1
|
Minten T, Bick S, Adelson S, Gehlenborg N, Amendola LM, Boemer F, Coffey AJ, Encina N, Ferlini A, Kirschner J, Russell BE, Servais L, Sund KL, Taft RJ, Tsipouras P, Zouk H, Bick D, Green RC, Gold NB. Data-driven consideration of genetic disorders for global genomic newborn screening programs. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.03.24.24304797. [PMID: 38585998 PMCID: PMC10996735 DOI: 10.1101/2024.03.24.24304797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Purpose Over 30 international studies are exploring newborn sequencing (NBSeq) to expand the range of genetic disorders included in newborn screening. Substantial variability in gene selection across programs exists, highlighting the need for a systematic approach to prioritize genes. Methods We assembled a dataset comprising 25 characteristics about each of the 4,390 genes included in 27 NBSeq programs. We used regression analysis to identify several predictors of inclusion, and developed a machine learning model to rank genes for public health consideration. Results Among 27 NBSeq programs, the number of genes analyzed ranged from 134 to 4,299, with only 74 (1.7%) genes included by over 80% of programs. The most significant associations with gene inclusion across programs were presence on the US Recommended Uniform Screening Panel (inclusion increase of 74.7%, CI: 71.0%-78.4%), robust evidence on the natural history (29.5%, CI: 24.6%-34.4%) and treatment efficacy (17.0%, CI: 12.3%- 21.7%) of the associated genetic disease. A boosted trees machine learning model using 13 predictors achieved high accuracy in predicting gene inclusion across programs (AUC = 0.915, R² = 84%). Conclusion The machine learning model developed here provides a ranked list of genes that can adapt to emerging evidence and regional needs, enabling more consistent and informed gene selection in NBSeq initiatives.
Collapse
|
2
|
Parenti G, Fecarotta S, Alagia M, Attaianese F, Verde A, Tarallo A, Gragnaniello V, Ziagaki A, Guimaraes MJ, Aguiar P, Hahn A, Azevedo O, Donati MA, Kiec-Wilk B, Scarpa M, van der Beek NAME, Del Toro Riera M, Germain DP, Huidekoper H, van den Hout JMP, van der Ploeg AT. The European reference network for metabolic diseases (MetabERN) clinical pathway recommendations for Pompe disease (acid maltase deficiency, glycogen storage disease type II). Orphanet J Rare Dis 2024; 19:408. [PMID: 39482698 PMCID: PMC11529438 DOI: 10.1186/s13023-024-03373-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 09/18/2024] [Indexed: 11/03/2024] Open
Abstract
Clinical pathway recommendations (CPR) are based on existing guidelines and deliver a short overview on how to deal with a specific diagnosis, resulting therapy and follow-up. In this paper we propose a methodology for developing CPRs for Pompe disease, a metabolic myopathy caused by deficiency of lysosomal acid alpha-glucosidase. The CPR document was developed within the activities of the MetabERN, a non-profit European Reference Network for Metabolic Diseases established by the European Union. A working group was selected among members of the MetabERN lysosomal storage disease subnetwork, with specific expertise in the care of Pompe disease, and patient support group representatives. The working strategy was based on a systematic literature search to develop a database, followed by quality assessment of the studies selected from the literature, and by the development of the CPR document according to a matrix provided by MetabERN. Quality assessment of the literature and collection of citations was conducted according to the AGREE II criteria and Grading of Recommendations, Assessment, Development and Evaluation methodology. General aspects were addressed in the document, including pathophysiology, genetics, frequency, classification, manifestations and clinical approach, laboratory diagnosis and multidisciplinary evaluation, therapy and supportive measures, follow-up, monitoring, and pregnancy. The CPR document that was developed was intended to be a concise and easy-to-use tool for standardization of care for patients among the healthcare providers that are members of the network or are involved in the care for Pompe disease patients.
Collapse
Affiliation(s)
- Giancarlo Parenti
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands.
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli, Naples, Italy.
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples, Italy.
- Azienda Ospedaliera Universitaria Federico II, Naples, Italy.
| | - Simona Fecarotta
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples, Italy
- Azienda Ospedaliera Universitaria Federico II, Naples, Italy
| | - Marianna Alagia
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples, Italy
- Azienda Ospedaliera Universitaria Federico II, Naples, Italy
| | - Federica Attaianese
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples, Italy
| | - Alessandra Verde
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples, Italy
- Azienda Ospedaliera Universitaria Federico II, Naples, Italy
| | - Antonietta Tarallo
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples, Italy
| | - Vincenza Gragnaniello
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples, Italy
| | - Athanasia Ziagaki
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Endocrinology and Metabolism, Center of Excellence for Rare Metabolic Diseases in Adults, Charite-Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Jose' Guimaraes
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Pneumology Department, Reference Center on Lysosomal Storage Disorders, Hospital Senhora da Oliveira, Guimarães, Portugal
| | - Patricio Aguiar
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Clinica Universitaria de Medicina I, Universidade de Lisboa, Lisbon, Portugal
| | - Andreas Hahn
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Child Neurology, Justus-Liebig University, Giessen, Germany
| | - Olga Azevedo
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Cardiology Department, Reference Center on Lysosomal Storage Disorders, Hospital Senhora da Oliveira, Guimarães, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3Bs PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Maria Alice Donati
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Metabolic and Neuromuscular Unit, Meyer Children Hospital-University of Florence, Florence, Italy
| | - Beata Kiec-Wilk
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Unit of Rare Metabolic Diseases, Jagiellonian University Medical College, Kraków, Poland
- The John Paul II Specjalist Hospital in Kraków, Kraków, Poland
| | - Maurizio Scarpa
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Centro Coordinamento Regionale Malattie Rare, Azienda Sanitaria Universitaria del Friuli Centrale, Udine, Italy
| | - Nadine A M E van der Beek
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Mireja Del Toro Riera
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Metabolic Unit, Department of Pediatric Neurology, Hospital Universitario Vall d'Hebron Barcelona, Barcelona, Spain
| | - Dominique P Germain
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Division of Medical Genetics, University of Versailles, Montigny, France
| | - Hidde Huidekoper
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Johanna M P van den Hout
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ans T van der Ploeg
- MetabERN Subnetwork for Lysosomal Disorders, Rotterdam, The Netherlands.
- Center for Lysosomal and Metabolic Diseases, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands.
| |
Collapse
|
3
|
Nunes Campos L, Davila Rivera I, Ibañez Alegre DM, Del Puerto González FN, Garrido San Juan M, Fernandez Zelcer F, Borgobello D, Gerk A, Sosa LF, Miretti MM, Stegmann J, Argüelles CF. Navigating Pompe Disease Assessment: A Comprehensive Scoping Review. Cureus 2024; 16:e73593. [PMID: 39677172 PMCID: PMC11645167 DOI: 10.7759/cureus.73593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 12/17/2024] Open
Abstract
Pompe disease (PD) is a rare progressive autosomal recessive disorder resulting from the deficiency of acid alpha-glucosidase (GAA) enzyme activity. Due to its multisystemic involvement, PD leads to significant morbidity and impacts patients' quality of life. Despite the availability of approved disease-modifying treatments, the prompt diagnosis and management of PD, which are crucial for patient outcomes, still present several challenges. This scoping review aimed to synthesize the evidence regarding methods for screening, diagnosing, and following up PD. We searched articles in English and Spanish published from 2017 to February 8, 2022, across 11 databases (i.e., Cochrane Database of Systematic Reviews, Directory of Open Access Journals (DOAJ), Epistemonikos, Ingenta Connect, Medline/PubMed, SAGE, SciELO Citation Index, ScienceDirect, Springer Link, Virtual Health Library, and Wiley Online Library). We included primary studies (i.e., case reports, case series, cross-sectional studies, case controls, cohorts, clinical trials, and qualitative studies), reviews, and guidelines that described at least one assessment method for patients with confirmed clinical, genetic, or biochemical PD. Two independent reviewers screened and extracted data from articles, with a third reviewer solving conflicts. We synthesized data with narrative summaries and descriptive statistics. After screening 2,139 titles and abstracts, we included 96 eligible articles. Cross-sectional studies (n = 30) and guidelines (n = 1) were the most and least prevalent designs, respectively. Most studies targeted late-onset PD (LOPD, n = 48) and infantile-onset PD (IOPD, n = 21). Eleven articles described newborn screening programs, highlighting their potential to improve PD prevalence estimations and still limited availability among countries. Overall, 81 articles documented clinical manifestations of PD. Hypotonia (n = 7) and hypertrophic cardiomyopathy (n = 7) were the most documented for IOPD, while progressive muscle weakness (n = 21) and dyspnea (n = 11) were the most prevalent for LOPD. We found 26 articles reporting biochemical assays, with dried blood spots (DBS) for GAA enzyme deficiency detection being the most cited (n = 19). We also noted a lack of standardization in documenting DBS results. Additionally, 21 articles mentioned genetic studies, with next-generation sequencing emerging as the gold standard for identifying mutated alleles. Functional studies were the most utilized to follow up with patients. However, monitoring strategies for pediatric and adult PD lacked consensus, and only one article assessed patients' quality of life. This review comprehensively evaluated the literature on PD screening, diagnosis, and follow-up methods, identifying prevalent techniques within each assessment category. We emphasized the need for a more standardized approach to reporting biochemical assays, genetic testing, and clinical presentations. Our review also underscored the critical lack of standardization in PD follow-up. Addressing these gaps will enhance the comparability of future research findings and improve the quality of PD-related healthcare. Limitations of this review included restricting eligible languages and publication years to the latest five, the methodological heterogeneity of selected articles, and the lack of individual study bias assessment.
Collapse
Affiliation(s)
| | | | | | - Fabiana N Del Puerto González
- Rare Diseases, Rare Diseases Community (RDCom), Buenos Aires, ARG
- Genetics, GIGA, Instituto de Biología Subtropical, Nodo Posadas, Universidad Nacional de Misiones (UNaM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Posadas, ARG
| | | | | | | | - Ayla Gerk
- Rare Diseases, Rare Diseases Community (RDCom), Buenos Aires, ARG
| | - Laura F Sosa
- Rare Diseases, Rare Diseases Community (RDCom), Buenos Aires, ARG
| | - Marcos M Miretti
- Genetics, GIGA, Instituto de Biología Subtropical, Nodo Posadas, Universidad Nacional de Misiones (UNaM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Posadas, ARG
- Rare Diseases, Rare Diseases Community (RDCom), Buenos Aires, ARG
| | | | - Carina F Argüelles
- Rare Diseases, Rare Diseases Community (RDCom), Buenos Aires, ARG
- Faculty of Health Sciences, Universidad Católica de las Misiones, Posadas, ARG
- Genetics, GIGA, Instituto de Biología Subtropical, Nodo Posadas, Universidad Nacional de Misiones (UNaM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Posadas, ARG
| |
Collapse
|
4
|
Colella P. Advances in Pompe Disease Treatment: From Enzyme Replacement to Gene Therapy. Mol Diagn Ther 2024; 28:703-719. [PMID: 39134822 DOI: 10.1007/s40291-024-00733-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 10/27/2024]
Abstract
Pompe disease is a neuromuscular disorder caused by a deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA), hydrolyzing glycogen to glucose. Pathological glycogen storage, the hallmark of the disease, disrupts the metabolism and function of various cell types, especially muscle cells, leading to cardiac, motor, and respiratory dysfunctions. The spectrum of Pompe disease manifestations spans two main forms: classical infantile-onset (IOPD) and late-onset (LOPD). IOPD, caused by almost complete GAA deficiency, presents at birth and leads to premature death by the age of 2 years without treatment. LOPD, less severe due to partial GAA activity, appears in childhood, adolescence, or adulthood with muscle weakness and respiratory problems. Since 2006, enzyme replacement therapy (ERT) has been approved for Pompe disease, offering clinical benefits but not a cure. However, advances in early diagnosis through newborn screening, recognizing disease manifestations, and developing improved treatments are set to enhance Pompe disease care. This article reviews recent progress in ERT and ongoing translational research, including the approval of second-generation ERTs, a clinical trial of in utero ERT, and preclinical development of gene and substrate reduction therapies. Notably, gene therapy using intravenous delivery of adeno-associated virus (AAV) vectors is in phase I/II clinical trials for both LOPD and IOPD. Promising data from LOPD trials indicate that most participants met the criteria to discontinue ERT several months after gene therapy. The advantages and challenges of this approach are discussed. Overall, significant progress is being made towards curative therapies for Pompe disease. While several challenges remain, emerging data are promising and suggest the potential for a once-in-a-lifetime treatment.
