHaifaIsrael
| | - Flora Y. Wong
- Department of PediatricsMonash University; Monash Newborn, Monash Children's HospitalMelbourneAustralia
| | | | | |
Collapse
|
2
|
Schwahn BC, Hart C, Smith LA, Hart A, Fairbanks L, Arenas-Hernandez M, Turner C, Horman A, Rust S, Santamaria-Araujo JA, Mayr SJ, Schwarz G, Sharrard M. cPMP rescue of a neonate with severe molybdenum cofactor deficiency after serendipitous early diagnosis, and characterisation of a novel MOCS1 variant. Mol Genet Metab 2024; 143:108598. [PMID: 39488078 DOI: 10.1016/j.ymgme.2024.108598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
We report the first, and so far, only index patient with neonatal onset MoCD type A who was diagnosed and treated early enough with cPMP to avoid severe brain injury and disability. The child presented with hypoglycemia at the age of 10 h and was diagnosed because of the incidental finding of severely decreased L-cystine in plasma. Due to a high level of awareness and excellent co-operation between metabolic laboratory and clinical services, cPMP substitution could be initiated before severe encephalopathy set in, and the child subsequently had a normal motor development. The child has been continued on daily substitution with cPMP until today (age 7 years) and has shown a satisfying long-term developmental outcome. Long-term follow-up, however, revealed significant communication difficulties and cognitive abilities in the range of mild to moderate learning disability. The severity of the metabolic disease was confirmed by the extent of biochemical abnormalities and further functional characterisation of the underlying genetic variants. This case provides further evidence that cPMP substitution does significantly alter the disease course when applied early enough. Postnatal treatment in this case was not sufficient to enable an entirely normal cognitive development, despite sustained complete normalization of the biochemical abnormalities.
Collapse
Affiliation(s)
- Bernd C Schwahn
- Willink Metabolic Unit, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK; Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK.
| | - Claire Hart
- Department of Clinical Chemistry, Sheffield Children's Hospital, South Yorkshire and Bassetlaw Pathology, Sheffield, UK
| | - Louisa Ann Smith
- Department of Clinical Chemistry, Sheffield Children's Hospital, South Yorkshire and Bassetlaw Pathology, Sheffield, UK
| | - Anthony Hart
- Paediatric Neurology, King's College Hospital NHS Foundation Trust, London, UK
| | - Lynette Fairbanks
- Purine Research Lab, Biochemical Sciences, Synnovis, Guys & St Thomas' NHS Foundation Trust, London, UK
| | - Monica Arenas-Hernandez
- Purine Research Lab, Biochemical Sciences, Synnovis, Guys & St Thomas' NHS Foundation Trust, London, UK
| | - Charles Turner
- WellChild Laboratory, Evelina London Children's Hospital, St Thomas' Hospital, London, UK
| | - Alistair Horman
- Willink Metabolic Unit, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK; Department of Chemical Pathology, Great Ormond Street Hospital, London, UK
| | - Stewart Rust
- Paediatric Neuropsychology Service, Harrington Building, Royal Manchester Children's Hospital, UK
| | | | - Simon J Mayr
- Department of Biochemistry, University of Cologne, Cologne, Germany
| | - Günter Schwarz
- Department of Biochemistry, University of Cologne, Cologne, Germany
| | - Mark Sharrard
- Metabolic Department, Sheffield Children's Hospital, Sheffield, UK
| |
Collapse
|
3
|
Almudhry M, Prasad AN, Rupar CA, Tay KY, Ratko S, Jenkins ME, Prasad C. A milder form of molybdenum cofactor deficiency type A presenting as Leigh's syndrome-like phenotype highlighting the secondary mitochondrial dysfunction: a case report. Front Neurol 2023; 14:1214137. [PMID: 37789894 PMCID: PMC10542394 DOI: 10.3389/fneur.2023.1214137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/18/2023] [Indexed: 10/05/2023] Open
Abstract
Background Molybdenum cofactor deficiency (MoCD) (OMIM# 252150) is an autosomal-recessive disorder caused by mutations in four genes involved in the molybdenum cofactor (MOCO) biosynthesis pathway. Objectives We report a milder phenotype in a patient with MOCS1 gene mutation who presented with a Leigh-like presentation. Case report We present the case of a 10-year-old boy who was symptomatic at the age of 5 months with sudden onset of dyskinesia, nystagmus, and extrapyramidal signs following a febrile illness. Initial biochemical, radiological, and histopathological findings a Leigh syndrome-like phenotype; however, whole-exome sequencing detected compound heterozygous mutations in MOCS1 gene, c.1133 G>C and c.217C>T, confirming an underlying MoCD. This was biochemically supported by low uric acid level of 80 (110-282 mmol/L) and low cystine level of 0 (3-49), and a urine S-sulfocysteine at 116 (0-15) mmol/mol creatinine. The patient was administered methionine- and cystine-free formulas. The patient has remained stable, with residual intellectual, speech, and motor sequelae. Conclusion This presentation expands the phenotypic variability of late-onset MoCD A and highlights the role of secondary mitochondrial dysfunction in its pathogenesis.
Collapse
Affiliation(s)
- Montaha Almudhry
- London Health Sciences Centre, London, ON, Canada
- Department of Neuroscience, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Asuri N. Prasad
- London Health Sciences Centre, London, ON, Canada
- Department of Pediatrics, Western University, London, ON, Canada
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada
| | - C. Anthony Rupar
- London Health Sciences Centre, London, ON, Canada
- Department of Pediatrics, Western University, London, ON, Canada
- Department of Biochemistry, Western University, London, ON, Canada
| | - Keng Yeow Tay
- London Health Sciences Centre, London, ON, Canada
- Department of Medical Imaging, Western University, London, ON, Canada
| | | | - Mary E. Jenkins
- London Health Sciences Centre, London, ON, Canada
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada
| | - Chitra Prasad
- London Health Sciences Centre, London, ON, Canada
- Department of Pediatrics, Western University, London, ON, Canada
| |
Collapse
|
4
|
Spiegel R, Schwahn BC, Squires L, Confer N. Molybdenum cofactor deficiency: A natural history. J Inherit Metab Dis 2022; 45:456-469. [PMID: 35192225 PMCID: PMC9313850 DOI: 10.1002/jimd.12488] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/09/2022]
Abstract
Molybdenum cofactor deficiency (MoCD) includes three ultrarare autosomal recessive inborn errors of metabolism (MoCD type A [MoCD-A], MoCD-B, and MoCD-C) that cause sulfite intoxication disorders. This natural history study analyzed retrospective data for 58 living or deceased patients (MoCD-A, n = 41; MoCD-B, n = 17). MoCD genotype, survival, neuroimaging, and medical history were assessed retrospectively. Prospective biomarker data were collected for 21 living MoCD patients. The primary endpoint was survival to 1 year of age in MoCD-A patients. Of the 58 MoCD patients, 49 (MoCD-A, n = 36; MoCD-B, n = 13) had first presenting symptoms by Day 28 (neonatal onset; median: 2 and 4 days, respectively). One-year survival rates were 77.4% (overall), 71.8% (neonatal onset MoCD-A), and 76.9% (neonatal onset MoCD-B); median ages at death were 2.4, 2.4, and 2.2 years, respectively. The most common presenting symptoms in the overall population were seizures (60.3%) and feeding difficulties (53.4%). Sequelae included profound developmental delay, truncal hypotonia, limb hypertonia that evolved to spastic quadriplegia or diplegia, dysmorphic features, and acquired microcephaly. In MoCD-A and MoCD-B, plasma and urinary xanthine and S-sulfocysteine concentrations were high; urate remained below the normal reference range. MOCS1 mutation homozygosity was common. Six novel mutations were identified. MoCD is a severe neurodegenerative disorder that often manifests during the neonatal period with intractable seizures and feeding difficulties, with rapidly progressive significant neurologic disabilities and high 1-year mortality rates. Delineation of MoCD natural history supports evaluations of emerging replacement therapy with cPMP for MoCD-A, which may modify disease course for affected individuals.
