1
|
Xu F, Xu S, Yang L, Qu A, Li D, Yu M, Wu Y, Zheng S, Ruan X, Wang Q. Preparing a Phytosome for Promoting Delivery Efficiency and Biological Activities of Methyl Jasmonate-Treated Dendropanax morbifera Adventitious Root Extract (DMARE). Biomolecules 2024; 14:1273. [PMID: 39456206 PMCID: PMC11505992 DOI: 10.3390/biom14101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
(1) Background: Methyl jasmonate-treated D. morbifera adventitious root extract (MeJA-DMARE), enriched with phenolics, has enhanced bioactivities. However, phenolics possess low stability and bioavailability. Substantial evidence indicates that plant extract-phospholipid complex assemblies, known as phytosomes, represent an innovative drug delivery system. (2) Methods: The phytosome complex was created by combining MeJA-DMARE with Soy-L-α-phosphatidylcholine (PC) using three different ratios through two distinct methods (co-solvency method: A1, A2, and A3; thin-layer film method: B1, B2, and B3). (3) Results: Initial evaluation based on UV-Vis, entrapment efficiency (EE%), and loading content (LC%) indicated that B2 exhibited the highest EE% (79.98 ± 1.45) and LC% (69.17 ± 0.14). The phytosome displayed a spherical morphology with a particle size of 210 nm, a notably low polydispersity index of 0.16, and a superior zeta potential value at -25.19 mV. The synthesized phytosome exhibited superior anti-inflammatory activities by inhibiting NO and ROS production (reduced to 8.9% and 55.1% at 250 μg/mL) in RAW cells and adjusting the expression of related inflammatory cytokines; they also slowed lung tumor cell migration (only 2.3% of A549 cells migrated after treatment with phytosomes at 250 μg/mL), promoting ROS generation in A549 cell lines (123.7% compared to control) and stimulating apoptosis of lung cancer-related genes. (4) Conclusions: In conclusion, the MeJA-DMARE phytosome offers stable, economically efficient, and environmentally friendly nanoparticles with superior inflammation and lung tumor inhibition properties. Thus, the MeJA-DMARE phytosome holds promise as an applicable and favorable creation for drug delivery and lung cancer treatment.
Collapse
Affiliation(s)
- Fengjiao Xu
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China; (F.X.); (L.Y.); (A.Q.); (Y.W.)
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Shican Xu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, College of Agriculture, Henan University, Kaifeng 475004, China;
| | - Li Yang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China; (F.X.); (L.Y.); (A.Q.); (Y.W.)
| | - Aili Qu
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China; (F.X.); (L.Y.); (A.Q.); (Y.W.)
| | - Dongbin Li
- Ningbo Forest Farm, Ningbo Bureau of Natural Resources and Planning, Ningbo 315440, China; (D.L.); (M.Y.)
| | - Minfen Yu
- Ningbo Forest Farm, Ningbo Bureau of Natural Resources and Planning, Ningbo 315440, China; (D.L.); (M.Y.)
| | - Yongping Wu
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China; (F.X.); (L.Y.); (A.Q.); (Y.W.)
| | - Shaojian Zheng
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Xiao Ruan
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China; (F.X.); (L.Y.); (A.Q.); (Y.W.)
| | - Qiang Wang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China; (F.X.); (L.Y.); (A.Q.); (Y.W.)
| |
Collapse
|
2
|
Verdina A, Garufi A, D’Orazi V, D’Orazi G. HIPK2 in Colon Cancer: A Potential Biomarker for Tumor Progression and Response to Therapies. Int J Mol Sci 2024; 25:7678. [PMID: 39062921 PMCID: PMC11277226 DOI: 10.3390/ijms25147678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Colon cancer, one of the most common and fatal cancers worldwide, is characterized by stepwise accumulation of specific genetic alterations in tumor suppressor genes or oncogenes, leading to tumor growth and metastasis. HIPK2 (homeodomain-interacting protein kinase 2) is a serine/threonine protein kinase and a "bona fide" oncosuppressor protein. Its activation inhibits tumor growth mainly by promoting apoptosis, while its inactivation increases tumorigenicity and resistance to therapies of many different cancer types, including colon cancer. HIPK2 interacts with many molecular pathways by means of its kinase activity or transcriptional co-repressor function modulating cell growth and apoptosis, invasion, angiogenesis, inflammation and hypoxia. HIPK2 has been shown to participate in several molecular pathways involved in colon cancer including p53, Wnt/β-catenin and the newly identified nuclear factor erythroid 2 (NF-E2) p45-related factor 2 (NRF2). HIPK2 also plays a role in tumor-host interaction in the tumor microenvironment (TME) by inducing angiogenesis and cancer-associated fibroblast (CAF) differentiation. The aim of this review is to assess the role of HIPK2 in colon cancer and the underlying molecular pathways for a better understanding of its involvement in colon cancer carcinogenesis and response to therapies, which will likely pave the way for novel colon cancer therapies.