Collapse
Affiliation(s)
- Pasqualina Colella
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
5
|
Do H, Meena NK, Raben N. Failure of Autophagy in Pompe Disease. Biomolecules 2024; 14:573. [PMID: 38785980 PMCID: PMC11118179 DOI: 10.3390/biom14050573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Autophagy is an evolutionarily conserved lysosome-dependent degradation of cytoplasmic constituents. The system operates as a critical cellular pro-survival mechanism in response to nutrient deprivation and a variety of stress conditions. On top of that, autophagy is involved in maintaining cellular homeostasis through selective elimination of worn-out or damaged proteins and organelles. The autophagic pathway is largely responsible for the delivery of cytosolic glycogen to the lysosome where it is degraded to glucose via acid α-glucosidase. Although the physiological role of lysosomal glycogenolysis is not fully understood, its significance is highlighted by the manifestations of Pompe disease, which is caused by a deficiency of this lysosomal enzyme. Pompe disease is a severe lysosomal glycogen storage disorder that affects skeletal and cardiac muscles most. In this review, we discuss the basics of autophagy and describe its involvement in the pathogenesis of muscle damage in Pompe disease. Finally, we outline how autophagic pathology in the diseased muscles can be used as a tool to fast track the efficacy of therapeutic interventions.
Collapse
Affiliation(s)
| | | | - Nina Raben
- M6P Therapeutics, 20 S. Sarah Street, St. Louis, MO 63108, USA; (H.D.); (N.K.M.)
| |
Collapse
|
6
|
de Souza HMR, Scalco FB, Garrett R, de C Marques FF. Development of a kit for urine collection on filter paper as an alternative for Pompe disease screening and monitoring by LC-HRMS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:3932-3939. [PMID: 37539791 DOI: 10.1039/d3ay00587a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Pompe disease (PD) is an inborn error of metabolism caused by α-glucosidase acid enzyme deficiency. It significantly impacts patients' health and life quality and may lead to death in the first few years of life. Among the well-established diagnostic methods, urinary glucose tetrasaccharide (Glc4) screening by high performance-liquid chromatography has been helpful in monitoring Glc4 levels in patients on enzyme replacement therapy, demonstrating therapy efficacy. However, the specimen shipping process from a sample collecting location to a specialized laboratory for monitoring the Glc4 is costly and presents preanalytical challenges. In this work, we developed a filter paper based-urine collection kit to facilitate specimen shipment, and liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) analysis to determine Glc4 and creatinine in dried urine on filter paper. The LC-HRMS was based on a combination of targeted and untargeted screening on the same specimen injection and was successfully developed and validated. Bland-Altman statistics revealed a good relationship between dried and liquid urine samples and Glc4 and creatinine. Glc4 and other metabolites in dried urine showed stability for at least 7 days at 4 and 22 °C, and 3 days at 50 °C. The stability of the analytes and the efficiency of the kit were tested simulating real conditions by sending it by post. After two days in transit without refrigeration, the stability of compounds was maintained, showing the reliability of the urine collection kit and analysis method to determine the PD biomarker Glc4.
Collapse
Affiliation(s)
- Hygor M R de Souza
- Federal University of Rio de Janeiro, Institute of Chemistry, Metabolomics Laboratory, Rio de Janeiro 21941-598, RJ, Brazil
- Fluminense Federal University, Institute of Chemistry, Department of Analytical Chemistry, Laboratory of Fundamental and Applied Analytical Chemistry, Niterói 24020-141, RJ, Brazil.
| | - Fernanda B Scalco
- Federal University of Rio de Janeiro, Institute of Chemistry, Inborn Error of Metabolism Laboratory, Rio de Janeiro 21941-598, RJ, Brazil
| | - Rafael Garrett
- Federal University of Rio de Janeiro, Institute of Chemistry, Metabolomics Laboratory, Rio de Janeiro 21941-598, RJ, Brazil
| | - Flávia F de C Marques
- Fluminense Federal University, Institute of Chemistry, Department of Analytical Chemistry, Laboratory of Fundamental and Applied Analytical Chemistry, Niterói 24020-141, RJ, Brazil.
| |
Collapse
|
7
|
Brassier A, Pichard S, Schiff M, Bouchereau J, Bérat CM, Caillaud C, Pion A, Khraiche D, Fauroux B, Oualha M, Barnerias C, Desguerre I, Hully M, Maquet M, Deladrière E, de Lonlay P, Gitiaux C. Motor outcomes in patients with infantile and juvenile Pompe disease: Lessons from neurophysiological findings. Mol Genet Metab 2023; 139:107650. [PMID: 37454519 DOI: 10.1016/j.ymgme.2023.107650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
In Infantile Onset Pompe Disease (IOPD), enzyme replacement therapy (ERT) may improve survival, cardiac function, and motor development. However, even with early enzyme replacement therapy, some patients experienced poor response to ERT and abnormal motor milestones that could be due to motor neuron involvement. In this long-term retrospective study, we analyzed concomitant clinical motor outcomes and electroneuromyography (ENMG) findings in patients with IOPD and Juvenile Onset Pompe Disease (JOPD). Twenty-nine pediatric patients were included and 20 surviving were analyzed for neuromotor studies: 12 had IOPD (group 1), 4 had JOPD (group 2) and 4 (group 3) received ERT in the first month of age. Motor nerve conduction studies were mostly normal. Needle EMG performed at diagnosis always indicated the existence of myopathy that responded to ERT. Two IOPD patients (group 1) presenting with mixed motor neuropathy and myopathy displayed a poor outcome and never walked. Two patients became non-walkers (one IOPD patient and one patient of group 3) at respectively 9 and 3 years of age. One JOPD patient is about to lose walking ability. This motor deterioration was associated with the development of a motor neuropathy. Patients older than 10 years of age develop a motor neuropathy. Initial or secondary motor neuron involvement seems to be associated with a poor motor outcome showing that ERT may fail to prevent the accumulation of glycogen in motor neuron. Neurophysiological findings are important to assess severity of motor neuron damage in all Pompe pediatric patients and should be systematically performed.
Collapse
Affiliation(s)
- Anaïs Brassier
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, G2M, MetabERN, Paris, France.
| | - Samia Pichard
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, G2M, MetabERN, Paris, France
| | - Manuel Schiff
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, G2M, MetabERN, Paris, France; INSERM UMRS_1163, Imagine Institute, Paris, France
| | - Juliette Bouchereau
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, G2M, MetabERN, Paris, France
| | - Claire-Marine Bérat
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, G2M, MetabERN, Paris, France
| | - Catherine Caillaud
- Biochemistry Unit, Biology Department, Assistance Publique Hôpitaux de Paris (AP-HP), Necker-Enfants-Malades University Hospital, Paris, France; Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Aude Pion
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, G2M, MetabERN, Paris, France
| | - Diala Khraiche
- Department of Pediatric cardiology, Necker-Enfants malades Hospital, University of Paris, AP-HP, Paris, France
| | - Brigitte Fauroux
- Pediatric Noninvasive Ventilation and Sleep Unit, Necker University Hospital, Paris, Paris Descartes University, Paris, Research Unit INSERM U 955, Team 13, Creteil, France
| | - Mehdi Oualha
- Pediatric Intensive Care Unit, Necker-Enfants-Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Christine Barnerias
- Reference Center for neuromuscular diseases, Necker-Enfants-Malades University Hospital, APHP, FILNEMUS, Paris, France
| | - Isabelle Desguerre
- Reference Center for neuromuscular diseases, Necker-Enfants-Malades University Hospital, APHP, FILNEMUS, Paris, France
| | - Marie Hully
- Department of Pediatric Rehabilitation, Necker-Enfants malades Hospital, University of Paris, AP-HP, Paris, France
| | - Marion Maquet
- Department of Pediatric Rehabilitation, Necker-Enfants malades Hospital, University of Paris, AP-HP, Paris, France
| | - Elodie Deladrière
- Department of Pediatric Rehabilitation, Necker-Enfants malades Hospital, University of Paris, AP-HP, Paris, France
| | - Pascale de Lonlay
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, G2M, MetabERN, Paris, France; INSERM U1151, Institut Necker Enfants-Malades (INEM), Paris, France
| | - Cyril Gitiaux
- Reference Center for neuromuscular diseases, Necker-Enfants-Malades University Hospital, APHP, FILNEMUS, Paris, France; Department of Pediatric Neurophysiology, Necker-Enfants malades Hospital, University of Paris, AP-HP, Paris, France
| |
Collapse
|
8
|
A Roadmap for Potential Improvement of Newborn Screening for Inherited Metabolic Diseases Following Recent Developments and Successful Applications of Bivariate Normal Limits for Pre-Symptomatic Detection of MPS I, Pompe Disease, and Krabbe Disease. Int J Neonatal Screen 2022; 8:ijns8040061. [PMID: 36412587 PMCID: PMC9680456 DOI: 10.3390/ijns8040061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The mucopolysaccharidoses (MPS), Pompe Disease (PD), and Krabbe disease (KD) are inherited conditions known as lysosomal storage disorders (LSDs) The resulting enzyme deficiencies give rise to progressive symptoms. The United States Department of Health and Human Services' Recommended Uniform Screening Panel (RUSP) suggests LSDs for inclusion in state universal newborn screening (NBS) programs and has identified screening deficiencies in MPS I, KD, and PD NBS programs. MPS I NBS programs utilize newborn dried blood spots and assay alpha L-iduronidase (IDUA) enzyme to screen for potential cases. Glycosaminoglycans (GAGs) offer potential as a confirmatory test. KD NBS programs utilize galactocerebrosidase (GaLC) as an initial test, with psychosine (PSY) activity increasingly used as a confirmatory test for predicting onset of Krabbe disease, though with an excessive false positive rate. PD is marked by a deficiency in acid α-glucosidase (GAA), causing increased glycogen, creatine (CRE), and other biomarkers. Bivariate normal limit (BVNL) methods have been applied to GaLC and PSY activity to produce a NBS tool for KD, and more recently, to IDUA and GAG activity to develop a NBS tool for MPS I. A BVNL tool based on GAA and CRE is in development for infantile PD diagnosis. Early infantile KD, MPS I, and PD cases were pre-symptomatically identified by BVNL-based NBS tools. This article reviews these developments, discusses how they address screening deficiencies identified by the RUSP and may improve NBS more generally.
Collapse
|
9
|
Retrospective analysis of prenatal ultrasound of children with Pompe disease. Taiwan J Obstet Gynecol 2022; 61:995-998. [DOI: 10.1016/j.tjog.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
|
10
|
Marques JS. The Clinical Management of Pompe Disease: A Pediatric Perspective. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9091404. [PMID: 36138713 PMCID: PMC9497581 DOI: 10.3390/children9091404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 01/09/2023]
Abstract
Pompe disease (PD) is an inherited metabolic disorder caused by a deficiency of acid α-glucosidase (GAA), leading to lysosomal accumulation of glycogen, mainly in skeletal and cardiac muscles as well as the nervous system. Patients with PD develop cellular dysfunction and muscle damage. PD can be classified into two classic forms, namely infantile-onset PD (IOPD) and late-onset PD (LOPD). Delayed treatment, particularly in IOPD, would result in significant organ damage and early death. Nonetheless, early diagnosis and timely treatment are often hampered by the rarity of PD and its wide variety of, but overlapping, symptoms. This article reviews the common clinical presentations of PD and outlines the essentials of PD management. In particular, the implications of newborn screening (NBS) and clinical performance of enzyme replacement therapy (ERT) are highlighted.