Collapse
Affiliation(s)
- Ronen Spiegel
- Emek Medical CenterAfulaIsrael
- Rappaport school of MedicineTechnionHaifaIsrael
| | - Bernd C. Schwahn
- Manchester Centre for Genomic Medicine, St Mary's HospitalManchester University NHS Foundation Trust, Health Innovation ManchesterManchesterUK
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | | | | |
Collapse
|
5
|
McGinn RJ, Von Stein EL, Summers Stromberg JE, Li Y. Precision medicine in epilepsy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 190:147-188. [DOI: 10.1016/bs.pmbts.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Myers KA, Scheffer IE. Precision Medicine Approaches for Infantile-Onset Developmental and Epileptic Encephalopathies. Annu Rev Pharmacol Toxicol 2021; 62:641-662. [PMID: 34579535 DOI: 10.1146/annurev-pharmtox-052120-084449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epilepsy is an etiologically heterogeneous condition; however, genetic factors are thought to play a role in most patients. For those with infantile-onset developmental and epileptic encephalopathy (DEE), a genetic diagnosis is now obtained in more than 50% of patients. There is considerable motivation to utilize these molecular diagnostic data to help guide treatment, as children with DEEs often have drug-resistant seizures as well as developmental impairment related to cerebral epileptiform activity. Precision medicine approaches have the potential to dramatically improve the quality of life for these children and their families. At present, treatment can be targeted for patients with diagnoses in many genetic causes of infantile-onset DEE, including genes encoding sodium or potassium channel subunits, tuberous sclerosis, and congenital metabolic diseases. Precision medicine may refer to more intelligent choices of conventional antiseizure medications, repurposed agents previously used for other indications, novel compounds, enzyme replacement, or gene therapy approaches. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kenneth A Myers
- Research Institute of the McGill University Health Centre, Division of Child Neurology, Department of Pediatrics, and Department of Neurology and Neurosurgery, Montreal Children's Hospital, McGill University, Montreal, Quebec H4A 3J1, Canada;
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia; .,Department of Paediatrics, Royal Children's Hospital, The University of Melbourne, Parkville, Victoria 3052, Australia.,The Florey Institute of Neuroscience and Mental Health and Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia
| |
Collapse
|
7
|
吴 连, 蒋 艳, 胡 越. [Molybdenum cofactor deficiency caused by MOCS1 gene mutation: a case report]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2021; 23:416-419. [PMID: 33840416 PMCID: PMC8050547 DOI: 10.7499/j.issn.1008-8830.2101055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
A boy attended the hospital at the age of 1 month due to left hand tremor for 1 week. A blood test showed a reduction in serum uric acid and a cranial MRI showed encephalomalacia, atrophy, and cystic changes. The boy had microcephalus, unusual facial features (long face, long forehead, protruded forehead, long philtrum, low nasal bridge, facial swelling, and thick lower lip), hypertonia of lower extremities, and severe global developmental delay. Whole-exome sequencing performed for the boy detected a homozygous mutation, c.217C > T(p.R73W), in the MOCS1 gene, which came from his parents and was determined as "possibly pathogenic". The boy was diagnosed with molybdenum cofactor deficiency type A based on clinical manifestations and gene test results. This disease is reported for the first time in China.
Collapse
Affiliation(s)
- 连洪 吴
- />重庆医科大学附属儿童医院神经内科/国家儿童健康与疾病临床医学研究中心/儿童发育疾病研究教育部重点实验室/儿科学重庆市重点实验室, 重庆 400014Department of Neurology, Children's Hospital of Chongqing Medical University/National Clinical Research Center for Child Health and Disorders/Ministry of Education Key Laboratory of Child Development and Disorders/Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - 艳 蒋
- />重庆医科大学附属儿童医院神经内科/国家儿童健康与疾病临床医学研究中心/儿童发育疾病研究教育部重点实验室/儿科学重庆市重点实验室, 重庆 400014Department of Neurology, Children's Hospital of Chongqing Medical University/National Clinical Research Center for Child Health and Disorders/Ministry of Education Key Laboratory of Child Development and Disorders/Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - 越 胡
- />重庆医科大学附属儿童医院神经内科/国家儿童健康与疾病临床医学研究中心/儿童发育疾病研究教育部重点实验室/儿科学重庆市重点实验室, 重庆 400014Department of Neurology, Children's Hospital of Chongqing Medical University/National Clinical Research Center for Child Health and Disorders/Ministry of Education Key Laboratory of Child Development and Disorders/Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| |
Collapse
|
8
|
Schwahn B. Fosdenopterin: a First-in-class Synthetic Cyclic Pyranopterin Monophosphate for the Treatment of Molybdenum Cofactor Deficiency Type A. Neurology 2021. [DOI: 10.17925/usn.2021.17.2.85] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
9
|
Alonzo Martínez MC, Cazorla E, Cánovas E, Anniuk K, Cores AE, Serrano AM. Molybdenum Cofactor Deficiency: Mega Cisterna Magna in Two Consecutive Pregnancies and Review of the Literature. APPLICATION OF CLINICAL GENETICS 2020; 13:49-55. [PMID: 32099439 PMCID: PMC6999763 DOI: 10.2147/tacg.s239917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 01/16/2020] [Indexed: 11/23/2022]
Abstract
The molybdenum cofactor deficiency is an autosomal recessive disease, characterized by rapidly progressive and severe neurological damage that mimics a hypoxic-ischemic encephalopathy due to the accumulation of toxic metabolites that cause rapid neurodegeneration after the delivery. It is eventually lethal, in a similar way to the rare isolated sulfite oxidase deficiency. This serious pathology usually causes death in the immediate neonatal period in the more severe variants. We report a case of two consecutive pregnancies with enlarged cisterna magna as the only prenatal pathological finding since 26 weeks of gestation (WG) and the subsequent death of the newborns in the first week after birth. After the second pregnancy, we reached the diagnosis of molybdenum cofactor deficiency due to MOCS1 gene mutation. According to the cases reported in the literature, this is the case with the earliest neuroimage prenatal findings.