Collapse
Affiliation(s)
- Alessandra Verdina
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.V.); (A.G.)
| | - Alessia Garufi
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.V.); (A.G.)
| | - Valerio D’Orazi
- Department of Surgery, Sapienza University, 00185 Rome, Italy;
| | - Gabriella D’Orazi
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (A.V.); (A.G.)
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. D’Annunzio”, 66013 Chieti, Italy
| |
Collapse
|
3
|
Salanci Š, Vilková M, Martinez L, Mirossay L, Michalková R, Mojžiš J. The Induction of G2/M Phase Cell Cycle Arrest and Apoptosis by the Chalcone Derivative 1C in Sensitive and Resistant Ovarian Cancer Cells Is Associated with ROS Generation. Int J Mol Sci 2024; 25:7541. [PMID: 39062784 PMCID: PMC11277160 DOI: 10.3390/ijms25147541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Ovarian cancer ranks among the most severe forms of cancer affecting the female reproductive organs, posing a significant clinical challenge primarily due to the development of resistance to conventional therapies. This study investigated the effects of the chalcone derivative 1C on sensitive (A2780) and cisplatin-resistant (A2780cis) ovarian cancer cell lines. Our findings revealed that 1C suppressed cell viability, induced cell cycle arrest at the G2/M phase, and triggered apoptosis in both cell lines. These effects are closely associated with generating reactive oxygen species (ROS). Mechanistically, 1C induced DNA damage, modulated the activity of p21, PCNA, and phosphorylation of Rb and Bad proteins, as well as cleaved PARP. Moreover, it modulated Akt, Erk1/2, and NF-κB signaling pathways. Interestingly, we observed differential effects of 1C on Nrf2 levels between sensitive and resistant cells. While 1C increased Nrf2 levels in sensitive cells after 12 h and decreased them after 48 h, the opposite effect was observed in resistant cells. Notably, most of these effects were suppressed by the potent antioxidant N-acetylcysteine (NAC), underscoring the crucial role of ROS in 1C-induced antiproliferative activity. Moreover, we suggest that modulation of Nrf2 levels can, at least partially, contribute to the antiproliferative effect of chalcone 1C.
Collapse
Affiliation(s)
- Šimon Salanci
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (Š.S.); (L.M.); (R.M.)
| | - Mária Vilková
- Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia;
| | - Lola Martinez
- Flow Cytometry Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain;
| | - Ladislav Mirossay
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (Š.S.); (L.M.); (R.M.)
| | - Radka Michalková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (Š.S.); (L.M.); (R.M.)
| | - Ján Mojžiš
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (Š.S.); (L.M.); (R.M.)
| |
Collapse
|
4
|
Wu L, Hu Z, Song XF, Liao YJ, Xiahou JH, Li Y, Zhang ZH. Targeting Nrf2 signaling pathways in the role of bladder cancer: From signal network to targeted therapy. Biomed Pharmacother 2024; 176:116829. [PMID: 38820972 DOI: 10.1016/j.biopha.2024.116829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/09/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024] Open
Abstract
Bladder cancer (BC) is the most common malignancy of the urinary system and often recurs after tumor removal and/or is resistant to chemotherapy. In cancer cells, the activity of the signaling pathway changes significantly, affecting a wide range of cell activities from growth and proliferation to apoptosis, invasion and metastasis. Nrf2 is a transcription factor that plays an important role in cellular defense responses to a variety of cellular stresses. There is increasing evidence that Nrf2 acts as a tumor driver and that it is involved in the maintenance of malignant cell phenotypes. Abnormal expression of Nrf2 has been found to be common in a variety of tumors, including bladder cancer. Over-activation of Nrf2 can lead to DNA damage and the development of bladder cancer, and is also associated with various pathological phenomena of bladder cancer, such as metastasis, angiogenesis, and reduced toxicity and efficacy of therapeutic anticancer drugs to provide cell protection for cancer cells. However, the above process can be effectively inhibited or reversed by inhibiting Nrf2. Therefore, Nrf2 signaling may be a potential targeting pathway for bladder cancer. In this review, we will characterize this signaling pathway and summarize the effects of Nrf2 and crosstalk with other signaling pathways on bladder cancer progression. The focus will be on the impact of Nrf2 activation on bladder cancer progression and current therapeutic strategies aimed at blocking the effects of Nrf2. To better determine how to promote new chemotherapy agents, develop new therapeutic agents, and potential therapeutic targets.