Collapse
Affiliation(s)
- Jorge Sales Marques
- Conde S. Januário Hospital, Macau 999078, China;
- Hospital Cuf Trindade, 4000-541 Porto, Portugal
| |
Collapse
|
11
|
van Gool R, Tucker-Bartley A, Yang E, Todd N, Guenther F, Goodlett B, Al-Hertani W, Bodamer OA, Upadhyay J. Targeting neurological abnormalities in lysosomal storage diseases. Trends Pharmacol Sci 2021; 43:495-509. [PMID: 34844772 DOI: 10.1016/j.tips.2021.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 01/07/2023]
Abstract
Central nervous system (CNS) abnormalities and corresponding neurological and psychiatric symptoms are frequently observed in lysosomal storage disorders (LSDs). The genetic background of individual LSDs is indeed unique to each illness. However, resulting defective lysosomal function within the CNS can transition normal cellular processes (i.e., autophagy) into aberrant mechanisms, facilitating overlapping downstream consequences including neurocircuitry dysfunction, neurodegeneration as well as sensory, motor, cognitive, and psychological symptoms. Here, the neurological and biobehavioral phenotypes of major classes of LSDs are discussed alongside therapeutic strategies in development that aim to tackle neuropathology among other disease elements. Finally, focused ultrasound blood-brain barrier opening is proposed to enhance therapeutic delivery thereby overcoming the key hurdle of central distribution of disease modifying therapies in LSDs.
Collapse
Affiliation(s)
- Raquel van Gool
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Faculty of Psychology and Neuroscience, Section Neuropsychology & Psychopharmacology, Maastricht University, Maastricht, The Netherlands
| | - Anthony Tucker-Bartley
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Massachusetts General Hospital, Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - Edward Yang
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicholas Todd
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Frank Guenther
- Department of Speech, Language and Hearing Sciences, Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA, USA
| | - Benjamin Goodlett
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Walla Al-Hertani
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Olaf A Bodamer
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jaymin Upadhyay
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA.
| |
Collapse
|
12
|
Duyzend MH. 50 Years Ago in TheJournalofPediatrics: Logic of Biochemical Discovery in Pompe Disease. J Pediatr 2021; 238:173. [PMID: 34702494 DOI: 10.1016/j.jpeds.2021.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Michael H Duyzend
- Department of Pediatrics/Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
13
|
Bychkov I, Baydakova G, Filatova A, Migiaev O, Marakhonov A, Pechatnikova N, Pomerantseva E, Konovalov F, Ampleeva M, Kaimonov V, Skoblov M, Zakharova E. Complex Transposon Insertion as a Novel Cause of Pompe Disease. Int J Mol Sci 2021; 22:ijms221910887. [PMID: 34639227 PMCID: PMC8509548 DOI: 10.3390/ijms221910887] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 11/22/2022] Open
Abstract
Pompe disease (OMIM#232300) is an autosomal recessive lysosomal storage disorder caused by mutations in the GAA gene. According to public mutation databases, more than 679 pathogenic variants have been described in GAA, none of which are associated with mobile genetic elements. In this article, we report a novel molecular genetic cause of Pompe disease, which could be hardly detected using routine molecular genetic analysis. Whole genome sequencing followed by comprehensive functional analysis allowed us to discover and characterize a complex mobile genetic element insertion deep in the intron 15 of the GAA gene in a patient with infantile onset Pompe disease.
Collapse
Affiliation(s)
- Igor Bychkov
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (G.B.); (A.F.); (O.M.); (A.M.); (M.S.); (E.Z.)
- Correspondence:
| | - Galina Baydakova
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (G.B.); (A.F.); (O.M.); (A.M.); (M.S.); (E.Z.)
| | - Alexandra Filatova
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (G.B.); (A.F.); (O.M.); (A.M.); (M.S.); (E.Z.)
| | - Ochir Migiaev
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (G.B.); (A.F.); (O.M.); (A.M.); (M.S.); (E.Z.)
| | - Andrey Marakhonov
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (G.B.); (A.F.); (O.M.); (A.M.); (M.S.); (E.Z.)
| | | | - Ekaterina Pomerantseva
- Center of Genetics and Reproductive Medicine GENETICO, JSC, 119333 Moscow, Russia; (E.P.); (V.K.)
| | - Fedor Konovalov
- Independent Clinical Bioinformatics Laboratory, 123181 Moscow, Russia; (F.K.); (M.A.)
| | - Maria Ampleeva
- Independent Clinical Bioinformatics Laboratory, 123181 Moscow, Russia; (F.K.); (M.A.)
| | - Vladimir Kaimonov
- Center of Genetics and Reproductive Medicine GENETICO, JSC, 119333 Moscow, Russia; (E.P.); (V.K.)
| | - Mikhail Skoblov
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (G.B.); (A.F.); (O.M.); (A.M.); (M.S.); (E.Z.)
| | - Ekaterina Zakharova
- Research Centre for Medical Genetics, 115478 Moscow, Russia; (G.B.); (A.F.); (O.M.); (A.M.); (M.S.); (E.Z.)
| |
Collapse
|
14
|
Davids L, Sun Y, Moore RH, Lisi E, Wittenauer A, Wilcox WR, Ali N. Health care practitioners' experience-based opinions on providing care after a positive newborn screen for Pompe disease. Mol Genet Metab 2021; 134:20-28. [PMID: 34602357 DOI: 10.1016/j.ymgme.2021.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/14/2023]
Abstract
The addition of Pompe disease (PD) and other conditions with later-onset forms to newborn screening (NBS) in the United States (US) has been controversial. NBS technology cannot discern infantile-onset PD (IOPD) from later-onset PD (LOPD) without clinical follow-up. This study explores genetic health care practitioners' (HCPs) experiences and challenges providing NBS patient care throughout the US and their resultant opinions on NBS for PD. An online survey was distributed to genetic counselors, geneticists, NBS follow-up care coordinators, and nurse practitioners caring for patients with positive NBS results for PD. Analysis of 78 surveys revealed the majority of participating HCPs support inclusion of PD on NBS. Almost all HCPs (93.3%) feel their state has sufficient resources to provide follow-up medical care for IOPD; however, only three-fourths (74.6%) believed this for LOPD. Common barriers included time lag between NBS and confirmatory results, insurance difficulties for laboratory testing, and family difficulties in seeking medical care. HCPs more frequently encountered barriers providing care for LOPD than IOPD (53.9% LOPD identified ≥3 barriers, 31.1% IOPD). HCPs also believe creation of a population of presymptomatic individuals with LOPD creates a psychological burden on the family (87.3% agree/strongly agree), unnecessary medicalization of the child (63.5% agree/strongly agree), and parental hypervigilance (68.3% agree/strongly agree). Opinions were markedly divided on the use of reproductive benefit as a justification for NBS. Participants believe additional education for pediatricians and other specialists would be beneficial in providing care for patients with both IOPD and LOPD, in addition to the creation of evidence-based official guidelines for care and supportive resources for families with LOPD.
Collapse
Affiliation(s)
- Laura Davids
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States of America.
| | - Yuxian Sun
- Department of Biostatistics & Bioinformatics, Rollins School of Public Health and Biostatistics Collaboration Core, Emory University School of Medicine, Atlanta, GA, United States of America; Clinical Center on TB, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Reneé H Moore
- Department of Biostatistics & Bioinformatics, Rollins School of Public Health and Biostatistics Collaboration Core, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Emily Lisi
- Graduate School of Arts and Sciences, Biomedical Sciences Division, Wake Forest University, Winston-Salem, NC, United States of America
| | - Angela Wittenauer
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States of America
| | - William R Wilcox
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Nadia Ali
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States of America
| |
Collapse
|
15
|
Molecular Diagnosis of Pompe Disease in the Genomic Era: Correlation with Acid Alpha-Glucosidase Activity in Dried Blood Spots. J Clin Med 2021; 10:jcm10173868. [PMID: 34501319 PMCID: PMC8432085 DOI: 10.3390/jcm10173868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022] Open
Abstract
Measurement of alpha-glucosidase activity on dried blood spots has been the main method to screen for Pompe disease, but a paradigm shift has been observed in recent years with the incorporation of gene panels and exome sequencing in molecular diagnostic laboratories. An 89-gene panel has been available to Canadian physicians since 2017 and was analyzed in 2030 patients with a suspected muscle disease. Acid alpha-glucosidase activity was measured in parallel in dried blood spots from 1430 patients. Pompe disease was diagnosed in 14 patients, representing 0.69% of our cohort. In 7 other patients, low enzyme activities overlapping those of Pompe disease cases were attributable to the presence of pseudodeficiency alleles. Only two other patients had enzymatic activity in the Pompe disease range, and a single heterozygous pathogenic variant was identified. It is possible that a second variant could have been missed; we suggest that RNA analysis should be considered in such cases. With gene panel testing increasingly being performed as a first-tier analysis of patients with suspected muscle disorders, our study supports the relevance of performing reflex enzymatic activity assay in selected patients, such as those with a single GAA variant identified and those in whom the observed genotype is of uncertain clinical significance.
Collapse
|
16
|
Korlimarla A, Lim JA, McIntosh P, Zimmerman K, Sun BD, Kishnani PS. New Insights into Gastrointestinal Involvement in Late-Onset Pompe Disease: Lessons Learned from Bench and Bedside. J Clin Med 2021; 10:jcm10153395. [PMID: 34362174 PMCID: PMC8347662 DOI: 10.3390/jcm10153395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND There are new emerging phenotypes in Pompe disease, and studies on smooth muscle pathology are limited. Gastrointestinal (GI) manifestations are poorly understood and underreported in Pompe disease. METHODS To understand the extent and the effects of enzyme replacement therapy (ERT; alglucosidase alfa) in Pompe disease, we studied the histopathology (entire GI tract) in Pompe mice (GAAKO 6neo/6neo). To determine the disease burden in patients with late-onset Pompe disease (LOPD), we used Patient-Reported Outcomes Measurements Information System (PROMIS)-GI symptom scales and a GI-focused medical history. RESULTS Pompe mice showed early, extensive, and progressive glycogen accumulation throughout the GI tract. Long-term ERT (6 months) was more effective to clear the glycogen accumulation than short-term ERT (5 weeks). GI manifestations were highly prevalent and severe, presented early in life, and were not fully amenable to ERT in patients with LOPD (n = 58; age range: 18-79 years, median age: 51.55 years; 35 females; 53 on ERT). CONCLUSION GI manifestations cause a significant disease burden on adults with LOPD, and should be evaluated during routine clinical visits, using quantitative tools (PROMIS-GI measures). The study also highlights the need for next generation therapies for Pompe disease that target the smooth muscles.
Collapse
Affiliation(s)
- Aditi Korlimarla
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA; (J.-A.L.); (B.D.S.)
- Correspondence: (A.K.); (P.S.K.)
| | - Jeong-A Lim
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA; (J.-A.L.); (B.D.S.)
| | - Paul McIntosh
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA;
| | | | - Baodong D. Sun
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA; (J.-A.L.); (B.D.S.)
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA; (J.-A.L.); (B.D.S.)
- Correspondence: (A.K.); (P.S.K.)
| |
Collapse
|
17
|
Park KS. Two Approaches for a Genetic Analysis of Pompe Disease: A Literature Review of Patients with Pompe Disease and Analysis Based on Genomic Data from the General Population. CHILDREN-BASEL 2021; 8:children8070601. [PMID: 34356580 PMCID: PMC8305265 DOI: 10.3390/children8070601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/27/2022]
Abstract
In this study, two different approaches were applied in the analysis of the GAA gene. One was analyzed based on patients with Pompe disease, and the other was analyzed based on GAA genomic data from unaffected carriers in a general population genetic database. For this, GAA variants in Korean and Japanese patients reported in previous studies and in patients reported in the Pompe disease GAA variant database were analyzed as a model. In addition, GAA variants in the Korean Reference Genome Database (KRGDB), the Japanese Multi Omics Reference Panel (jMorp), and the Genome Aggregation Database (gnomAD) were analyzed. Overall, approximately 50% of the pathogenic or likely pathogenic variants (PLPVs) found in unaffected carriers were also found in real patients with Pompe disease (Koreans, 57.1%; Japanese, 46.2%). In addition, there was a moderate positive correlation (Spearman's correlation coefficient of 0.45-0.69) between the proportion of certain PLPVs in patients and the minor allele frequency of their variants in a general population database. Based on the analysis of general population databases, the total carrier frequency for Pompe disease in Koreans and Japanese was estimated to be 1.7% and 0.7%, respectively, and the predicted genetic prevalence was 1:13,657 and 1:78,013, respectively.