Collapse
Affiliation(s)
- M C Alonzo Martínez
- Department of Obstetrics and Gynecology, Hospital Universitario de Torrevieja, Torrevieja, Alicante, Spain
| | - E Cazorla
- Department of Obstetrics and Gynecology, Hospital Universitario de Torrevieja, Torrevieja, Alicante, Spain
| | - E Cánovas
- Department of Obstetrics and Gynecology, Hospital Universitario de Torrevieja, Torrevieja, Alicante, Spain
| | - K Anniuk
- Department of Obstetrics and Gynecology, Hospital Universitario de Torrevieja, Torrevieja, Alicante, Spain
| | - A E Cores
- Department of Radiology, Hospital Universitario de Torrevieja, Torrevieja, Alicante, Spain
| | - A M Serrano
- Department of Obstetrics and Gynecology, Hospital Universitario de Torrevieja, Torrevieja, Alicante, Spain
| |
Collapse
|
10
|
Puri R, Mishra R, Verma J, Sheth S, Verma IC. Hypoxic Ischemic Encephalopathy or Metabolic Etiology—MRI as a Clue to Diagnosis. Neurol India 2020; 68:941-942. [DOI: 10.4103/0028-3886.293478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
11
|
Reiss J. Molybdenum cofactor deficiency type B knock-in mouse models carrying patient-identical mutations and their rescue by singular AAV injections. Hum Genet 2019; 138:355-361. [PMID: 30810871 DOI: 10.1007/s00439-019-01992-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/20/2019] [Indexed: 10/27/2022]
Abstract
Molybdenum cofactor deficiency is an autosomal, recessively inherited metabolic disorder, which, in the absence of an effective therapy, leads to early childhood death due to neurological deterioration. In type A of the disease, cyclic pyranopterin monophosphate (cPMP) is missing, the first intermediate in the biosynthesis of the cofactor, and a biochemical substitution therapy using cPMP has been developed. A comparable approach for type B of the disease with a defect in the second step of the synthesis, formation of molybdopterin, so far has been hampered by the extreme instability of the corresponding metabolites. To explore avenues for a successful and safe gene therapy, knock-in mouse models were created carrying the mutations c.88C>T (p.Q30X) and c.726_727delAA, which are also found in human patients. Recombinant adeno-associated viruses (rAAVs) were constructed and used for postnatal intrahepatic injections of MoCo-deficient mice in a proof-of-concept approach. Singular administration of an appropriate virus dose in 60 animals prevented the otherwise devastating phenotype to a variable extent. While untreated mice did not survive for more than 2 weeks, some of the treated mice grew up to adulthood in both sexes.
Collapse
Affiliation(s)
- Jochen Reiss
- Institut für Humangenetik der Universitätsmedizin Göttingen, Heinrich-Düker-Weg 12, 37073, Göttingen, Germany.
| |
Collapse
|
12
|
Carmona-Martínez V, Ruiz-Alcaraz AJ, Vera M, Guirado A, Martínez-Esparza M, García-Peñarrubia P. Therapeutic potential of pteridine derivatives: A comprehensive review. Med Res Rev 2018; 39:461-516. [PMID: 30341778 DOI: 10.1002/med.21529] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 07/07/2018] [Accepted: 07/10/2018] [Indexed: 12/19/2022]
Abstract
Pteridines are aromatic compounds formed by fused pyrazine and pyrimidine rings. Many living organisms synthesize pteridines, where they act as pigments, enzymatic cofactors, or immune system activation molecules. This variety of biological functions has motivated the synthesis of a huge number of pteridine derivatives with the aim of studying their therapeutic potential. This review gathers the state-of-the-art of pteridine derivatives, describing their biological activities and molecular targets. The antitumor activity of pteridine-based compounds is one of the most studied and advanced therapeutic potentials, for which several molecular targets have been identified. Nevertheless, pteridines are also considered as very promising therapeutics for the treatment of chronic inflammation-related diseases. On the other hand, many pteridine derivatives have been tested for antimicrobial activities but, although some of them resulted to be active in preliminary assays, a deeper research is needed in this area. Moreover, pteridines may be of use in the treatment of many other diseases, such as diabetes, osteoporosis, ischemia, or neurodegeneration, among others. Thus, the diversity of the biological activities shown by these compounds highlights the promising therapeutic use of pteridine derivatives. Indeed, methotrexate, pralatrexate, and triamterene are Food and Drug Administration approved pteridines, while many others are currently under study in clinical trials.
Collapse
Affiliation(s)
- Violeta Carmona-Martínez
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB and Regional Campus of International Excellence "Campus Mare Nostrum," Universidad de Murcia, Murcia, Spain
| | - Antonio J Ruiz-Alcaraz
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB and Regional Campus of International Excellence "Campus Mare Nostrum," Universidad de Murcia, Murcia, Spain
| | - María Vera
- Departamento de Química Orgánica, Universidad de Murcia, Campus de Espinardo, Murcia, Spain
| | - Antonio Guirado
- Departamento de Química Orgánica, Universidad de Murcia, Campus de Espinardo, Murcia, Spain
| | - María Martínez-Esparza
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB and Regional Campus of International Excellence "Campus Mare Nostrum," Universidad de Murcia, Murcia, Spain
| | - Pilar García-Peñarrubia
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB and Regional Campus of International Excellence "Campus Mare Nostrum," Universidad de Murcia, Murcia, Spain
| |
Collapse
|
13
|
Hinderhofer K, Mechler K, Hoffmann GF, Lampert A, Mountford WK, Ries M. Critical appraisal of genotype assessment in molybdenum cofactor deficiency. J Inherit Metab Dis 2017; 40:801-811. [PMID: 28900816 DOI: 10.1007/s10545-017-0077-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 07/10/2017] [Accepted: 07/21/2017] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Molybdenum cofactor deficiency (MoCD) is an ultra-orphan, life-threatening disease. Substrate substitution therapy has successfully been performed in single cases of MoCD type A and clinical trials are underway for drug registration. We present an innovative approach for classification of genotype severity to test the hypothesis that milder sequence variants in MoCD result in a less severe disease phenotype quantitated by patient survival. METHODS All available worldwide published cases with clinical and genetic data were included (n = 40). We stratified the already published disease causing sequence variants as mild or severe with the use of in silico prediction programs, where possible and assessed the possible impact of the variants on the expression of the gene or function of the expressed protein. In a compound heterozygous situation the mildest sequence variant determined the genotype. Subsequently, clinical manifestations and outcomes of both groups were compared. RESULTS Patients with a severe genotype showed a median survival of 15 months and had a lower probability of survival compared to patients with mild genotypes who were all alive at last reported follow-up (p = 0.0203, Log-rank test). DISCUSSION The severity of the genotype assessed by in silico prediction and further classification explained survival in molybdenum cofactor deficiency and may therefore be considered a confounder for the outcome of therapeutic clinical trials requiring adjustment in the clinical trial design or analysis. These results should further be investigated by future in vitro or in vivo functional studies. Caution should be taken with this approach for the classification of variants in molecular genetic diagnostics or genetic counseling.