Collapse
Affiliation(s)
- Liang Wu
- Department of Urinary Surgery, Xinyu People's Hospital, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China; Department of Urinary Surgery, The Affiliated Xinyu Hospital of Nanchang University, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China.
| | - Zhao Hu
- Department of Urinary Surgery, Xinyu People's Hospital, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China; Department of Urinary Surgery, The Affiliated Xinyu Hospital of Nanchang University, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China
| | - Xiao-Fen Song
- Department of Urinary Surgery, Xinyu People's Hospital, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China; Department of Urinary Surgery, The Affiliated Xinyu Hospital of Nanchang University, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China
| | - Yu-Jian Liao
- Department of Urinary Surgery, Xinyu People's Hospital, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China; Department of Urinary Surgery, The Affiliated Xinyu Hospital of Nanchang University, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China
| | - Jiang-Huan Xiahou
- Department of Urinary Surgery, Xinyu People's Hospital, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China; Department of Urinary Surgery, The Affiliated Xinyu Hospital of Nanchang University, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China
| | - Yuan Li
- Department of Urinary Surgery, Xinyu People's Hospital, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China; Department of Urinary Surgery, The Affiliated Xinyu Hospital of Nanchang University, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China
| | - Zhong-Hua Zhang
- Department of Urinary Surgery, Xinyu People's Hospital, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China; Department of Urinary Surgery, The Affiliated Xinyu Hospital of Nanchang University, 369 Xinxin North Road, Xinyu, Jiangxi Province 338000, PR China.
| |
Collapse
|
5
|
Feng Q, Xu X, Zhang S. Nrf2 protein in melanoma progression, as a new means of treatment. Pigment Cell Melanoma Res 2024; 37:247-258. [PMID: 37777339 DOI: 10.1111/pcmr.13137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023]
Abstract
Melanoma is a potentially lethal form of skin cancer resulting from the unlimited proliferation of melanocytes. Melanocytic lineage appears to have a greater rate of reactive oxygen species (ROS) production, possibly as a result of exposure to ultraviolet (UV) light and the production of melanin. It has been established that nuclear factor erythroid 2-related factor 2 (Nrf2) serves as a master regulator of the cellular response to oxidative stresses. Recent research has shown that the Nrf2 and its critical negative regulator Kelch-like ECH-associated protein 1 (Keap1) are misregulated in melanoma, and the Keap1-Nrf2 pathway has emerged as a promising new target for treating and preventing melanoma. In melanoma, Nrf2 may either limit tumor growth or promote its development. This review covers a wide range of topics, including the dual functions played by the Keap1-Nrf2 signaling pathway in melanoma and the most recent targeting techniques of the Nrf2.
Collapse
Affiliation(s)
- Qun Feng
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130017, China
| | - Xiaolin Xu
- Cardiology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Shoulin Zhang
- Nephrology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130021, China
| |
Collapse
|
6
|
Fanfarillo F, Ferraguti G, Lucarelli M, Francati S, Barbato C, Minni A, Ceccanti M, Tarani L, Petrella C, Fiore M. The Impact of ROS and NGF in the Gliomagenesis and their Emerging Implications in the Glioma Treatment. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:449-462. [PMID: 37016521 DOI: 10.2174/1871527322666230403105438] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/19/2022] [Accepted: 02/01/2023] [Indexed: 04/06/2023]
Abstract
Reactive oxygen species (ROS) are highly reactive molecules derived from molecular oxygen (O2). ROS sources can be endogenous, such as cellular organelles and inflammatory cells, or exogenous, such as ionizing radiation, alcohol, food, tobacco, chemotherapeutical agents and infectious agents. Oxidative stress results in damage of several cellular structures (lipids, proteins, lipoproteins, and DNA) and is implicated in various disease states such as atherosclerosis, diabetes, cancer, neurodegeneration, and aging. A large body of studies showed that ROS plays an important role in carcinogenesis. Indeed, increased production of ROS causes accumulation in DNA damage leading to tumorigenesis. Various investigations demonstrated the involvement of ROS in gliomagenesis. The most common type of primary intracranial tumor in adults is represented by glioma. Furthermore, there is growing attention on the role of the Nerve Growth Factor (NGF) in brain tumor pathogenesis. NGF is a growth factor belonging to the family of neurotrophins. It is involved in neuronal differentiation, proliferation and survival. Studies were conducted to investigate NGF pathogenesis's role as a pro- or anti-tumoral factor in brain tumors. It has been observed that NGF can induce both differentiation and proliferation in cells. The involvement of NGF in the pathogenesis of brain tumors leads to the hypothesis of a possible implication of NGF in new therapeutic strategies. Recent studies have focused on the role of neurotrophin receptors as potential targets in glioma therapy. This review provides an updated overview of the role of ROS and NGF in gliomagenesis and their emerging role in glioma treatment.