Collapse
Affiliation(s)
- Kyung-Sun Park
- Department of Laboratory Medicine, Kyung Hee University School of Medicine and Kyung Hee University Medical Center, Seoul 02447, Korea
| |
Collapse
|
18
|
Phenotypic implications of pathogenic variant types in Pompe disease. J Hum Genet 2021; 66:1089-1099. [PMID: 33972680 DOI: 10.1038/s10038-021-00935-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/01/2021] [Accepted: 04/20/2021] [Indexed: 11/08/2022]
Abstract
Newborn screening and therapies for Pompe disease (glycogen storage disease type II, acid maltase deficiency) will continue to expand in the future. It is thus important to determine whether enzyme activity or type of pathogenic genetic variant in GAA can best predict phenotypic severity, particularly the presence of infantile-onset Pompe disease (IOPD) versus late-onset Pompe disease (LOPD). We performed a retrospective analysis of 23 participants with genetically-confirmed cases of Pompe disease. The following data were collected: clinical details including presence or absence of cardiomyopathy, enzyme activity levels, and features of GAA variants including exon versus intron location and splice site versus non-splice site. Several combinations of GAA variant types for individual participants had significant associations with disease subtype, cardiomyopathy, age at diagnosis, gross motor function scale (GMFS), and stability of body weight. The presence of at least one splice site variant (c.546 G > C/p.T182 = , c.1076-22 T > G, c.2646 + 2 T > A, and the classic c.-32-13T > G variant) was associated with LOPD, while the presence of non-splice site variants on both alleles was associated with IOPD. Enzyme activity levels in isolation were not sufficient to predict disease subtype or other major clinical features. To extend the findings of prior studies, we found that multiple types of splice site variants beyond the classic c.-32-13T > G variant are often associated with a milder phenotype. Enzyme activity levels continue to have utility for supporting the diagnosis when the genetic variants are ambiguous. It is important for newly diagnosed patients with Pompe disease to have complete genetic, cardiac, and neurological evaluations.
Collapse
|
19
|
Lisi EC, Ali N. Opinions of adults affected with later-onset lysosomal storage diseases regarding newborn screening: A qualitative study. J Genet Couns 2021; 30:1544-1558. [PMID: 33938615 DOI: 10.1002/jgc4.1421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 12/23/2022]
Abstract
Lysosomal storage diseases (LSDs) are a heterogeneous group of conditions causing substrate accumulation leading to progressive organ damage. Newborn screening (NBS) for several LSDs has become available in recent years due to advances in technology and treatment availability. While early initiation of treatment is lifesaving for those with infantile presentations, controversy continues regarding diagnosis of milder, later-onset diseases in infancy, including creation of pre-symptomatic populations of 'patients-in-waiting', the potential for medicalization, stigmatization, and/or discrimination. In-depth interviews were conducted with 36 adults [11 with Fabry disease (FD), 8 with Gaucher disease (GD), and 17 with late-onset Pompe disease (LOPD)], to determine their perspectives on NBS for their respective conditions. Thirty-four of 36 participants were in favor of NBS; both participants not in favor had GD1. Emergent themes influencing participants favorably toward NBS included earlier age of onset, a long diagnostic odyssey, less efficacious treatment, and the desire to have made different life decisions (e.g., relationships, career, or lifestyle) with the knowledge of their diagnosis. Concerns about insurance discrimination and psychological or physical burdens were associated with less favorable opinions of NBS. The ability for parents to make future reproductive decisions based their child's NBS result was considered favorably by some participants and unfavorably by others. Participants' specific condition (GD1, FD, or LOPD) contributed to these experiences differently. Participants with LOPD and FD favored NBS to initiate earlier treatment and prevent irreversible organ damage, whereas fewer patients with GD1 mentioned this benefit. Participants with LOPD had the longest diagnostic odyssey, while those with FD were more likely to report feeling misunderstood and experiencing accusations of malingering, both contributing to favorable views of NBS. Results expand prior quantitative findings by illuminating how participants' lived experiences can shape opinions about NBS. By understanding how currently affected individuals perceive the lifelong impact of a NBS result, genetic counselors can provide better anticipatory guidance to the parents of individuals diagnosed with a later-onset LSD by NBS.
Collapse
Affiliation(s)
- Emily C Lisi
- Department of Human Genetics, Emory University, Atlanta, GA, USA.,Graduate School for Arts and Sciences- Biomedical Sciences Division, Wake Forest University, Winston-Salem, NC, USA
| | - Nadia Ali
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| |
Collapse
|
20
|
Park KS. Carrier frequency and predicted genetic prevalence of Pompe disease based on a general population database. Mol Genet Metab Rep 2021; 27:100734. [PMID: 33717985 PMCID: PMC7933537 DOI: 10.1016/j.ymgmr.2021.100734] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 12/15/2022] Open
Abstract
Background The genetic prevalence of Pompe disease was estimated based on the proportion of individuals who have a causative genotype in a general population database. In addition, clinical severity for causative genotypes was assessed based on currently available locus-specific databases (LSDBs), which contain information on both genotype and clinical severity. Methods Genetic variants in the GAA gene in the Genome Aggregation Database (gnomAD) (v2.1.1) were analyzed in combination with LSDBs of ClinVar, ClinGen Evidence Repository, Pompe disease GAA variant database, and the Pompe Registry. Carrier frequency (CF) and predicted genetic prevalence (pGP) were estimated. Results Of 7 populations, East Asian and African showed higher proportions of pathogenic or likely pathogenic variants (PLPVs) associated with classic infantile-onset Pompe disease. Total CF and pGP in the overall population were 1.3% (1 in 77) and 1:23,232, respectively. The highest pGP was observed in the East Asian population at 1:12,125, followed by Non-Finnish European (1:13,756), Ashkenazi Jewish (1:22,851), African/African-American (1:26,560), Latino/Admixed American (1:57,620), South Asian (1:93,087), and Finnish (1:1,056,444). Conclusions Pompe disease has a higher pGP (1:23,232) than earlier accepted (1:40,000). The pGP for Pompe disease was expectedly wide by population and consistent with previous reports based on newborn screening programs (approximately 1:10,000-1:30,000).
Collapse
Affiliation(s)
- Kyung Sun Park
- Department of Laboratory Medicine, Kyung Hee University School of Medicine and Kyung Hee University Medical Center, Seoul, Republic of Korea
| |
Collapse
|
21
|
de Faria DOS, 't Groen SLMI, Hoogeveen-Westerveld M, Nino MY, van der Ploeg AT, Bergsma AJ, Pijnappel WWMP. Update of the Pompe variant database for the prediction of clinical phenotypes: Novel disease-associated variants, common sequence variants, and results from newborn screening. Hum Mutat 2020; 42:119-134. [PMID: 33560568 PMCID: PMC7898817 DOI: 10.1002/humu.24148] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/06/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022]
Abstract
Pompe disease is an inherited disorder caused by disease-associated variants in the acid α-glucosidase gene (GAA). The Pompe disease GAA variant database (http://www.pompevariantdatabase.nl) is a curated, open-source, disease-specific database, and lists disease-associated GAA variants, in silico predictions, and clinical phenotypes reported until 2016. Here, we provide an update to include 226 disease-associated variants that were published until 2020. We also listed 148 common GAA sequence variants that do not cause Pompe disease. GAA variants with unknown severity that were identified only in newborn screening programs were listed as a new feature to indicate the reason why phenotypes were still unknown. Expression studies were performed for common missense variants to predict their severity. The updated Pompe disease GAA variant database now includes 648 disease-associated variants, 26 variants from newborn screening, and 237 variants with unknown severity. Regular updates of the Pompe disease GAA variant database will be required to improve genetic counseling and the study of genotype-phenotype relationships.
Collapse
Affiliation(s)
- Douglas O S de Faria
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Stijn L M In 't Groen
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Monica Y Nino
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ans T van der Ploeg
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Atze J Bergsma
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - W W M Pim Pijnappel
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
22
|
At-Risk Testing for Pompe Disease Using Dried Blood Spots: Lessons Learned for Newborn Screening. Int J Neonatal Screen 2020; 6:ijns6040096. [PMID: 33371305 PMCID: PMC7780922 DOI: 10.3390/ijns6040096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 10/22/2020] [Accepted: 12/09/2020] [Indexed: 11/17/2022] Open
Abstract
Pompe disease (GSD II) is an autosomal recessive disorder caused by deficiency of the lysosomal enzyme acid-α-glucosidase (GAA, EC 3.2.1.20), leading to generalized accumulation of lysosomal glycogen especially in the heart, skeletal, and smooth muscle, and the nervous system. It is generally classified based on the age of onset as infantile (IOPD) presenting during the first year of life, and late onset (LOPD) when it presents afterwards. In our study, a cohort of 13,627 samples were tested between January 2017 and December 2018 for acid-α-glucosidase (GAA, EC 3.2.1.20) deficiency either by fluorometry or tandem mass spectrometry (MS). Testing was performed for patients who displayed conditions of unknown etiology, e.g., CK elevations or cardiomyopathy, in the case of infantile patients. On average 8% of samples showed activity below the reference range and were further assessed by another enzyme activity measurement or molecular genetic analysis. Pre-analytical conditions, like proper drying, greatly affect enzyme activity, and should be assessed with measurement of reference enzyme(s). In conclusion, at-risk testing can provide a good first step for the future introduction of newborn screening for Pompe disease. It yields immediate benefits for the patients regarding the availability and timeliness of the diagnosis. In addition, the laboratory can introduce the required methodology and gain insights in the evaluation of results in a lower throughput environment. Finally, awareness of such a rare condition is increased tremendously among local physicians which can aid in the introduction newborn screening.
Collapse
|
23
|
Carlson-Stevermer J, Das A, Abdeen AA, Fiflis D, Grindel BI, Saxena S, Akcan T, Alam T, Kletzien H, Kohlenberg L, Goedland M, Dombroe MJ, Saha K. Design of efficacious somatic cell genome editing strategies for recessive and polygenic diseases. Nat Commun 2020; 11:6277. [PMID: 33293555 PMCID: PMC7722885 DOI: 10.1038/s41467-020-20065-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
Compound heterozygous recessive or polygenic diseases could be addressed through gene correction of multiple alleles. However, targeting of multiple alleles using genome editors could lead to mixed genotypes and adverse events that amplify during tissue morphogenesis. Here we demonstrate that Cas9-ribonucleoprotein-based genome editors can correct two distinct mutant alleles within a single human cell precisely. Gene-corrected cells in an induced pluripotent stem cell model of Pompe disease expressed the corrected transcript from both corrected alleles, leading to enzymatic cross-correction of diseased cells. Using a quantitative in silico model for the in vivo delivery of genome editors into the developing human infant liver, we identify progenitor targeting, delivery efficiencies, and suppression of imprecise editing outcomes at the on-target site as key design parameters that control the efficacy of various therapeutic strategies. This work establishes that precise gene editing to correct multiple distinct gene variants could be highly efficacious if designed appropriately.
Collapse
Affiliation(s)
- Jared Carlson-Stevermer
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Amritava Das
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | - Amr A Abdeen
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - David Fiflis
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Benjamin I Grindel
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Shivani Saxena
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Tugce Akcan
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Tausif Alam
- Department of Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Heidi Kletzien
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Lucille Kohlenberg
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Madelyn Goedland
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Micah J Dombroe
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Krishanu Saha
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- Retina Research Foundation Kathryn and Latimer Murfee Chair, Madison, WI, USA.
| |
Collapse
|
24
|
Newborn Screening for Pompe Disease: Pennsylvania Experience. Int J Neonatal Screen 2020; 6:ijns6040089. [PMID: 33202836 PMCID: PMC7712483 DOI: 10.3390/ijns6040089] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Pennsylvania started newborn screening for Pompe disease in February 2016. Between February 2016 and December 2019, 531,139 newborns were screened. Alpha-Glucosidase (GAA) enzyme activity is measured by flow-injection tandem mass spectrometry (FIA/MS/MS) and full sequencing of the GAA gene is performed as a second-tier test in all newborns with low GAA enzyme activity [<2.10 micromole/L/h]. A total of 115 newborns had low GAA enzyme activity and abnormal genetic testing and were referred to metabolic centers. Two newborns were diagnosed with Infantile Onset Pompe Disease (IOPD), and 31 newborns were confirmed to have Late Onset Pompe Disease (LOPD). The incidence of IOPD + LOPD was 1:16,095. A total of 30 patients were compound heterozygous for one pathogenic and one variant of unknown significance (VUS) mutation or two VUS mutations and were defined as suspected LOPD. The incidence of IOPD + LOPD + suspected LOPD was 1: 8431 in PA. We also found 35 carriers, 15 pseudodeficiency carriers, and 2 false positive newborns.