Collapse
Affiliation(s)
| | - Konstantin Mechler
- Pediatric Psychopharmacology, Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J 5, 68159, Mannheim, Germany.
| | - Georg F Hoffmann
- Pediatric Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, and Center for Rare Disorders, Heidelberg University Hospital, Heidelberg, Germany
| | - Anette Lampert
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
- Cooperation Unit Clinical Pharmacy, Heidelberg University Hospital, Heidelberg, Germany
| | - William K Mountford
- University of North Carolina Wilmington, Wilmington, NC, USA
- Quintiles Inc., Smyrna, GA, USA
| | - Markus Ries
- Pediatric Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, and Center for Rare Disorders, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
14
|
Patel J, Mercimek-Mahmutoglu S. Epileptic Encephalopathy in Childhood: A Stepwise Approach for Identification of Underlying Genetic Causes. Indian J Pediatr 2016; 83:1164-74. [PMID: 26821542 DOI: 10.1007/s12098-015-1979-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 12/02/2015] [Indexed: 01/29/2023]
Abstract
Epilepsy is one of the most common neurological disorders in childhood. Epilepsy associated with global developmental delay and cognitive dysfunction is defined as epileptic encephalopathy. Certain inherited metabolic disorders presenting with epileptic encephalopathy can be treated with disease specific diet, vitamin, amino acid or cofactor supplementations. In those disorders, disease specific therapy is successful to achieve good seizure control and improve long-term neurodevelopmental outcome. For this reason, intractable epilepsy with global developmental delay or history of developmental regression warrants detailed metabolic investigations for the possibility of an underlying treatable inherited metabolic disorder, which should be undertaken as first line investigations. An underlying genetic etiology in epileptic encephalopathy has been supported by recent studies such as array comparative genomic hybridization, targeted next generation sequencing panels, whole exome and whole genome sequencing. These studies report a diagnostic yield up to 70%, depending on the applied genetic testing as well as number of patients enrolled. In patients with epileptic encephalopathy, a stepwise approach for diagnostic work-up will help to diagnose treatable inherited metabolic disorders quickly. Application of detailed genetic investigations such as targeted next generation sequencing as second line and whole exome sequencing as third line testing will diagnose underlying genetic disease which will help for genetic counseling as well as guide for prenatal diagnosis. Knowledge of underlying genetic cause will provide novel insights into the pathogenesis of epileptic encephalopathy and pave the ground towards the development of targeted neuroprotective treatment strategies to improve the health outcome of children with epileptic encephalopathy.
Collapse
Affiliation(s)
- Jaina Patel
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, University of Toronto, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada
| | - Saadet Mercimek-Mahmutoglu
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, University of Toronto, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada. .,Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
15
|
Zaki MS, Selim L, El-Bassyouni HT, Issa MY, Mahmoud I, Ismail S, Girgis M, Sadek AA, Gleeson JG, Abdel Hamid MS. Molybdenum cofactor and isolated sulphite oxidase deficiencies: Clinical and molecular spectrum among Egyptian patients. Eur J Paediatr Neurol 2016; 20:714-22. [PMID: 27289259 PMCID: PMC4993451 DOI: 10.1016/j.ejpn.2016.05.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/09/2016] [Accepted: 05/19/2016] [Indexed: 11/17/2022]
Abstract
AIM Molybdenum cofactor deficiency (MoCD) and Sulfite oxidase deficiency (SOD) are rare autosomal recessive conditions of sulfur-containing amino acid metabolism with overlapping clinical features and emerging therapies. The clinical phenotype is indistinguishable and they can only be differentiated biochemically. MOCS1, MOCS2, MOCS3, and GPRN genes contribute to the synthesis of molybdenum cofactor, and SUOX gene encodes sulfite oxidase. The aim of this study was to elucidate the clinical, radiological, biochemical and molecular findings in patients with SOD and MoCD. METHODS Detailed clinical and radiological assessment of 9 cases referred for neonatal encephalopathy with hypotonia, microcephaly, and epilepsy led to a consideration of disorders of sulfur-containing amino acid metabolism. The diagnosis of six with MoCD and three with SOD was confirmed by biochemical tests, targeted sequencing, and whole exome sequencing where suspicion of disease was lower. RESULTS Novel SUOX mutations were detected in 3 SOD cases and a novel MOCS2 mutation in 1 MoCD case. Most patients presented in the first 3 months of life with intractable tonic-clonic seizures, axial hypotonia, limb hypertonia, exaggerated startle response, feeding difficulties, and progressive cystic encephalomalacia on brain imaging. A single patient with MoCD had hypertrophic cardiomyopathy, hitherto unreported with these diseases. INTERPRETATION Our results emphasize that intractable neonatal seizures, spasticity, and feeding difficulties can be important early signs for these disorders. Progressive microcephaly, intellectual disability and specific brain imaging findings in the first year were additional diagnostic aids. These clinical cues can be used to minimize delays in diagnosis, especially since promising treatments are emerging for MoCD type A.
Collapse
Affiliation(s)
- Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo 12311, Egypt.
| | - Laila Selim
- Pediatric Department, Neurometabolic Clinic, Cairo University, Cairo 12613, Egypt
| | - Hala T El-Bassyouni
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo 12311, Egypt
| | - Mahmoud Y Issa
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo 12311, Egypt
| | - Iman Mahmoud
- Pediatric Department, Neurometabolic Clinic, Cairo University, Cairo 12613, Egypt
| | - Samira Ismail
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo 12311, Egypt
| | - Mariane Girgis
- Pediatric Department, Neurometabolic Clinic, Cairo University, Cairo 12613, Egypt
| | - Abdelrahim A Sadek
- Pediatric Neurology Department, Faculty of Medicine, Sohag University, Sohag 82524, Egypt
| | - Joseph G Gleeson
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, Department of Neurosciences, University of California, San Diego, CA 92093, USA
| | - Mohamed S Abdel Hamid
- Medical Molecular Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo 12311, Egypt
| |
Collapse
|
16
|
Dejanovic B, Djémié T, Grünewald N, Suls A, Kress V, Hetsch F, Craiu D, Zemel M, Gormley P, Lal D, Myers CT, Mefford HC, Palotie A, Helbig I, Meier JC, De Jonghe P, Weckhuysen S, Schwarz G. Simultaneous impairment of neuronal and metabolic function of mutated gephyrin in a patient with epileptic encephalopathy. EMBO Mol Med 2016; 7:1580-94. [PMID: 26613940 PMCID: PMC4693503 DOI: 10.15252/emmm.201505323] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Synaptic inhibition is essential for shaping the dynamics of neuronal networks, and aberrant inhibition plays an important role in neurological disorders. Gephyrin is a central player at inhibitory postsynapses, directly binds and organizes GABAA and glycine receptors (GABAARs and GlyRs), and is thereby indispensable for normal inhibitory neurotransmission. Additionally, gephyrin catalyzes the synthesis of the molybdenum cofactor (MoCo) in peripheral tissue. We identified a de novo missense mutation (G375D) in the gephyrin gene (GPHN) in a patient with epileptic encephalopathy resembling Dravet syndrome. Although stably expressed and correctly folded, gephyrin‐G375D was non‐synaptically localized in neurons and acted dominant‐negatively on the clustering of wild‐type gephyrin leading to a marked decrease in GABAAR surface expression and GABAergic signaling. We identified a decreased binding affinity between gephyrin‐G375D and the receptors, suggesting that Gly375 is essential for gephyrin–receptor complex formation. Surprisingly, gephyrin‐G375D was also unable to synthesize MoCo and activate MoCo‐dependent enzymes. Thus, we describe a missense mutation that affects both functions of gephyrin and suggest that the identified defect at GABAergic synapses is the mechanism underlying the patient's severe phenotype.