Collapse
Affiliation(s)
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Silvia Francati
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Antonio Minni
- Department of Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell'Alcolismo e le sue Complicanze, Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC-CNR, Rome, Italy
| |
Collapse
|
7
|
Ngo HKC, Le H, Surh YJ. Nrf2, A Target for Precision Oncology in Cancer Prognosis and Treatment. J Cancer Prev 2023; 28:131-142. [PMID: 38205365 PMCID: PMC10774478 DOI: 10.15430/jcp.2023.28.4.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Activating nuclear factor-erythroid 2-related factor (Nrf2), a master regulator of redox homeostasis, has been shown to suppress initiation of carcinogenesis in normal cells. However, this transcription factor has recently been reported to promote proliferation of some transformed or cancerous cells. In tumor cells, Nrf2 is prone to mutations that result in stabilization and concurrent accumulation of its protein product. A hyperactivated mutant form of Nrf2 could support the cancer cells for enhanced proliferation, invasiveness, and resistance to chemotherapeutic agents and radiotherapy, which are associated with a poor clinical outcome. Hence understanding mutations in Nrf2 would have a significant impact on the prognosis and treatment of cancer in the era of precision medicine. This perspective would provide an insight into the genetic alterations in Nrf2 and suggest the application of small molecules, RNAi, and genome editing technologies, particularly CRISR-Cas9, in therapeutic intervention of cancer in the context of the involvement of Nrf2 mutations.
Collapse
Affiliation(s)
- Hoang Kieu Chi Ngo
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Hoang Le
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
8
|
Hannon Barroeta P, O'Sullivan MJ, Zisterer DM. The role of the Nrf2/GSH antioxidant system in cisplatin resistance in malignant rhabdoid tumours. J Cancer Res Clin Oncol 2023; 149:8379-8391. [PMID: 37079050 PMCID: PMC10374708 DOI: 10.1007/s00432-023-04734-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/31/2023] [Indexed: 04/21/2023]
Abstract
PURPOSE Malignant rhabdoid tumour (MRT) is a rare and aggressive childhood malignancy that occurs in the kidneys or central nervous system and is associated with very poor prognosis. Chemoresistance is a major issue in the treatment of this malignancy leading to an urgent need for a greater understanding of its underlying mechanisms in MRT and novel treatment strategies for MRT patients. The balance between oxidative stress mediated by reactive oxygen species (ROS) and the antioxidant system has become a subject of interest in cancer therapy research. Studies have implicated key players of the antioxidant system in chemotherapeutic including the well-known antioxidant glutathione (GSH) and the transcription factor nuclear erythroid-related factor-2 (Nrf2). METHODS: This study evaluated the role of these components in the response of MRT cells to treatment with the commonly used chemotherapeutic agent, cisplatin. RESULTS This study characterised the basal levels of GSH, ROS and Nrf2 in a panel of MRT cell lines and found a correlation between the expression profile of the antioxidant defence system and cisplatin sensitivity. Results showed that treatment with ROS scavenger N-acetylcysteine (NAC) protected cells from cisplatin-induced ROS and apoptosis. Interestingly, depleting GSH levels with the inhibitor buthionine sulphoximine (BSO) enhanced cisplatin-induced ROS and sensitised cells to cisplatin. Lastly, targeting Nrf2 with the small molecule inhibitor ML385 or by siRNA diminished GSH levels, enhanced ROS and sensitised resistant MRT cells to cisplatin. CONCLUSIONS These results suggest that targeting the Nrf2/GSH antioxidant system may present a novel therapeutic strategy to combat chemoresistance in rhabdoid tumours.
Collapse
Affiliation(s)
- Patricia Hannon Barroeta
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse St, Dublin, D02 R590, Ireland.
| | - Maureen J O'Sullivan
- The National Children's Research Centre, Children's Health Ireland at Crumlin, Dublin, D12 N512, Ireland
| | - Daniela M Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse St, Dublin, D02 R590, Ireland
| |
Collapse
|
9
|
Liu J, Ge Z, Jiang X, Zhang J, Sun J, Mao X. A comprehensive review of natural products with anti-hypoxic activity. Chin J Nat Med 2023; 21:499-515. [PMID: 37517818 DOI: 10.1016/s1875-5364(23)60410-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Indexed: 08/01/2023]
Abstract
Natural products exhibit substantial impacts in the field of anti-hypoxic traetment. Hypoxia can cause altitude sickness and other negative effect on the body. Headache, coma, exhaustion, vomiting and, in severe cases, death are some of the clinical signs. Currently, hypoxia is no longer just a concern in plateau regions; it is also one of the issues that can not be ignored by urban residents. This review covered polysaccharides, alkaloids, saponins, flavonoids, peptides and traditional Chinese compound prescriptions as natural products to protect against hypoxia. The active ingredients, effectiveness and mechanisms were discussed. The related anti-hypoxic mechanisms involve increasing the hemoglobin (HB) content, glycogen content and adenosine triphosphate (ATP) content, removing excessive reactive oxygen species (ROS), reducing lipid peroxidation, regulating the levels of related enzymes in cells, protecting the structural and functional integrity of the mitochondria and regulating the expression of apoptosis-related genes. These comprehensive summaries are beneficial to anti-hypoxic research and provide useful information for the development of anti-hypoxic products.