Collapse
|
25
|
Niño MY, Wijgerde M, de Faria DOS, Hoogeveen-Westerveld M, Bergsma AJ, Broeders M, van der Beek NAME, van den Hout HJM, van der Ploeg AT, Verheijen FW, Pijnappel WWMP. Enzymatic diagnosis of Pompe disease: lessons from 28 years of experience. Eur J Hum Genet 2020; 29:434-446. [PMID: 33162552 PMCID: PMC7940434 DOI: 10.1038/s41431-020-00752-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 10/03/2020] [Accepted: 10/20/2020] [Indexed: 11/09/2022] Open
Abstract
Pompe disease is a lysosomal and neuromuscular disorder caused by deficiency of acid alpha-glucosidase (GAA), and causes classic infantile, childhood onset, or adulthood onset phenotypes. The biochemical diagnosis is based on GAA activity assays in dried blood spots, leukocytes, or fibroblasts. Diagnosis can be complicated by the existence of pseudodeficiencies, i.e., GAA variants that lower GAA activity but do not cause Pompe disease. A large-scale comparison between these assays for patient samples, including exceptions and borderline cases, along with clinical diagnoses has not been reported so far. Here we analyzed GAA activity in a total of 1709 diagnostic cases over the past 28 years using a total of 2591 analyses and we confirmed the clinical diagnosis in 174 patients. We compared the following assays: leukocytes using glycogen or 4MUG as substrate, fibroblasts using 4MUG as substrate, and dried blood spots using 4MUG as substrate. In 794 individuals, two or more assays were performed. We found that phenotypes could only be distinguished using fibroblasts with 4MUG as substrate. Pseudodeficiencies caused by the GAA2 allele could be ruled out using 4MUG rather than glycogen as substrate in leukocytes or fibroblasts. The Asian pseudodeficiency could only be ruled out in fibroblasts using 4MUG as substrate. We conclude that fibroblasts using 4MUG as substrate provides the most reliable assay for biochemical diagnosis and can serve to validate results from leukocytes or dried blood spots.
Collapse
Affiliation(s)
- Monica Y Niño
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Mark Wijgerde
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Douglas Oliveira Soares de Faria
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | - Atze J Bergsma
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Mike Broeders
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Nadine A M E van der Beek
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Neurology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Hannerieke J M van den Hout
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ans T van der Ploeg
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Frans W Verheijen
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - W W M Pim Pijnappel
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands. .,Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands. .,Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
26
|
Meena NK, Raben N. Pompe Disease: New Developments in an Old Lysosomal Storage Disorder. Biomolecules 2020; 10:E1339. [PMID: 32962155 PMCID: PMC7564159 DOI: 10.3390/biom10091339] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
Pompe disease, also known as glycogen storage disease type II, is caused by the lack or deficiency of a single enzyme, lysosomal acid alpha-glucosidase, leading to severe cardiac and skeletal muscle myopathy due to progressive accumulation of glycogen. The discovery that acid alpha-glucosidase resides in the lysosome gave rise to the concept of lysosomal storage diseases, and Pompe disease became the first among many monogenic diseases caused by loss of lysosomal enzyme activities. The only disease-specific treatment available for Pompe disease patients is enzyme replacement therapy (ERT) which aims to halt the natural course of the illness. Both the success and limitations of ERT provided novel insights in the pathophysiology of the disease and motivated the scientific community to develop the next generation of therapies that have already progressed to the clinic.
Collapse
Affiliation(s)
| | - Nina Raben
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA;
| |
Collapse
|
27
|
Taverna S, Cammarata G, Colomba P, Sciarrino S, Zizzo C, Francofonte D, Zora M, Scalia S, Brando C, Curto AL, Marsana EM, Olivieri R, Vitale S, Duro G. Pompe disease: pathogenesis, molecular genetics and diagnosis. Aging (Albany NY) 2020; 12:15856-15874. [PMID: 32745073 PMCID: PMC7467391 DOI: 10.18632/aging.103794] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022]
Abstract
Pompe disease (PD) is a rare autosomal recessive disorder caused by mutations in the GAA gene, localized on chromosome 17 and encoding for acid alpha-1,4-glucosidase (GAA). Currently, more than 560 mutations spread throughout GAA gene have been reported. GAA catalyzes the hydrolysis of α-1,4 and α-1,6-glucosidic bonds of glycogen and its deficiency leads to lysosomal storage of glycogen in several tissues, particularly in muscle. PD is a chronic and progressive pathology usually characterized by limb-girdle muscle weakness and respiratory failure. PD is classified as infantile and childhood/adult forms. PD patients exhibit a multisystemic manifestation that depends on age of onset. Early diagnosis is essential to prevent or reduce the irreversible organ damage associated with PD progression. Here, we make an overview of PD focusing on pathogenesis, clinical phenotypes, molecular genetics, diagnosis, therapies, autophagy and the role of miRNAs as potential biomarkers for PD.
Collapse
Affiliation(s)
- Simona Taverna
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Giuseppe Cammarata
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Paolo Colomba
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Serafina Sciarrino
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Carmela Zizzo
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Daniele Francofonte
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Marco Zora
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Simone Scalia
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Chiara Brando
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Alessia Lo Curto
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Emanuela Maria Marsana
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Roberta Olivieri
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Silvia Vitale
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Giovanni Duro
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| |
Collapse
|
28
|
Bor M, Ilhan O, Gumus E, Ozkan S, Karaca M. A Newborn with Infantile-Onset Pompe Disease Improving after Administration of Enzyme Replacement Therapy: Case Report. J Pediatr Intensive Care 2020; 11:62-66. [DOI: 10.1055/s-0040-1714099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/26/2020] [Indexed: 10/23/2022] Open
Abstract
AbstractPompe disease (PD) is an autosomal recessive lysosomal storage disorder caused by a deficiency of acid α-1,4-glucosidase enzyme (GAA). PD has two forms, namely the infantile-onset and the late-onset form. In untreated cases, infantile-onset form usually leads to cardio-respiratory failure and death in the first year of life. Herein, we report a newborn with infantile-onset PD characterized by muscular hypotonia, respiratory distress, hypertrophic cardiomyopathy, hepatomegaly, elevated serum enzyme levels of aspartate aminotransferase of 117 IU/L (three times the normal value), alanine aminotransferase of 66 IU/L (1.8 times the normal value), lactate dehydrogenase of 558 IU/L (1.2 times the normal value), and creatine kinase >5,000 IU/L (16 times the normal value). Dried blood spot testing was performed and revealed decreased GAA enzymatic activity (0.07 nmol/mL/h, normal 0.93–7.33 nmol/mL/h). GAA gene analysis performed for confirming the diagnosis showed homozygous mutation c.896T >C (p.Leu299Pro). Initiation of enzyme replacement therapy (ERT) (ERT; 20 mg/kg, once every week) at 28 days of age resulted in weaning off from respiratory support within 1 week after treatment, normalization of cardiac abnormalities, and normal neuromotor development in the 16th month of age. Early diagnosis and early treatment with ERT, especially in the neonatal period, is of great importance to improve cardiac function and motor development in infantile-onset PD.
Collapse
Affiliation(s)
- Meltem Bor
- Department of Neonatology, Harran University School of Medicine, Sanliurfa, Turkey
| | - Ozkan Ilhan
- Department of Neonatology, Harran University School of Medicine, Sanliurfa, Turkey
| | - Evren Gumus
- Department of Medical Genetics, Harran University School of Medicine, Sanliurfa, Turkey
| | - Solmaz Ozkan
- Department of General Pediatrics, Kumluca State Hospital, Kumluca, Antalya, Turkey
| | - Meryem Karaca
- Department of Pediatric Metabolism and Nutrition, Harran University School of Medicine, Sanliurfa, Turkey
| |
Collapse
|
29
|
Saich R, Brown R, Collicoat M, Jenner C, Primmer J, Clancy B, Holland T, Krinks S. Is Newborn Screening the Ultimate Strategy to Reduce Diagnostic Delays in Pompe Disease? The Parent and Patient Perspective. Int J Neonatal Screen 2020; 6:1. [PMID: 33073001 PMCID: PMC7422966 DOI: 10.3390/ijns6010001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023] Open
Abstract
Pompe disease (PD) is a rare, autosomal-recessively inherited deficiency in the enzyme acid α-glucosidase. It is a spectrum disorder; age at symptom onset and rate of deterioration can vary considerably. In affected infants prognosis is poor, such that without treatment most infants die within the first year of life. To lose a baby in their first year of life to a rare disease causes much regret, guilt, and loneliness to parents, family, and friends. To lose a baby needlessly when there is an effective treatment amplifies this sadness. With so little experience of rare disease in the community, once a baby transfers to their home they are subject to a very uncertain and unyielding diagnostic journey while their symptomology progresses and their health deteriorates. With a rare disease like PD, the best opportunity to diagnose a baby is at birth. PD is not yet included in the current newborn screening (NBS) panel in Australia. Should it be? In late 2018 the Australian Pompe Association applied to the Australian Standing committee on Newborn Screening to have PD included. The application was not upheld. Here we provide an overview of the rationale for NBS, drawing on the scientific literature and perspectives from The Australian Pompe Association, its patients and their families. In doing so, we hope to bring a new voice to this very important debate.
Collapse
Affiliation(s)
- Raymond Saich
- Australian Pompe Association Inc., Kellyville, NSW 2155, Australia
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Two-Tiered Newborn Screening with Post-Analytical Tools for Pompe Disease and Mucopolysaccharidosis Type I Results in Performance Improvement and Future Direction. Int J Neonatal Screen 2020; 6:2. [PMID: 32064362 PMCID: PMC7021244 DOI: 10.3390/ijns6010002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We conducted a pilot newborn screening (NBS) study for Pompe disease (PD) and mucopolysaccharidosis type I (MPS I) in the multiethnic population of Georgia. We screened 59,332 infants using a two-tier strategy of flow injection tandem mass spectrometry (FIA-MSMS) enzyme assays. The first tier of testing was a 2-plex assay measuring PD and MPS I enzyme activity, followed by a second-tier test with additional enzymes to improve specificity. Interpretation of results was performed using post-analytical tools created using Collaborative Laboratory Integrated Reports (CLIR). We identified a single case of infantile onset PD, two cases of late onset PD, and one pseudodeficiency. The positive predictive value (PPV) for PD screening during the study was 66.7%. No cases of MPS I were identified during the study period, but there were 2 confirmed cases of pseudodeficiency and 6 cases lost to follow up. The two-tier screening strategy was successful in reducing false positive results and allowed for the identification and early treatment of a case of infantile PD but the frequency of pseudodeficiency in MPS I is problematic. Molecular testing is required and should be covered by the screening program to avoid delays in case resolution.
Collapse
|
31
|
Mordaunt D, Cox D, Fuller M. Metabolomics to Improve the Diagnostic Efficiency of Inborn Errors of Metabolism. Int J Mol Sci 2020; 21:ijms21041195. [PMID: 32054038 PMCID: PMC7072749 DOI: 10.3390/ijms21041195] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/08/2020] [Accepted: 02/09/2020] [Indexed: 12/21/2022] Open
Abstract
Early diagnosis of inborn errors of metabolism (IEM)—a large group of congenital disorders—is critical, given that many respond well to targeted therapy. Newborn screening programs successfully capture a proportion of patients enabling early recognition and prompt initiation of therapy. For others, the heterogeneity in clinical presentation often confuses diagnosis with more common conditions. In the absence of family history and following clinical suspicion, the laboratory diagnosis typically begins with broad screening tests to circumscribe specialised metabolite and/or enzyme assays to identify the specific IEM. Confirmation of the biochemical diagnosis is usually achieved by identifying pathogenic genetic variants that will also enable cascade testing for family members. Unsurprisingly, this diagnostic trajectory is too often a protracted and lengthy process resulting in delays in diagnosis and, importantly, therapeutic intervention for these rare conditions is also postponed. Implementation of mass spectrometry technologies coupled with the expanding field of metabolomics is changing the landscape of diagnosing IEM as numerous metabolites, as well as enzymes, can now be measured collectively on a single mass spectrometry-based platform. As the biochemical consequences of impaired metabolism continue to be elucidated, the measurement of secondary metabolites common across groups of IEM will facilitate algorithms to further increase the efficiency of diagnosis.