Collapse
Affiliation(s)
- Borislav Dejanovic
- Department of Chemistry, Institute of Biochemistry University of Cologne, Cologne, Germany
| | - Tania Djémié
- Neurogenetics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium Laboratory of Neurogenetics, Institute Born-Bunge University of Antwerp, Antwerp, Belgium
| | - Nora Grünewald
- Department of Chemistry, Institute of Biochemistry University of Cologne, Cologne, Germany
| | - Arvid Suls
- Neurogenetics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium Laboratory of Neurogenetics, Institute Born-Bunge University of Antwerp, Antwerp, Belgium GENOMED, Center for Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Vanessa Kress
- Department of Chemistry, Institute of Biochemistry University of Cologne, Cologne, Germany
| | - Florian Hetsch
- Division Cell Physiology, Zoological Institute Technische Universität Braunschweig, Braunschweig, Germany
| | - Dana Craiu
- Pediatric Neurology Clinic, Al Obregia Hospital, Bucharest, Romania Department of Neurology, Pediatric Neurology, Psychiatry, Child and Adolescent Psychiatry, and Neurosurgery, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Matthew Zemel
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Padhraig Gormley
- Wellcome Trust Sanger Institute Wellcome Trust Genome Campus, Hinxton, UK Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) University of Cologne, Cologne, Germany Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dennis Lal
- Cologne Center for Genomics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) University of Cologne, Cologne, Germany Department of Neuropediatrics, University Medical Faculty Giessen and Marburg, Giessen, Germany
| | | | - Candace T Myers
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Aarno Palotie
- Wellcome Trust Sanger Institute Wellcome Trust Genome Campus, Hinxton, UK Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA The Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Ingo Helbig
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein Christian Albrechts University, Kiel, Germany Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jochen C Meier
- Division Cell Physiology, Zoological Institute Technische Universität Braunschweig, Braunschweig, Germany
| | - Peter De Jonghe
- Neurogenetics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium Laboratory of Neurogenetics, Institute Born-Bunge University of Antwerp, Antwerp, Belgium Division of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Sarah Weckhuysen
- Neurogenetics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium Laboratory of Neurogenetics, Institute Born-Bunge University of Antwerp, Antwerp, Belgium Inserm U 1127 CNRS UMR 7225 Sorbonne Universités UPMC Univ Paris 06 UMR S 1127 Institut du Cerveau et de la Moelle épinière, ICM, Paris, France Centre de reference épilepsies rares, Epilepsy unit, AP-HP Groupe hospitalier Pitié-Salpêtrière, F-75013, Paris, France
| | - Guenter Schwarz
- Department of Chemistry, Institute of Biochemistry University of Cologne, Cologne, Germany Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) University of Cologne, Cologne, Germany
| |
Collapse
|
17
|
Klein JL, Lemmon ME, Northington FJ, Boltshauser E, Huisman TAGM, Poretti A. Clinical and neuroimaging features as diagnostic guides in neonatal neurology diseases with cerebellar involvement. CEREBELLUM & ATAXIAS 2016; 3:1. [PMID: 26770813 PMCID: PMC4712469 DOI: 10.1186/s40673-016-0039-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/10/2015] [Indexed: 02/07/2023]
Abstract
Cerebellar abnormalities are encountered in a high number of neurological diseases that present in the neonatal period. These disorders can be categorized broadly as inherited (e.g. malformations, inborn errors of metabolism) or acquired (e.g. hemorrhages, infections, stroke). In some disorders such as Dandy-Walker malformation or Joubert syndrome, the main abnormalities are located within the cerebellum and brainstem. In other disorders such as Krabbe disease or sulfite oxidase deficiency, the main abnormalities are found within the supratentorial brain, but the cerebellar involvement may be helpful for diagnostic purposes. In In this article, we review neurological disorders with onset in the neonatal period and cerebellar involvement with a focus on how characterization of cerebellar involvement can facilitate accurate diagnosis and improved accuracy of neuro-functional prognosis.
Collapse
Affiliation(s)
- Jessica L Klein
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD USA ; Neurosciences Intensive Care Nursery Program, The Johns Hopkins University School of Medicine, Baltimore, MD USA ; Department of Pediatrics, Medical University of South Carolina, Charleston, SC USA
| | - Monica E Lemmon
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD USA ; Neurosciences Intensive Care Nursery Program, The Johns Hopkins University School of Medicine, Baltimore, MD USA ; Division of Pediatric Neurology, Department of Pediatrics, Duke University School of Medicine, Durham, NC USA
| | - Frances J Northington
- Neurosciences Intensive Care Nursery Program, The Johns Hopkins University School of Medicine, Baltimore, MD USA ; Division of Neonatology, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Eugen Boltshauser
- Division of Pediatric Neurology, University Children's Hospital, Zurich, Switzerland
| | - Thierry A G M Huisman
- Neurosciences Intensive Care Nursery Program, The Johns Hopkins University School of Medicine, Baltimore, MD USA ; Section of Pediatric Neuroradiology, Division of Pediatric Radiology, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Charlotte R. Bloomberg Children's Center, Sheikh Zayed Tower, Room 4174, 1800 Orleans Street, Baltimore, MD USA
| | - Andrea Poretti
- Neurosciences Intensive Care Nursery Program, The Johns Hopkins University School of Medicine, Baltimore, MD USA ; Division of Pediatric Neurology, University Children's Hospital, Zurich, Switzerland ; Section of Pediatric Neuroradiology, Division of Pediatric Radiology, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Charlotte R. Bloomberg Children's Center, Sheikh Zayed Tower, Room 4174, 1800 Orleans Street, Baltimore, MD USA
| |
Collapse
|
18
|
Abstract
Molybdenum cofactor deficiency (MoCD) is a severe autosomal recessive inborn error of metabolism first described in 1978. It is characterized by a neonatal presentation of intractable seizures, feeding difficulties, severe developmental delay, microcephaly with brain atrophy and coarse facial features. MoCD results in deficiency of the molybdenum cofactor dependent enzymes sulfite oxidase, xanthine dehydrogenase, aldehyde oxidase and mitochondrial amidoxime reducing component. The resultant accumulation of sulfite, taurine, S-sulfocysteine and thiosulfate contributes to the severe neurological impairment. Recently, initial evidence has demonstrated early treatment with cyclic PMP can turn MoCD type A from a previously neonatal lethal condition with only palliative options, to near normal neurological outcomes in affected patients. We review MoCD and focus on describing the currently published evidence of this exciting new therapeutic option for MoCD type A caused by pathogenic variants in MOCD1.