Collapse
Affiliation(s)
- Juncai Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zhen Ge
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiao Jiang
- Medical College, Qingdao Binhai University, Qingdao 266555, China
| | - Jingjing Zhang
- Medical College, Qingdao Binhai University, Qingdao 266555, China
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
10
|
Hassel JC, Zimmer L, Sickmann T, Eigentler TK, Meier F, Mohr P, Pukrop T, Roesch A, Vordermark D, Wendl C, Gutzmer R. Medical Needs and Therapeutic Options for Melanoma Patients Resistant to Anti-PD-1-Directed Immune Checkpoint Inhibition. Cancers (Basel) 2023; 15:3448. [PMID: 37444558 DOI: 10.3390/cancers15133448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Available 4- and 5-year updates for progression-free and for overall survival demonstrate a lasting clinical benefit for melanoma patients receiving anti-PD-directed immune checkpoint inhibitor therapy. However, at least one-half of the patients either do not respond to therapy or relapse early or late following the initial response to therapy. Little is known about the reasons for primary and/or secondary resistance to immunotherapy and the patterns of relapse. This review, prepared by an interdisciplinary expert panel, describes the assessment of the response and classification of resistance to PD-1 therapy, briefly summarizes the potential mechanisms of resistance, and analyzes the medical needs of and therapeutic options for melanoma patients resistant to immune checkpoint inhibitors. We appraised clinical data from trials in the metastatic, adjuvant and neo-adjuvant settings to tabulate frequencies of resistance. For these three settings, the role of predictive biomarkers for resistance is critically discussed, as well as are multimodal therapeutic options or novel immunotherapeutic approaches which may help patients overcome resistance to immune checkpoint therapy. The lack of suitable biomarkers and the currently modest outcomes of novel therapeutic regimens for overcoming resistance, most of them with a PD-1 backbone, support our recommendation to include as many patients as possible in novel or ongoing clinical trials.
Collapse
Affiliation(s)
- Jessica C Hassel
- Skin Cancer Center, Department of Dermatology and National Center for Tumor Diseases (NCT), University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Lisa Zimmer
- Department of Dermatology, University Hospital Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen, 69120 Heidelberg, Germany
| | | | - Thomas K Eigentler
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Friedegund Meier
- Department of Dermatology, Skin Cancer Center at the University Cancer Centre and National Center for Tumor Diseases, Faculty of Medicine and University Hospital Carl Gustav Carus, Technical University Dresden, 01062 Dresden, Germany
| | - Peter Mohr
- Department of Dermatology, Elbe-Kliniken, 21614 Buxtehude, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, 93053 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 93053 Regensburg, Germany
| | - Alexander Roesch
- Department of Dermatology, University Hospital Essen, 45147 Essen, Germany
| | - Dirk Vordermark
- Department for Radiation Oncology, Martin-Luther University Halle-Wittenberg, 06108 Halle, Germany
| | - Christina Wendl
- Department of Radiology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Ralf Gutzmer
- Department of Dermatology, Johannes Wesling Medical Center, Ruhr University Bochum, 32429 Minden, Germany
| |
Collapse
|
11
|
Krishnaraj J, Yamamoto T, Ohki R. p53-Dependent Cytoprotective Mechanisms behind Resistance to Chemo-Radiotherapeutic Agents Used in Cancer Treatment. Cancers (Basel) 2023; 15:3399. [PMID: 37444509 DOI: 10.3390/cancers15133399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Resistance to chemoradiotherapy is the main cause of cancer treatment failure. Cancer cells, especially cancer stem cells, utilize innate cytoprotective mechanisms to protect themselves from the adverse effects of chemoradiotherapy. Here, we describe a few such mechanisms: DNA damage response (DDR), immediate early response gene 5 (IER5)/heat-shock factor 1 (HSF1) pathway, and p21/nuclear factor erythroid 2-related factor 2 (NRF2) pathway, which are regulated by the tumour suppressor p53. Upon DNA damage caused during chemoradiotherapy, p53 is recruited to the sites of DNA damage and activates various DNA repair enzymes including GADD45A, p53R2, DDB2 to repair damaged-DNA in cancer cells. In addition, the p53-IER5-HSF1 pathway protects cancer cells from proteomic stress and maintains cellular proteostasis. Further, the p53-p21-NRF2 pathway induces production of antioxidants and multidrug resistance-associated proteins to protect cancer cells from therapy-induced oxidative stress and to promote effusion of drugs from the cells. This review summarises possible roles of these p53-regulated cytoprotective mechanisms in the resistance to chemoradiotherapy.