Collapse
Affiliation(s)
- Dylan Mordaunt
- Genetics and Molecular Pathology, SA Pathology at Women’s and Children’s Hospital, 72 King William Road, North Adelaide, SA 5006, Australia; (D.M.); (D.C.)
- School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
| | - David Cox
- Genetics and Molecular Pathology, SA Pathology at Women’s and Children’s Hospital, 72 King William Road, North Adelaide, SA 5006, Australia; (D.M.); (D.C.)
| | - Maria Fuller
- Genetics and Molecular Pathology, SA Pathology at Women’s and Children’s Hospital, 72 King William Road, North Adelaide, SA 5006, Australia; (D.M.); (D.C.)
- School of Medicine, University of Adelaide, Adelaide, SA 5000, Australia
- Correspondence: ; Tel.: +61-8-8161-6741
| |
Collapse
|
32
|
Bevilacqua JA, Guecaimburu Ehuletche MDR, Perna A, Dubrovsky A, Franca MC, Vargas S, Hegde M, Claeys KG, Straub V, Daba N, Faria R, Periquet M, Sparks S, Thibault N, Araujo R. The Latin American experience with a next generation sequencing genetic panel for recessive limb-girdle muscular weakness and Pompe disease. Orphanet J Rare Dis 2020; 15:11. [PMID: 31931849 PMCID: PMC6958675 DOI: 10.1186/s13023-019-1291-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/27/2019] [Indexed: 02/08/2023] Open
Abstract
Background Limb-girdle muscular dystrophy (LGMD) is a group of neuromuscular disorders of heterogeneous genetic etiology with more than 30 directly related genes. LGMD is characterized by progressive muscle weakness involving the shoulder and pelvic girdles. An important differential diagnosis among patients presenting with proximal muscle weakness (PMW) is late-onset Pompe disease (LOPD), a rare neuromuscular glycogen storage disorder, which often presents with early respiratory insufficiency in addition to PMW. Patients with PMW, with or without respiratory symptoms, were included in this study of Latin American patients to evaluate the profile of variants for the included genes related to LGMD recessive (R) and LOPD and the frequency of variants in each gene among this patient population. Results Over 20 institutions across Latin America (Brazil, Argentina, Peru, Ecuador, Mexico, and Chile) enrolled 2103 individuals during 2016 and 2017. Nine autosomal recessive LGMDs and Pompe disease were investigated in a 10-gene panel (ANO5, CAPN3, DYSF, FKRP, GAA, SGCA, SGCB, SGCD, SGCG, TCAP) based on reported disease frequency in Latin America. Sequencing was performed with Illumina’s NextSeq500 and variants were classified according to ACMG guidelines; pathogenic and likely pathogenic were treated as one category (P) and variants of unknown significance (VUS) are described. Genetic variants were identified in 55.8% of patients, with 16% receiving a definitive molecular diagnosis; 39.8% had VUS. Nine patients were identified with Pompe disease. Conclusions The results demonstrate the effectiveness of this targeted genetic panel and the importance of including Pompe disease in the differential diagnosis for patients presenting with PMW.
Collapse
Affiliation(s)
- Jorge A Bevilacqua
- Departamento de Neurología y Neurocirugía, Hospital Clínico, Universidad de Chile, Santiago, Chile.,Departamento de Anatomía y Medicina Legal, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Departamento de Neurología y Neurocirugía, Clínica Dávila, Santiago, Chile
| | | | - Abayuba Perna
- Institute of Neurology, Hospital de Clínicas, School of Medicine, UDELAR, Montevideo, Uruguay
| | - Alberto Dubrovsky
- Institute of Neuroscience, Favaloro Foundation, Buenos Aires, Argentina
| | - Marcondes C Franca
- Department of Neurology, University of Campinas-UNICAMP, Campinas, Sao Paulo, Brazil
| | - Steven Vargas
- Center of Neurology and Neurosurgery, Mexico City, Mexico
| | - Madhuri Hegde
- Global Laboratory Services, Diagnostics, PerkinElmer, Waltham, MA, USA
| | - Kristl G Claeys
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium.,Laboratory for Muscle Diseases and Neuropathies, Department of Neurosciences, KU Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Centre for Life, Newcastle, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
33
|
Crisp KD, Case LE, Kravitz RM, Kishnani PS, Jones HN. Training, detraining, and retraining: Two 12-week respiratory muscle training regimens in a child with infantile-onset Pompe disease. J Pediatr Rehabil Med 2020; 13:71-80. [PMID: 32176666 DOI: 10.3233/prm-190601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Respiratory muscle weakness is a primary cause of morbidity and mortality in patients with Pompe disease. We previously described the effects of our 12-week respiratory muscle training (RMT) regimen in 8 adults with late-onset Pompe disease [1] and 2 children with infantile-onset Pompe disease [2]. CASE REPORT Here we describe repeat enrollment by one of the pediatric participants who completed a second 12-week RMT regimen after 7 months of detraining. We investigated the effects of two 12-week RMT regimens (RMT #1, RMT #2) using a single-participant A-B-A experimental design. Primary outcome measures were maximum inspiratory pressure (MIP) and maximum expiratory pressure (MEP). Effect sizes for changes in MIP and MEP were determined using Cohen's d statistic. Exploratory outcomes targeted motor function. RELEVANCE From pretest to posttest, RMT #2 was associated with a 25% increase in MIP and a 22% increase in MEP, corresponding with very large effect sizes (d= 2.92 and d= 2.65, respectively). Following two 12-week RMT regimens over 16 months, MIP increased by 69% and MEP increased by 97%, corresponding with very large effect sizes (d= 3.57 and d= 5.10, respectively). MIP and MEP were largely stable over 7 months of detraining between regimens. Magnitude of change was greater for RMT #1 relative to RMT #2.
Collapse
Affiliation(s)
- Kelly D Crisp
- Department of Head and Neck Surgery and Communication Sciences, Duke University, Durham, NC, USA
| | - Laura E Case
- Physical Therapy Division, Duke University, Durham, NC, USA
| | - Richard M Kravitz
- Division of Pediatric Pulmonary and Sleep Medicine, Duke University, Durham, NC, USA
| | - Priya S Kishnani
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, USA
| | - Harrison N Jones
- Department of Head and Neck Surgery and Communication Sciences, Duke University, Durham, NC, USA
| |
Collapse
|
34
|
Abstract
The peripheral nervous system (PNS) is composed of motor neurons, nerve roots, plexuses, peripheral nerves (motor, sensory and autonomic), neuromuscular junction, and skeletal muscles. Disorders of the PNS in neonates most frequently cause weakness, hypotonia, and contractures, which may be generalized or focal. Since these findings may also occur with brain and spinal cord lesions, key features of the history and neurologic exam, together with diagnostic testing, are helpful in reaching a diagnosis. This review covers the diagnostic approach to PNS disorders in the neonate and includes a discussion of representative diseases of the motor neuron, brachial plexus, peripheral nerves, neuromuscular junction, and muscles. The importance of reaching a precise genetic diagnosis is highlighted with a discussion of current and emerging treatments for neonatal PNS diseases, particularly spinal muscular atrophy.
Collapse
Affiliation(s)
- Alex J Fay
- Department of Neurology, University of California, San Francisco, San Francisco, CA.
| |
Collapse
|
35
|
Ismail IT, Showalter MR, Fiehn O. Inborn Errors of Metabolism in the Era of Untargeted Metabolomics and Lipidomics. Metabolites 2019; 9:metabo9100242. [PMID: 31640247 PMCID: PMC6835511 DOI: 10.3390/metabo9100242] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 12/30/2022] Open
Abstract
Inborn errors of metabolism (IEMs) are a group of inherited diseases with variable incidences. IEMs are caused by disrupting enzyme activities in specific metabolic pathways by genetic mutations, either directly or indirectly by cofactor deficiencies, causing altered levels of compounds associated with these pathways. While IEMs may present with multiple overlapping symptoms and metabolites, early and accurate diagnosis of IEMs is critical for the long-term health of affected subjects. The prevalence of IEMs differs between countries, likely because different IEM classifications and IEM screening methods are used. Currently, newborn screening programs exclusively use targeted metabolic assays that focus on limited panels of compounds for selected IEM diseases. Such targeted approaches face the problem of false negative and false positive diagnoses that could be overcome if metabolic screening adopted analyses of a broader range of analytes. Hence, we here review the prospects of using untargeted metabolomics for IEM screening. Untargeted metabolomics and lipidomics do not rely on predefined target lists and can detect as many metabolites as possible in a sample, allowing to screen for many metabolic pathways simultaneously. Examples are given for nontargeted analyses of IEMs, and prospects and limitations of different metabolomics methods are discussed. We conclude that dedicated studies are needed to compare accuracy and robustness of targeted and untargeted methods with respect to widening the scope of IEM diagnostics.
Collapse
Affiliation(s)
- Israa T Ismail
- National Liver Institute, Menoufia University, Shebeen El Kom 55955, Egypt.
- NIH West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA.
| | - Megan R Showalter
- NIH West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA.
| | - Oliver Fiehn
- NIH West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
36
|
Baker M, Griggs R, Byrne B, Connolly AM, Finkel R, Grajkowska L, Haidet-Phillips A, Hagerty L, Ostrander R, Orlando L, Swoboda K, Watson M, Howell RR. Maximizing the Benefit of Life-Saving Treatments for Pompe Disease, Spinal Muscular Atrophy, and Duchenne Muscular Dystrophy Through Newborn Screening. JAMA Neurol 2019; 76:978-983. [DOI: 10.1001/jamaneurol.2019.1206] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mei Baker
- University of Wisconsin School of Medicine, Madison
| | - Robert Griggs
- University of Rochester School of Medicine, Rochester, New York
| | | | - Anne M. Connolly
- Washington University School of Medicine in St Louis, St Louis, Missouri
| | | | | | | | | | - Robert Ostrander
- State University of New York Upstate Medical University, Rushville
| | | | - Kathryn Swoboda
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael Watson
- American College of Medical Genetics and Genomics, Bethesda, Maryland
| | | |
Collapse
|
37
|
Alonso-Pérez J, Segovia S, Domínguez-González C, Olivé M, Mendoza Grimón MD, Fernández-Torrón R, López de Munain A, Muñoz-Blanco JL, Ramos-Fransi A, Almendrote M, Illa I, Díaz-Manera J. Spanish Pompe registry: Baseline characteristics of first 49 patients with adult onset of Pompe disease. Med Clin (Barc) 2019; 154:80-85. [PMID: 31253477 DOI: 10.1016/j.medcli.2019.03.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 11/29/2022]
Abstract
INTRODUCTION AND OBJECTIVES Pompe disease is a rare autosomal recessive disorder produced by a deficiency of acid maltase. This deficit produces an accumulation of glycogen in tissues. Clinically it is mainly characterized by limb girdle and respiratory muscle weakness. In 2013, we developed the Spanish Pompe Registry. The objective of this article was to analyse the characteristics of the first 49 patients and disclose the existence of this registry within the medical community. MATERIAL AND METHODS An observational retrospective study was undertaken. We analysed the 49 patients included in the Spanish Registry of Pompe Disease from May 2013 to October 2018. RESULTS Patients were visited at 7 different Spanish hospitals. Twenty-six patients were women and 23 were men. The average age at the time of the analysis was 47.2 years. Ten patients were asymptomatic. The mean age of onset of symptoms was 29, and low limb girdle weakness was the most frequent initial symptom. Of the patients, 49% had respiratory involvement, and 70.8% of them required non-invasive mechanical ventilation. The most common mutation found was IVS1-13T>G in 85.3% of the patients. All symptomatic patients received treatment with ERT. CONCLUSIONS This registry allows us to know the clinical and genetic characteristics of adult patients with Pompe disease in Spain. Moreover, it can be the basis for future studies of natural history to understand the impact of ERT in the course of the disease.