Collapse
Affiliation(s)
- Paldeep S Atwal
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA; Center for Individualized Medicine FL, Mayo Clinic, Jacksonville, FL, USA; Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA
| | - Fernando Scaglia
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
19
|
Nagappa M, Bindu PS, Taly AB, Sinha S, Bharath RD. Child Neurology: Molybdenum cofactor deficiency. Neurology 2015; 85:e175-8. [DOI: 10.1212/wnl.0000000000002194] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
20
|
Schwahn BC, Van Spronsen FJ, Belaidi AA, Bowhay S, Christodoulou J, Derks TG, Hennermann JB, Jameson E, König K, McGregor TL, Font-Montgomery E, Santamaria-Araujo JA, Santra S, Vaidya M, Vierzig A, Wassmer E, Weis I, Wong FY, Veldman A, Schwarz G. Efficacy and safety of cyclic pyranopterin monophosphate substitution in severe molybdenum cofactor deficiency type A: a prospective cohort study. Lancet 2015; 386:1955-1963. [PMID: 26343839 DOI: 10.1016/s0140-6736(15)00124-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Molybdenum cofactor deficiency (MoCD) is characterised by early, rapidly progressive postnatal encephalopathy and intractable seizures, leading to severe disability and early death. Previous treatment attempts have been unsuccessful. After a pioneering single treatment we now report the outcome of the complete first cohort of patients receiving substitution treatment with cyclic pyranopterin monophosphate (cPMP), a biosynthetic precursor of the cofactor. METHODS In this observational prospective cohort study, newborn babies with clinical and biochemical evidence of MoCD were admitted to a compassionate-use programme at the request of their treating physicians. Intravenous cPMP (80-320 μg/kg per day) was started in neonates diagnosed with MoCD (type A and type B) following a standardised protocol. We prospectively monitored safety and efficacy in all patients exposed to cPMP. FINDINGS Between June 6, 2008, and Jan 9, 2013, intravenous cPMP was started in 16 neonates diagnosed with MoCD (11 type A and five type B) and continued in eight type A patients for up to 5 years. We observed no drug-related serious adverse events after more than 6000 doses. The disease biomarkers urinary S-sulphocysteine, xanthine, and urate returned to almost normal concentrations in all type A patients within 2 days, and remained normal for up to 5 years on continued cPMP substitution. Eight patients with type A disease rapidly improved under treatment and convulsions were either completely suppressed or substantially reduced. Three patients treated early remain seizure free and show near-normal long-term development. We detected no biochemical or clinical response in patients with type B disease. INTERPRETATION cPMP substitution is the first effective therapy for patients with MoCD type A and has a favourable safety profile. Restoration of molybdenum cofactor-dependent enzyme activities results in a greatly improved neurodevelopmental outcome when started sufficiently early. The possibility of MoCD type A needs to be urgently explored in every encephalopathic neonate to avoid any delay in appropriate cPMP substitution, and to maximise treatment benefit. FUNDING German Ministry of Education and Research; Orphatec/Colbourne Pharmaceuticals.
Collapse
Affiliation(s)
- Bernd C Schwahn
- Royal Hospital for Sick Children, NHS Greater Glasgow and Clyde, Glasgow, UK; Willink Biochemical Genetics Unit, Saint Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK.
| | - Francjan J Van Spronsen
- Beatrix Children's Hospital, University Medical Center of Groningen, University of Groningen, Groningen, Netherlands
| | - Abdel A Belaidi
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine Cologne, CECAD Cologne, University of Cologne, Cologne, Germany; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen Bowhay
- Royal Hospital for Sick Children, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - John Christodoulou
- Western Sydney Genetics Program, Children's Hospital at Westmead, and Disciplines of Paediatrics & Child Health and Genetic Medicine, University of Sydney, Sydney, NSW, Australia
| | - Terry G Derks
- Beatrix Children's Hospital, University Medical Center of Groningen, University of Groningen, Groningen, Netherlands
| | - Julia B Hennermann
- Villa Metabolica, Center for Pediatric and Adolescent Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Elisabeth Jameson
- Willink Biochemical Genetics Unit, Saint Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Kai König
- Department of Pediatrics, Mercy Hospital for Women, Melbourne, VIC, Australia
| | - Tracy L McGregor
- Department of Pediatrics, Vanderbilt University School of Medicine and Monroe Carell Jr Children's Hospital at Vanderbilt, Nashville, TN, USA
| | | | | | | | - Mamta Vaidya
- Paediatric Intensive Care, Bart's Health NHS Trust, Royal London Hospital, London, UK
| | - Anne Vierzig
- Paediatric Intensive Care, University Children's Hospital, University of Cologne, Cologne, Germany
| | | | - Ilona Weis
- Children's Hospital, Gemeinschaftsklinikum Koblenz-Mayen, Kemperhof, Koblenz, Germany
| | - Flora Y Wong
- Monash Newborn, Monash Medical Centre, The Ritchie Centre, Hudson Institute of Medical Research, and The Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Alex Veldman
- Orphatec/Colbourne Pharmaceuticals, Niederkassel, Germany; Monash Newborn, Monash Medical Centre, The Ritchie Centre, Hudson Institute of Medical Research, and The Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Günter Schwarz
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine Cologne, CECAD Cologne, University of Cologne, Cologne, Germany; Orphatec/Colbourne Pharmaceuticals, Niederkassel, Germany
| |
Collapse
|
21
|
Oxygen reactivity of mammalian sulfite oxidase provides a concept for the treatment of sulfite oxidase deficiency. Biochem J 2015; 469:211-21. [PMID: 26171830 DOI: 10.1042/bj20140768] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mammalian sulfite oxidase (SO) is a dimeric enzyme consisting of a molybdenum cofactor- (Moco) and haem-containing domain and catalyses the oxidation of toxic sulfite to sulfate. Following sulfite oxidation, electrons are passed from Moco via the haem cofactor to cytochrome c, the terminal electron acceptor. In contrast, plant SO (PSO) lacks the haem domain and electrons shuttle from Moco to molecular oxygen. Given the high similarity between plant and mammalian SO Moco domains, factors that determine the reactivity of PSO towards oxygen, remained unknown. In the present study, we generated mammalian haem-deficient and truncated SO variants and demonstrated their oxygen reactivity by hydrogen peroxide formation and oxygen-consumption studies. We found that intramolecular electron transfer between Moco and haem showed an inverse correlation to SO oxygen reactivity. Haem-deficient SO variants exhibited oxygen-dependent sulfite oxidation similar to PSO, which was confirmed further using haem-deficient human SO in a cell-based assay. This finding suggests the possibility to use oxygen-reactive SO variants in sulfite detoxification, as the loss of SO activity is causing severe neurodegeneration. Therefore we evaluated the potential use of PEG attachment (PEGylation) as a modification method for future enzyme substitution therapies using oxygen-reactive SO variants, which might use blood-dissolved oxygen as the electron acceptor. PEGylation has been shown to increase the half-life of other therapeutic proteins. PEGylation resulted in the modification of up to eight surface-exposed lysine residues of SO, an increased conformational stability and similar kinetic properties compared with wild-type SO.