Collapse
Affiliation(s)
- Jayaraman Krishnaraj
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Tatsuki Yamamoto
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| | - Rieko Ohki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
12
|
Gjorgieva Ackova D, Maksimova V, Smilkov K, Buttari B, Arese M, Saso L. Alkaloids as Natural NRF2 Inhibitors: Chemoprevention and Cytotoxic Action in Cancer. Pharmaceuticals (Basel) 2023; 16:850. [PMID: 37375797 DOI: 10.3390/ph16060850] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/28/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Being a controller of cytoprotective actions, inflammation, and mitochondrial function through participating in the regulation of multiple genes in response to stress-inducing endogenous or exogenous stressors, the transcription factor Nuclear Factor Erythroid 2-Related Factor 2 (NRF2) is considered the main cellular defense mechanism to maintain redox balance at cellular and tissue level. While a transient activation of NRF2 protects normal cells under oxidative stress, the hyperactivation of NRF2 in cancer cells may help them to survive and to adapt under oxidative stress. This can be detrimental and related to cancer progression and chemotherapy resistance. Therefore, inhibition of NRF2 activity may be an effective approach for sensitizing cancer cells to anticancer therapy. In this review, we examine alkaloids as NRF2 inhibitors from natural origin, their effects on cancer therapy, and/or as sensitizers of cancer cells to anticancer chemotherapeutics, and their potential clinical applications. Alkaloids, as inhibitor of the NRF2/KEAP1 signaling pathway, can have direct (berberine, evodiamine, and diterpenic aconitine types of alkaloids) or indirect (trigonelline) therapeutic/preventive effects. The network linking alkaloid action with oxidative stress and NRF2 modulation may result in an increased NRF2 synthesis, nuclear translocation, as well in a downstream impact on the synthesis of endogenous antioxidants, effects strongly presumed to be the mechanism of action of alkaloids in inducing cancer cell death or promoting sensitivity of cancer cells to chemotherapeutic agents. In this regard, the identification of additional alkaloids targeting the NRF2 pathway is desirable and the information arising from clinical trials will reveal the potential of these compounds as a promising target for anticancer therapy.
Collapse
Affiliation(s)
- Darinka Gjorgieva Ackova
- Department of Applied Pharmacy, Division of Pharmacy, Faculty of Medical Sciences, Goce Delcev University, Stip, Krste Misirkov Str., No. 10-A, P.O. Box 201, 2000 Stip, North Macedonia
| | - Viktorija Maksimova
- Department of Applied Pharmacy, Division of Pharmacy, Faculty of Medical Sciences, Goce Delcev University, Stip, Krste Misirkov Str., No. 10-A, P.O. Box 201, 2000 Stip, North Macedonia
| | - Katarina Smilkov
- Department of Applied Pharmacy, Division of Pharmacy, Faculty of Medical Sciences, Goce Delcev University, Stip, Krste Misirkov Str., No. 10-A, P.O. Box 201, 2000 Stip, North Macedonia
| | - Brigitta Buttari
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marzia Arese
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Piazz. le A. Moro 5, 00185 Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
13
|
Zhang J, Xu HX, Zhu JQ, Dou YX, Xian YF, Lin ZX. Natural Nrf2 Inhibitors: A Review of Their Potential for Cancer Treatment. Int J Biol Sci 2023; 19:3029-3041. [PMID: 37416770 PMCID: PMC10321279 DOI: 10.7150/ijbs.82401] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/24/2023] [Indexed: 07/08/2023] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that regulates redox homeostasis, plays a pivotal role in several cellular processes such as cell proliferation and survival, and has been found to be aberrantly activated in many cancers. As one of the key oncogenes, Nrf2 represents an important therapeutic target for cancer treatment. Research has unraveled the main mechanisms underlying the Nrf2 pathway regulation and the role of Nrf2 in promoting tumorigenesis. Many efforts have been made to develop potent Nrf2 inhibitors, and several clinical trials are being conducted on some of these inhibitors. Natural products are well-recognized as a valuable source for development of novel therapeutics for cancer. So far, a number of natural compounds have been identified as Nrf2 inhibitors, such as apigenin, luteolin, and quassinoids compounds including brusatol and brucein D. These Nrf2 inhibitors have been found to mediate an oxidant response and display therapeutic effects in different types of human cancers. In this article, we reviewed the structure and function of the Nrf2/Keap1 system and the development of natural Nrf2 inhibitors with an emphasis on their biological function on cancer. The current status regarding the Nrf2 as a potential therapeutic target for cancer treatment was also summarized. It is hoped that this review will stimulate research on naturally occurring Nrf2 inhibitors as therapeutic candidates for cancer treatment.