Collapse
Affiliation(s)
- Jorge Alonso-Pérez
- Unidad de Patología Neuromuscular, Departamento de Neurología, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, España
| | - Sonia Segovia
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER)
| | - Cristina Domínguez-González
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER); Unidad de Neuromuscular, Servicio de Neurología, Hospital Universitario 12 de Octubre, Instituto de investigación i+12, Madrid, España
| | - Montse Olivé
- Servicio de Anatomía Patológica (Neuropatología) y Unidad de Patología Neuromuscular, Hospital Universitari de Bellvitge, Barcelona, España
| | | | | | | | | | - Alba Ramos-Fransi
- Servicio de Neurología, Hospital Germans Trias i Pujol, Badalona, España
| | - Miriam Almendrote
- Servicio de Neurología, Hospital Germans Trias i Pujol, Badalona, España
| | - Isabel Illa
- Unidad de Patología Neuromuscular, Departamento de Neurología, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, España; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER)
| | - Jordi Díaz-Manera
- Unidad de Patología Neuromuscular, Departamento de Neurología, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, España; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER).
| |
Collapse
|
38
|
Newborn screening for Pompe disease in Japan: report and literature review of mutations in the GAA gene in Japanese and Asian patients. J Hum Genet 2019; 64:741-755. [DOI: 10.1038/s10038-019-0603-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 11/08/2022]
|
39
|
Bergsma AJ, In 't Groen SLM, van den Dorpel JJA, van den Hout HJMP, van der Beek NAME, Schoser B, Toscano A, Musumeci O, Bembi B, Dardis A, Morrone A, Tummolo A, Pasquini E, van der Ploeg AT, Pijnappel WWMP. A genetic modifier of symptom onset in Pompe disease. EBioMedicine 2019; 43:553-561. [PMID: 30922962 PMCID: PMC6562017 DOI: 10.1016/j.ebiom.2019.03.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/08/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Neonatal screening for Pompe disease is complicated by difficulties in predicting symptom onset in patients with the common c.-32-13T>G (IVS1) variant/null (i.e. fully deleterious) acid α-glucosidase (GAA) genotype. This splicing variant occurs in 90% of Caucasian late onset patients, and is associated with a broad range of symptom onset. METHODS We analyzed a cohort of 143 compound heterozygous and 10 homozygous IVS1 patients, and we assessed ages at symptom onset, the presence of cis-acting single nucleotide variants (SNVs), and performed splicing analysis and enzyme activity assays. FINDINGS In compound heterozygous IVS1 patients, the synonymous variant c.510C>T was uniquely present on the IVS1 allele in 9/33 (27%) patients with childhood onset, but was absent from 110 patients with onset in adulthood. GAA enzyme activity was lower in fibroblasts from patients who contained c.510C>T than it was in patients without c.510C>T. By reducing the extent of leaky wild-type splicing, c.510C>T modulated aberrant splicing caused by the IVS1 variant. The deleterious effect of c.510C>T was also found in muscle cells, the main target cells in Pompe disease. In homozygous IVS1 patients, the c.510C>T variant was absent in 4/4 (100%) asymptomatic individuals and present in 3/6 (50%) symptomatic patients. In cells from homozygous IVS1 patients, c.510C>T caused reduced leaky wild-type splicing. INTERPRETATION c.510C>T is a genetic modifier in compound heterozygous and homozygous IVS1 patients. This finding is important for neonatal screening programs for Pompe disease. FUND: This work was funded by grants from Sophia Children's Hospital Foundation (SSWO, grant S17-32) and Metakids (2016-063).
Collapse
Affiliation(s)
- Atze J Bergsma
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - Stijn L M In 't Groen
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - Jan J A van den Dorpel
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - Hannerieke J M P van den Hout
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - Nadine A M E van der Beek
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | - Antonio Toscano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Olimpia Musumeci
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Bruno Bembi
- Academic Hospital "Santa Maria della Misericordia", Udine, Italy
| | - Andrea Dardis
- Academic Hospital "Santa Maria della Misericordia", Udine, Italy
| | - Amelia Morrone
- Neurofarba, University of Florence, Meyer Children's Hospital, Florence, Italy
| | | | | | - Ans T van der Ploeg
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - W W M Pim Pijnappel
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, Netherlands; Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands; Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands.
| |
Collapse
|
40
|
Nair V, Belanger EC, Veinot JP. Lysosomal storage disorders affecting the heart: a review. Cardiovasc Pathol 2018; 39:12-24. [PMID: 30594732 DOI: 10.1016/j.carpath.2018.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 01/09/2023] Open
Abstract
Lysosomal storage disorders (LSD) comprise a group of diseases caused by a deficiency of lysosomal enzymes, membrane transporters or other proteins involved in lysosomal biology. Lysosomal storage disorders result from an accumulation of specific substrates, due to the inability to break them down. The diseases are classified according to the type of material that is accumulated; for example, lipid storage disorders, mucopolysaccharidoses and glycoproteinoses. Cardiac disease is particularly important in lysosomal glycogen storage diseases (Pompe and Danon disease), mucopolysaccharidoses and in glycosphingolipidoses (Anderson-Fabry disease). Various disease manifestations may be observed including hypertrophic and dilated cardiomyopathy, coronary artery disease and valvular diseases. Endomyocardial biopsies can play an important role in the diagnosis of these diseases. Microscopic features along with ancillary tests like special stains and ultrastructural studies help in the diagnosis of these disorders. Diagnosis is further confirmed based upon enzymatic and molecular genetic analysis. Emerging evidence suggests that Enzyme replacement therapy (ERT) substantially improves many of the features of the disease, including some aspects of cardiac involvement. The identification of these disorders is important due to the availability of ERT, the need for family screening, as well as appropriate patient management and counseling.
Collapse
Affiliation(s)
- Vidhya Nair
- Department of Pathology and Laboratory Medicine, Ottawa Hospital and Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada.
| | - Eric C Belanger
- Department of Pathology and Laboratory Medicine, Ottawa Hospital and Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada
| | - John P Veinot
- Department of Pathology and Laboratory Medicine, Ottawa Hospital and Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada
| |
Collapse
|
41
|
Kanungo S, Wells K, Tribett T, El-Gharbawy A. Glycogen metabolism and glycogen storage disorders. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:474. [PMID: 30740405 DOI: 10.21037/atm.2018.10.59] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glucose is the main energy fuel for the human brain. Maintenance of glucose homeostasis is therefore, crucial to meet cellular energy demands in both - normal physiological states and during stress or increased demands. Glucose is stored as glycogen primarily in the liver and skeletal muscle with a small amount stored in the brain. Liver glycogen primarily maintains blood glucose levels, while skeletal muscle glycogen is utilized during high-intensity exertion, and brain glycogen is an emergency cerebral energy source. Glycogen and glucose transform into one another through glycogen synthesis and degradation pathways. Thus, enzymatic defects along these pathways are associated with altered glucose metabolism and breakdown leading to hypoglycemia ± hepatomegaly and or liver disease in hepatic forms of glycogen storage disorder (GSD) and skeletal ± cardiac myopathy, depending on the site of the enzyme defects. Overall, defects in glycogen metabolism mainly present as GSDs and are a heterogenous group of inborn errors of carbohydrate metabolism. In this article we review the genetics, epidemiology, clinical and metabolic findings of various types of GSD, and glycolysis defects emphasizing current treatment and implications for future directions.
Collapse
Affiliation(s)
- Shibani Kanungo
- Department of Pediatric and Adolescent Medicine, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA
| | - Kimberly Wells
- Department of Pediatric and Adolescent Medicine, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA
| | - Taylor Tribett
- Department of Pediatric and Adolescent Medicine, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA
| | - Areeg El-Gharbawy
- Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
42
|
Pruniski B, Lisi E, Ali N. Newborn screening for Pompe disease: impact on families. J Inherit Metab Dis 2018; 41:1189-1203. [PMID: 29594646 DOI: 10.1007/s10545-018-0159-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/05/2018] [Accepted: 02/12/2018] [Indexed: 11/24/2022]
Abstract
Pompe disease (PD) is an autosomal recessive lysosomal storage disorder causing progressive glycogen accumulation in muscles, with variability in age of onset and severity. For infantile-onset PD (IOPD), initiation of early treatment can be life-saving; however, current newborn screening (NBS) technology cannot distinguish IOPD from late-onset PD (LOPD) without clinical workup. Therefore, families of LOPD infants diagnosed by NBS may now spend years or even decades aware of their illness before symptoms appear, creating a pre-symptomatic awareness phase with which the medical community has little experience. The present study examines the effects of receiving a positive NBS result for PD on families. In-depth qualitative interviews were conducted with mothers of nine children (three IOPD and six LOPD) diagnosed via NBS, exploring their experiences, understanding of PD, how they are coping, and what impact diagnosis is having on family life. Interviews were coded using MaxQDA v.12 and analyzed for thematic trends. While overall opinion of NBS was favorable, it is clear many of the concerns anticipated by HCPs, patients, and families regarding NBS for late-onset LSDs are being realized to varying degrees; LOPD families are becoming patients-in-waiting. Increased fear/anxiety and living with uncertainty (regarding diagnosis, their children's future, and when to start treatment) were predominant themes, with all families voicing considerable emotional reactions and varied social and healthcare support concerns. Coping strategies and psychosocial challenges are interpreted using Rolland & Williams' Family Systems Genetic Illness model. Recommendations for improvement in delivery of service, as well as families' advice for future parents and HCPs, are discussed.
Collapse
Affiliation(s)
- B Pruniski
- Department of Human Genetics, Emory University School of Medicine, 2165 N. Decatur Road, Decatur, GA, 30030, USA
- Division of Genetics & Metabolism, Phoenix Children's Medical Group, 1919E Thomas Road, Phoenix, AZ, 85016, USA
| | - E Lisi
- Department of Human Genetics, Emory University School of Medicine, 2165 N. Decatur Road, Decatur, GA, 30030, USA
- Center for Individualized Medicine, Mayo Clinic, Harwick-3, 205 3rd Ave SW, Rochester, MN, 55902, USA
| | - N Ali
- Department of Human Genetics, Emory University School of Medicine, 2165 N. Decatur Road, Decatur, GA, 30030, USA.
| |
Collapse
|
43
|
Semplicini C, Letard P, De Antonio M, Taouagh N, Perniconi B, Bouhour F, Echaniz-Laguna A, Orlikowski D, Sacconi S, Salort-Campana E, Solé G, Zagnoli F, Hamroun D, Froissart R, Caillaud C, Laforêt P. Late-onset Pompe disease in France: molecular features and epidemiology from a nationwide study. J Inherit Metab Dis 2018; 41:937-946. [PMID: 30155607 DOI: 10.1007/s10545-018-0243-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 12/26/2022]
Abstract
Pompe disease (PD) is caused by a deficiency of lysosomal acid α-glucosidase resulting from mutations in the GAA gene. The clinical spectrum ranges from a rapidly fatal multisystemic disorder (classic PD, onset < 1 year) to a milder adult onset myopathy. The aims of this study were to characterize the GAA mutations, to establish the disease epidemiology, and to identify potential genotype-phenotype correlations in French late-onset PD patients (onset ≥ 2 years) diagnosed since the 1970s. Data were collected from the two main laboratories involved in PD diagnosis and from the French Pompe registry. Two hundred forty-six patients (130 females and 116 males) were included, with a mean age at diagnosis of 43 years. Eighty-three different mutations were identified in the GAA gene, among which 28 were novel. These variants were spread all over the sequence and included 42 missense (one affecting start codon), 8 nonsense, 15 frameshift, 14 splice mutations, 3 small in-frame deletions, and one large deletion. The common c.-32-13T>G mutation was detected in 151/170 index cases. Other frequent mutations included the exon 18 deletion, the c.525del, and the missense mutations c.1927G>A (p.Gly643Arg) and c.655G>A (p.Gly219Arg). Patients carrying the c.-32-13T>G mutation had an older mean age at onset than patients non-exhibiting this mutation (36 versus 25 years). Patients with the same genotype had a highly variable age at onset. We estimated the frequency of late-onset PD in France around 1/69,927 newborns. In conclusion, we characterized the French cohort of late-onset PD patients through a nationwide study covering more than 40 years.