Collapse
|
22
|
Ultra-orphan diseases: a quantitative analysis of the natural history of molybdenum cofactor deficiency. Genet Med 2015; 17:965-70. [DOI: 10.1038/gim.2015.12] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/13/2015] [Indexed: 01/10/2023] Open
|
23
|
Edwards M, Roeper J, Allgood C, Chin R, Santamaria J, Wong F, Schwarz G, Whitehall J. Investigation of molybdenum cofactor deficiency due to MOCS2 deficiency in a newborn baby. Meta Gene 2015; 3:43-9. [PMID: 25709896 PMCID: PMC4329827 DOI: 10.1016/j.mgene.2014.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 12/03/2014] [Accepted: 12/16/2014] [Indexed: 11/18/2022] Open
Abstract
Background Molybdenum cofactor deficiency (MOCD) is a severe autosomal recessive neonatal metabolic disease that causes seizures and death or severe brain damage. Symptoms, signs and cerebral images can resemble those attributed to intrapartum hypoxia. In humans, molybdenum cofactor (MOCO) has been found to participate in four metabolic reactions: aldehyde dehydrogenase (or oxidase), xanthine oxidoreductase (or oxidase) and sulfite oxidase, and some of the components of molybdenum cofactor synthesis participate in amidoxime reductase. A newborn girl developed refractory seizures, opisthotonus, exaggerated startle reflexes and vomiting on the second day of life. Treatment included intravenous fluid, glucose supplementation, empiric antibiotic therapy and anticonvulsant medication. Her encephalopathy progressed, and she was given palliative care and died aged 1 week. There were no dysmorphic features, including ectopia lentis but ultrasonography revealed a thin corpus callosum. Objectives The aim of this study is to provide etiology, prognosis and genetic counseling. Methods Biochemical analysis of urine, blood, Sanger sequencing of leukocyte DNA, and analysis of the effect of the mutation on protein expression. Results Uric acid level was low in blood, and S-sulfo-L-cysteine and xanthine were elevated in urine. Compound Z was detected in urine. Two MOCS2 gene mutations were identified: c.501 + 2delT, which disrupts a conserved splice site sequence, and c.419C > T (pS140F). Protein expression studies confirmed that the p.S140F substitution was pathogenic. The parents were shown to be heterozygous carriers. Conclusions Mutation analysis confirmed that the MOCD in this family could not be treated with cPMP infusion, and enabled prenatal diagnosis and termination of a subsequent affected pregnancy. Molybdenum cofactor deficiency is a severe autosomal recessive metabolic disease. In neonates it can resemble hypoxemic ischemic encephalopathy. An affected neonate had high urine L-sulfo-S-cysteine, xanthine, and low blood uric acid. Compound Z was detected in urine. Of 2 mutations found in the MOC2A gene, one was shown to disrupt protein expression.
Collapse
Affiliation(s)
- Matthew Edwards
- Department of Paediatrics, Campbelltown Hospital, Campbelltown, NSW, Australia
- Department of Paediatrics, School of Medicine, University of Western Sydney, Campbelltown, NSW, Australia
- Corresponding author at: Department of Paediatrics, Camden and Campbelltown Hospitals, Post Office Box 149, Campbelltown NSW 2560, Australia. Tel.: + 61 40 2364080; fax: + 61 246343650.
| | - Juliane Roeper
- Colbourne Pharmaceuticals GmbH, Viktoriaweg 7, 53859 Niederkassel, Germany
- University of Cologne, Germany
| | - Catherine Allgood
- Department of Paediatrics, Campbelltown Hospital, Campbelltown, NSW, Australia
- Department of Paediatrics, School of Medicine, University of Western Sydney, Campbelltown, NSW, Australia
| | - Raymond Chin
- Department of Paediatrics, Campbelltown Hospital, Campbelltown, NSW, Australia
- Department of Paediatrics, School of Medicine, University of Western Sydney, Campbelltown, NSW, Australia
| | - Jose Santamaria
- Colbourne Pharmaceuticals GmbH, Viktoriaweg 7, 53859 Niederkassel, Germany
- University of Cologne, Germany
| | - Flora Wong
- Monash Newborn, Level 5, 246 Clayton Road, Clayton, Victoria 3168, Australia
- The Ritchie Centre, Department of Paediatrics, Faculty of Medicine, Nursing and Health Sciences, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Guenter Schwarz
- Colbourne Pharmaceuticals GmbH, Viktoriaweg 7, 53859 Niederkassel, Germany
- University of Cologne, Germany
| | - John Whitehall
- Department of Paediatrics, Campbelltown Hospital, Campbelltown, NSW, Australia
- Department of Paediatrics, School of Medicine, University of Western Sydney, Campbelltown, NSW, Australia
| |
Collapse
|
24
|
Marschik PB, Soloveichick M, Windpassinger C, Einspieler C. General movements in genetic disorders: A first look into Cornelia de Lange syndrome. Dev Neurorehabil 2015; 18:280-2. [PMID: 24304241 PMCID: PMC5951282 DOI: 10.3109/17518423.2013.859180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The assessment of General Movements (GMs), i.e. age-specific motor patterns during the first months of life, has repeatedly proven to be a valuable tool to predict neurodevelopmental outcomes. Abnormal spontaneous GMs were found to be among the most reliable markers for cerebral palsy. To add to the knowledge of the abnormal early motor repertoire we analysed prospectively collected video recordings of a boy clinically diagnosed with Cornelia de Lange syndrome. The observed atypical GMs are a further step to disentangle early motor peculiarities in the light of the genetic impact on the developing brain.
Collapse
Affiliation(s)
- Peter B Marschik
- Institute of Physiology (Research Unit iDN – interdisciplinary Developmental Neuroscience), Center for Physiological Medicine, Medical University of Graz, Austria
| | | | | | - Christa Einspieler
- Institute of Physiology (Research Unit iDN – interdisciplinary Developmental Neuroscience), Center for Physiological Medicine, Medical University of Graz, Austria
| |
Collapse
|
25
|
Dulac O, Plecko B, Gataullina S, Wolf NI. Occasional seizures, epilepsy, and inborn errors of metabolism. Lancet Neurol 2014; 13:727-39. [PMID: 24943345 DOI: 10.1016/s1474-4422(14)70110-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Seizures are a common paediatric problem, with inborn errors of metabolism being a rare underlying aetiology. The clinical presentation of inborn errors of metabolism is often associated with other neurological symptoms, such as hypotonia, movement disorders, and cognitive disturbances. However, the occurrence of epilepsy associated with inborn errors of metabolism represents a major challenge that needs to be identified quickly; for some cases, specific treatments are available, metabolic decompensation might be avoided, and accurate counselling can be given about recurrence risk. Some clinical presentations are more likely than others to point to an inborn error of metabolism as the cause of seizures. Knowledge of important findings at examination, and appropriate biochemical investigation of children with seizures of uncertain cause, can aid the diagnosis of an inborn error of metabolism and ascertain whether or not the seizures are amenable to specific metabolic treatment.