Collapse
Affiliation(s)
- Juan Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hong-Xi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jia-Qian Zhu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yao-Xing Dou
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Institute of Integrative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
14
|
Lee H, Min SK, Cho MS, Lee HK. Impact of Nrf2 overexpression on cholangiocarcinoma treatment and clinical prognosis. KOREAN JOURNAL OF CLINICAL ONCOLOGY 2023; 19:18-26. [PMID: 37449395 DOI: 10.14216/kjco.23004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE Nrf2 regulates antioxidant protein expression and protects against drug toxicity and oxidative stress, whereas Keap1 controls Nrf2 activity. The Keap1-Nrf2 pathway affects the prognosis of various cancers, however, its effect on cholangiocarcinoma chemoresistance and prognosis remains unclear. This study aimed to determine whether the Keap1-Nrf2 pathway affects chemoresistance and prognosis of distal cholangiocarcinoma. METHODS We investigated the correlation between Nrf2 and Keap1 expression and clinical characteristics and prognosis in 91 patients with distal cholangiocarcinoma who underwent curative surgery. Immunohistochemical staining was performed on paraffin blocks using primary antibodies against Nrf2 and Keap1. The relationship between Keap1 and Nrf2 protein expression levels, and clinical characteristics and prognosis was examined. RESULTS Nrf2 expression was not associated with overall survival in patients who did not receive adjuvant chemotherapy (P=0.994). Among patients receiving adjuvant chemotherapy, the Nrf2 low expression group had a significantly longer median overall survival than the Nrf2 high expression group in Kaplan-Meier survival analysis (P=0.019). In multivariate analysis, high expression of Nrf2 was confirmed as an independent poor prognostic factor in the group receiving adjuvant chemotherapy (P=0.041). CONCLUSION This study suggests that Nrf2 overexpression reduces the efficacy of adjuvant chemotherapy in distal cholangiocarcinoma.
Collapse
Affiliation(s)
- Huisong Lee
- Department of Surgery, Ewha Womans University College of Medicine, Seoul, Korea
| | - Seog Ki Min
- Department of Surgery, Ewha Womans University College of Medicine, Seoul, Korea
| | - Min-Sun Cho
- Department of Pathology, Ewha Womans University College of Medicine, Seoul, Korea
| | - Hyeon Kook Lee
- Department of Surgery, Ewha Womans University College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Luo JH, Zou WS, Li J, Liu W, Huang J, Wu HW, Shen JL, Li F, Yuan JSW, Tao AK, Gong L, Zhang J, Wang XY. Untargeted serum and liver metabolomics analyses reveal the gastroprotective effect of polysaccharide from Evodiae fructus on ethanol-induced gastric ulcer in mice. Int J Biol Macromol 2023; 232:123481. [PMID: 36731690 DOI: 10.1016/j.ijbiomac.2023.123481] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
This study aimed at investigating the gastroprotective effect of Evodiae fructus polysaccharide (EFP) against ethanol-induced gastric ulcer in mice. Biochemical indexes along with untargeted serum and liver metabolomics were determined. Results showed that pre-treatment of EFP alleviated ethanol-induced gastric ulcer in mice. EFP lessened oxidative stress and inflammation levels of stomachs, showing as increments of SOD and GSH-Px activities, GSH content and IL-10 level, and reductions of MDA and IL-6 levels. Meanwhile, EFP activated the Keap1/Nrf2/HO-1 signaling pathway through increasing Nrf2 and HO-1 protein expressions, and decreasing Keap1 protein expression. Serum and liver metabolomics analyses indicated that 10 metabolic potential biomarkers were identified among normal control, ulcer control and 200 mg/kg·bw of EFP groups, which were related to 5 enriched metabolic pathways including vitamin B6 metabolism, nicotinate and nicotinamide metabolism, pentose phosphate pathway, bile secretion and ascorbate and aldarate metabolism. Further pearson's correlation analysis indicated that there were some positive and negative correlations between the biomarkers and the biochemical indexes. It could be concluded that the gastroprotection of EFP might be related to anti-oxidative stress, anti-inflammation, activation of Keap1/Nrf2/HO-1 signaling pathway and alteration of metabolic pathways. This study supports the potential application of EFP in preventing ethanol-induced gastric ulcer.