Collapse
Affiliation(s)
- Claudio Semplicini
- Department of Neurosciences, University of Padova, Azienda Ospedaliera di Padova, Padova, Italy
- Centre de référence des pathologies neuromusculaires Nord-Est-Ile de France, Hôpital La Pitié-Salpêtrière, AP-HP, Paris, France
| | - Pascaline Letard
- Laboratoire de Biochimie Métabolomique et Protéomique, Hôpital Universitaire Necker Enfants Malades, AP-HP, Paris, France
| | - Marie De Antonio
- Centre de référence des pathologies neuromusculaires Nord-Est-Ile de France, Hôpital La Pitié-Salpêtrière, AP-HP, Paris, France
| | - Nadjib Taouagh
- Institut de Myologie, Hôpital La Pitié-Salpétrière, AP-HP, Paris, France
| | - Barbara Perniconi
- Institut de Myologie, Hôpital La Pitié-Salpétrière, AP-HP, Paris, France
| | - Françoise Bouhour
- Service ENMG et pathologies neuromusculaires, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France
| | | | - David Orlikowski
- Pôle de ventilation à domicile, AP-HP, Hôpital Raymond Poincaré, 92380, Garches, France
- CIC 1429, INSERM, AP-HP, Hôpital Raymond Poincaré, 92380, Garches, France
| | - Sabrina Sacconi
- Centre de référence des Maladies Neuromusculaires, Hôpital Archet, Nice, France
- CNRS UMR7277, INSERM U1091, IBV-Institute of Biology Valrose, Faculté de Médecine, UNS Université Nice Sophia-Antipolis, Parc Valrose, Nice Cedex, France
| | - Emmanuelle Salort-Campana
- Reference Center for Neuromuscular Diseases and ALS, La Timone University Hospital, Aix-Marseille University, Marseille, France
| | - Guilhem Solé
- Department of Neurology, Nerve-Muscle Unit, CHU Bordeaux (Pellegrin Hospital), University of Bordeaux, place Amélie Raba-Léon, 33000, Bordeaux, France
- National reference center 'maladies neuromusculaires du grand sud-ouest,' CHU Bordeaux (Pellegrin Hospital), University of Bordeaux, place Amélie Raba-Léon, 33000, Bordeaux, France
| | - Fabien Zagnoli
- CHRU Cavale-Blanche, boulevard Tanguy-Prigent, 29200, Brest, France
| | - Dalil Hamroun
- Direction de la Recherche et de l'Innovation, CHRU de Montpellier, Hôpital Arnaud de Villeneuve, Montpellier, France
| | - Roseline Froissart
- Service de Biochimie et Biologie Moléculaire, Centre de Biologie et Pathologie Est, Hospices civils de Lyon, Bron, France
| | - Catherine Caillaud
- Laboratoire de Biochimie Métabolomique et Protéomique, Hôpital Universitaire Necker Enfants Malades, AP-HP, Paris, France
- INSERM U1151, Institut Necker Enfants Malades, and Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Pascal Laforêt
- Centre de Référence des Maladies Neuromusculaires Nord-Est-Ile de France, Service de Neurologie, CHU Raymond Poincaré, AP-HP, 104 bd Raymond Poincaré, 92380, Garches, France.
- INSERM U1179, END-ICAP, équipe Biothérapies des Maladies du Système Neuromusculaire, Université Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France.
| |
Collapse
|
44
|
Sauna ZE, Lagassé D, Pedras-Vasconcelos J, Golding B, Rosenberg AS. Evaluating and Mitigating the Immunogenicity of Therapeutic Proteins. Trends Biotechnol 2018; 36:1068-1084. [DOI: 10.1016/j.tibtech.2018.05.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 12/19/2022]
|
45
|
Abstract
Pompe disease is a rare and deadly muscle disorder. As a clinical entity, the disease has been known for over 75 years. While an optimist might be excited about the advances made during this time, a pessimist would note that we have yet to find a cure. However, both sides would agree that many findings in basic science-such as the Nobel prize-winning discoveries of glycogen metabolism, the lysosome, and autophagy-have become the foundation of our understanding of Pompe disease. The disease is a glycogen storage disorder, a lysosomal disorder, and an autophagic myopathy. In this review, we will discuss how these past discoveries have guided Pompe research and impacted recent therapeutic developments.
Collapse
Affiliation(s)
- Lara Kohler
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rosa Puertollano
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Nina Raben
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
46
|
Current State of the Art of Newborn Screening for Lysosomal Storage Disorders. Int J Neonatal Screen 2018; 4:24. [PMID: 33072946 PMCID: PMC7548896 DOI: 10.3390/ijns4030024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 07/12/2018] [Indexed: 01/01/2023] Open
Abstract
Prospective full-population newborn screening for multiple lysosomal storage disorders (LSDs) is currently practiced in a few NBS programs, and several others are actively pursuing this course of action. Two platforms suitable for multiple LSD screening-tandem mass spectrometry (MS/MS) and digital microfluidic fluorometry (DMF)-are now commercially available with reagent kits. In this article, we review the methods currently used for prospective NBS for LSDs and objectively compare their workflows and the results from two programs in the United States that screen for the same four LSDs, one using MS/MS and the other DMF. The results show that the DMF platform workflow is simpler and generates results faster than MS/MS, enabling results reporting on the same day as specimen analysis. Furthermore, the performance metrics for both platforms while not identical, are broadly similar and do not indicate the superior performance of one method over the other. Results show a preponderance of inconclusive results for Pompe and Fabry diseases and for Hurler syndrome, due to genetic heterogeneity and other factors that can lead to low enzyme activities, regardless of the screening method. We conclude that either platform is a good choice but caution that post-analytical tools will need to be applied to improve the positive predictive value for these conditions.
Collapse
|
47
|
Prosser LA, Lam KK, Grosse SD, Casale M, Kemper AR. Using Decision Analysis to Support Newborn Screening Policy Decisions: A Case Study for Pompe Disease. MDM Policy Pract 2018; 3. [PMID: 30123835 PMCID: PMC6095138 DOI: 10.1177/2381468318763814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background: Newborn screening is a public health program to identify conditions associated with significant morbidity or mortality that benefit from early intervention. Policy decisions about which conditions to include in newborn screening are complex because data regarding epidemiology and outcomes of early identification are often incomplete. Objectives: To describe expected outcomes of Pompe disease newborn screening and how a decision analysis informed recommendations by a federal advisory committee. Methods: We developed a decision tree to compare Pompe disease newborn screening with clinical identification of Pompe disease in the absence of screening. Cases of Pompe disease were classified into three types: classic infantile-onset disease with cardiomyopathy, nonclassic infantile-onset disease, and late-onset disease. Screening results and 36-month health outcomes were projected for classic and nonclassic infantile-onset cases. Input parameters were based on published and unpublished data supplemented by expert opinion. Results: We estimated that screening 4 million babies born each year in the United States would detect 40 cases (range: 13–56) of infantile-onset Pompe disease compared with 36 cases (range: 13–56) detected clinically without screening. Newborn screening would also identify 94 cases of late-onset Pompe disease that might not become symptomatic for decades. By 36 months, newborn screening would avert 13 deaths (range: 8–19) and decrease the number of individuals requiring mechanical ventilation by 26 (range: 20–28). Conclusions: Pompe disease is a rare condition, but early identification can improve health outcomes. Decision analytic modeling provided a quantitative data synthesis that informed the recommendation of Pompe disease newborn screening.
Collapse
Affiliation(s)
- Lisa A Prosser
- Child Health Evaluation and Research (CHEAR) Center, Division of General Pediatrics, University of Michigan, Ann Arbor, MI, USA (LAP), Duke Clinical and Translational Science Institute, Duke University, Durham, NC, USA (KKL), National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA (SDG), Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA (MC), Division of Ambulatory Pediatrics, Nationwide Children's Hospital, Columbus, OH (ARK)
| | - K K Lam
- Child Health Evaluation and Research (CHEAR) Center, Division of General Pediatrics, University of Michigan, Ann Arbor, MI, USA (LAP), Duke Clinical and Translational Science Institute, Duke University, Durham, NC, USA (KKL), National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA (SDG), Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA (MC), Division of Ambulatory Pediatrics, Nationwide Children's Hospital, Columbus, OH (ARK)
| | - Scott D Grosse
- Child Health Evaluation and Research (CHEAR) Center, Division of General Pediatrics, University of Michigan, Ann Arbor, MI, USA (LAP), Duke Clinical and Translational Science Institute, Duke University, Durham, NC, USA (KKL), National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA (SDG), Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA (MC), Division of Ambulatory Pediatrics, Nationwide Children's Hospital, Columbus, OH (ARK)
| | - Mia Casale
- Child Health Evaluation and Research (CHEAR) Center, Division of General Pediatrics, University of Michigan, Ann Arbor, MI, USA (LAP), Duke Clinical and Translational Science Institute, Duke University, Durham, NC, USA (KKL), National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA (SDG), Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA (MC), Division of Ambulatory Pediatrics, Nationwide Children's Hospital, Columbus, OH (ARK)
| | - Alex R Kemper
- Child Health Evaluation and Research (CHEAR) Center, Division of General Pediatrics, University of Michigan, Ann Arbor, MI, USA (LAP), Duke Clinical and Translational Science Institute, Duke University, Durham, NC, USA (KKL), National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA (SDG), Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA (MC), Division of Ambulatory Pediatrics, Nationwide Children's Hospital, Columbus, OH (ARK)
| |
Collapse
|
48
|
The phenotype, genotype, and outcome of infantile-onset Pompe disease in 18 Saudi patients. Mol Genet Metab Rep 2018; 15:50-54. [PMID: 30023291 PMCID: PMC6047460 DOI: 10.1016/j.ymgmr.2018.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 11/21/2022] Open
Abstract
Infantile-Onset Pompe Disease (IOPD) is an autosomal recessive disorder of glycogen metabolism resulting from deficiency of the lysosomal hydrolase acid α-glucosidase encoded by GAA gene. Affected infants present before the age of 12 months with hypotonia, muscle weakness, and hypertrophic cardiomyopathy. Enzyme replacement therapy (ERT) has been shown to improve survival, cardiac mass, and motor skills. In this work, we aim to illustrate the genotypes of IOPD and the outcome of ERT in our population. The medical records of infants with confirmed diagnosis of IOPD who received ERT were reviewed. Eighteen infants (7 males, 11 females) were included in the study. The median age at presentation was 2 months and the median age at the start of ERT was 4.5 months. Fifteen (83.3%) infants died with a median age at death of 12 months. The 3 alive infants (whose current ages are 6½ years, 6 years, and 10 years), who were initiated on ERT at the age of 3 weeks, 5 months, and 8 months respectively, has had variable response with requirement of assisted ventilation in one child and tracheostomy in another child. All infants were homozygous for GAA mutations except one infant who was compound heterozygous. All infants (n = 8) with truncating mutations died. Our work provides insight into the correlation of genotypes and outcome of ERT in IOPD in Saudi Arabia. Our data suggest that early detection of cases, through newborn screening, and immunomodulation before the initiation of ERT may improve the outcome of ERT in Saudi infants with IOPD.
Collapse
|
49
|
Tukiendorf A, Łasocha M, Krasowski G, Orska E, Porebska A. Infant Mortality in Gynaecological and Unemployment Aspects in Opole Province, Poland. Cent Eur J Public Health 2007; 15:7-12. [PMID: 17491552 DOI: 10.21101/cejph.a3395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the study the results of the relation between infant (neonatal + post-neonatal) mortality and the gynaecological and unemployment factors are presented. The findings are based on Bayesian modelling and indicate the possible influence of the unemployment situation on mortality, whereas no correlation was found as regards access to the availability of gynaecological health care. The main conclusion is that elevated unemployment which could be referred to a poor socioeconomic situation (amongst other factors) may force pregnant women to pay more attention to improving their life conditions, than to sufficient medical controlling.
Collapse
|