Collapse
Affiliation(s)
- Olivier Dulac
- Paris Descartes University, Inserm U1129, Paris, France; CEA, Gif-sur-Yvette, France; Department of Paediatric Neurology, Hôpital Necker-Enfants Malades, AP-HP, Paris, France.
| | - Barbara Plecko
- Department of Child Neurology, University Children's Hospital, University of Zurich, Switzerland
| | | | - Nicole I Wolf
- Department of Child Neurology, VU University Medical Center, Amsterdam, Netherlands; Neuroscience Campus Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
26
|
Abstract
Molybdenum is an essential trace element and crucial for the survival of animals. Four mammalian Mo-dependent enzymes are known, all of them harboring a pterin-based molybdenum cofactor (Moco) in their active site. In these enzymes, molybdenum catalyzes oxygen transfer reactions from or to substrates using water as oxygen donor or acceptor. Molybdenum shuttles between two oxidation states, Mo(IV) and Mo(VI). Following substrate reduction or oxidation, electrons are subsequently shuttled by either inter- or intra-molecular electron transfer chains involving prosthetic groups such as heme or iron-sulfur clusters. In all organisms studied so far, Moco is synthesized by a highly conserved multi-step biosynthetic pathway. A deficiency in the biosynthesis of Moco results in a pleitropic loss of all four human Mo-enzyme activities and in most cases in early childhood death. In this review we first introduce general aspects of molybdenum biochemistry before we focus on the functions and deficiencies of two Mo-enzymes, xanthine dehydrogenase and sulfite oxidase, caused either by deficiency of the apo-protein or a pleiotropic loss of Moco due to a genetic defect in its biosynthesis. The underlying molecular basis of Moco deficiency, possible treatment options and links to other diseases, such as neuropsychiatric disorders, will be discussed.
Collapse
Affiliation(s)
- Guenter Schwarz
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine, University of Cologne, Zülpicher Strasse 47, D-50674, Köln, Germany,
| | | |
Collapse
|
27
|
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - James Hall
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
28
|
Higuchi R, Sugimoto T, Tamura A, Kioka N, Tsuno Y, Higa A, Yoshikawa N. Early features in neuroimaging of two siblings with molybdenum cofactor deficiency. Pediatrics 2014; 133:e267-71. [PMID: 24379235 DOI: 10.1542/peds.2013-0935] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We report the features of neuroimaging within 24 hours after birth in 2 siblings with molybdenum cofactor deficiency. The first sibling was delivered by emergency cesarean section because of fetal distress and showed pedaling and crawling seizures soon after birth. Brain ultrasound revealed subcortical multicystic lesions in the frontal white matter, and brain MRI at 4 hours after birth showed restricted diffusion in the entire cortex, except for the area adjacent to the subcortical cysts. The second sibling was delivered by elective cesarean section. Cystic lesions were seen in the frontal white matter on ultrasound, and brain MRI showed low signal intensity on T1-weighted image and high signal intensity on T2-weighted image in bifrontal white matter within 24 hours after birth, at which time the infant sucked sluggishly. Clonic spasm appeared at 29 hours after birth. The corpus callosum could not be seen clearly on ultrasound or MRI in both infants. Cortical atrophy and white matter cystic lesions spread to the entire hemisphere and resulted in severe brain atrophy within ~1 month in both infants. Subcortical multicystic lesions on ultrasound and a cortex with nonuniform, widespread, restricted diffusion on diffusion-weighted images are early features of neuroimaging in patients with molybdenum cofactor deficiency type A.
Collapse
Affiliation(s)
- Ryuzo Higuchi
- Department of Perinatal Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-0012, Japan.
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Iron is an essential element for all photosynthetic organisms. The biological use of this transition metal is as an enzyme cofactor, predominantly in electron transfer and catalysis. The main forms of iron cofactor are, in order of decreasing abundance, iron-sulfur clusters, heme, and di-iron or mononuclear iron, with a wide functional range. In plants and algae, iron-sulfur cluster assembly pathways of bacterial origin are localized in the mitochondria and plastids, where there is a high demand for these cofactors. A third iron-sulfur cluster assembly pathway is present in the cytosol that depends on the mitochondria but not on plastid assembly proteins. The biosynthesis of heme takes place mainly in the plastids. The importance of iron-sulfur cofactors beyond photosynthesis and respiration has become evident with recent discoveries of novel iron-sulfur proteins involved in epigenetics and DNA metabolism. In addition, increased understanding of intracellular iron trafficking is opening up research into how iron is distributed between iron cofactor assembly pathways and how this distribution is regulated.
Collapse
Affiliation(s)
- Janneke Balk
- John Innes Centre and University of East Anglia, Norwich Research Park, Norwich NR4 7UH, United Kingdom;
| | | |
Collapse
|
30
|
Clinch K, Watt DK, Dixon RA, Baars SM, Gainsford GJ, Tiwari A, Schwarz G, Saotome Y, Storek M, Belaidi AA, Santamaria-Araujo JA. Synthesis of Cyclic Pyranopterin Monophosphate, a Biosynthetic Intermediate in the Molybdenum Cofactor Pathway. J Med Chem 2013; 56:1730-8. [DOI: 10.1021/jm301855r] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | | | | | - Ashish Tiwari
- Alexion Pharmaceuticals Inc., 352 Knotter Drive, Cheshire, Connecticut 06410,
United States
| | - Günter Schwarz
- Colbourne Pharmaceuticals GmbH, Viktoriaweg 7, 53859 Niederkassel, Germany
- Institute of Biochemistry, Department
of Chemistry and Center for Molecular Medicine Cologne, University of Cologne, Zuelpicher Strasse 47, 50674
Cologne, Germany
| | - Yas Saotome
- Alexion Pharmaceuticals Inc., 352 Knotter Drive, Cheshire, Connecticut 06410,
United States
| | - Michael Storek
- Alexion Pharmaceuticals Inc., 352 Knotter Drive, Cheshire, Connecticut 06410,
United States
| | - Abdel A. Belaidi
- Colbourne Pharmaceuticals GmbH, Viktoriaweg 7, 53859 Niederkassel, Germany
- Institute of Biochemistry, Department
of Chemistry and Center for Molecular Medicine Cologne, University of Cologne, Zuelpicher Strasse 47, 50674
Cologne, Germany
| | | |
Collapse
|