Collapse
Affiliation(s)
- Jiang-Hong Luo
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China; Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou 341000, China
| | - Wan-Shuang Zou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Jing Li
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Wei Liu
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Jing Huang
- School of Basic Medical Sciences, Gannan Medical University, Ganzhou 341000, China
| | - Hu-Wei Wu
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Jian-Lin Shen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Fei Li
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Jia-Shuang-Wei Yuan
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - An-Kang Tao
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Liang Gong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Jun Zhang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Xiao-Yin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
16
|
Garufi A, Pettinari R, Marchetti F, Cirone M, D’Orazi G. NRF2 and Bip Interconnection Mediates Resistance to the Organometallic Ruthenium-Cymene Bisdemethoxycurcumin Complex Cytotoxicity in Colon Cancer Cells. Biomedicines 2023; 11:biomedicines11020593. [PMID: 36831129 PMCID: PMC9953010 DOI: 10.3390/biomedicines11020593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Organometallic ruthenium (Ru)(II)-cymene complexes display promising pharmacological properties and might represent alternative therapeutic agents in medical applications. Polyphenols, such as curcumin and curcuminoids, display beneficial properties in medicine, including chemoprevention. Here we analyzed the anticancer effect of a cationic Ruthenium (Ru)(II)-cymene Bisdemethoxycurcumin (Ru-bdcurc) complex. The experimental data show that Ru-bdcurc induced cell death of colon cancer cells in vitro. In response to treatment, cancer cells activated the endoplasmic reticulum (ER)-resident chaperone GRP78/BiP and NRF2, the master regulators of the unfolded protein response (UPR) and the antioxidant response, respectively. Pharmacologic targeting of either NRF2 or BiP potentiated the cytotoxic effect of Ru-bdcurc. We also found that NRF2 and UPR pathways were interconnected as the inhibition of NRF2 reduced BiP protein levels. Mechanistically, the increased Ru-bdcurc-induced cell death, following NRF2 or BiP inhibition, correlated with the upregulation of the UPR apoptotic marker CHOP and with increased H2AX phosphorylation, a marker of DNA damage. The findings reveal that BiP and NRF2 interconnection was a key regulator of colon cancer cells resistance to Ru-bdcurc cytotoxic effect. Targeting that interconnection overcame the protective mechanism and enhanced the antitumor effect of the Ru-bdcurc compound.
Collapse
Affiliation(s)
- Alessia Garufi
- Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Riccardo Pettinari
- Chemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Fabio Marchetti
- Chemistry Interdisciplinary Project (CHIP), School of Science and Technology, University of Camerino, 62032 Camerino, Italy
| | - Mara Cirone
- Laboratory Affiliated to Pasteur Institute Italy Foundation Cenci Bolognetti, Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Gabriella D’Orazi
- Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. D’Annunzio”, 66013 Chieti, Italy
- School of Medicine, UniCamillus International University of Health Sciences, 00100 Rome, Italy
- Correspondence:
| |
Collapse
|
17
|
Shou Y, Teo XY, Li X, Zhicheng L, Liu L, Sun X, Jonhson W, Ding J, Lim CT, Tay A. Dynamic Magneto-Softening of 3D Hydrogel Reverses Malignant Transformation of Cancer Cells and Enhances Drug Efficacy. ACS NANO 2023; 17:2851-2867. [PMID: 36633150 DOI: 10.1021/acsnano.2c11278] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
High extracellular matrix stiffness is a prominent feature of malignant tumors associated with poor clinical prognosis. To elucidate mechanistic connections between increased matrix stiffness and tumor progression, a variety of hydrogel scaffolds with dynamic changes in stiffness have been developed. These approaches, however, are not biocompatible at high temperature, strong irradiation, and acidic/basic pH, often lack reversibility (can only stiffen and not soften), and do not allow study on the same cell population longitudinally. In this work, we develop a dynamic 3D magnetic hydrogel whose matrix stiffness can be wirelessly and reversibly stiffened and softened multiple times with different rates of change using an external magnet. With this platform, we found that matrix stiffness increased tumor malignancy including denser cell organization, epithelial-to-mesenchymal transition and hypoxia. More interestingly, these malignant transformations could be halted or reversed with matrix softening (i.e., mechanical rescue), to potentiate drug efficacy attributing to reduced solid stress from matrix and downregulation of cell mechano-transductors including YAP1. We propose that our platform can be used to deepen understanding of the impact of matrix softening on cancer biology, an important but rarely studied phenomenon.
Collapse
Affiliation(s)
- Yufeng Shou
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, 117599, Singapore
| | - Xin Yong Teo
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
| | - Xianlei Li
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, 117599, Singapore
| | - Le Zhicheng
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, 117599, Singapore
| | - Ling Liu
- Institute for Health Innovation & Technology, National University of Singapore, 117599, Singapore
- NUS Tissue Engineering Program, National University of Singapore, 117510, Singapore
| | - Xinhong Sun
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
| | - Win Jonhson
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| | - Jun Ding
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, 117599, Singapore
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Andy Tay
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, 117599, Singapore
- NUS Tissue Engineering Program, National University of Singapore, 117510, Singapore
| |
Collapse
|
18
|
Malakoutikhah Z, Mohajeri Z, Dana N, Haghjooy Javanmard S. The dual role of Nrf2 in melanoma: a systematic review. BMC Mol Cell Biol 2023; 24:5. [PMID: 36747120 PMCID: PMC9900951 DOI: 10.1186/s12860-023-00466-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Melanoma is the most lethal type of skin cancer that originates from the malignant transformation of melanocytes. Although novel treatments have improved patient survival in melanoma, the overall prognosis remains poor. To improve current therapies and patients outcome, it is necessary to identify the influential elements in the development and progression of melanoma.Due to UV exposure and melanin synthesis, the melanocytic lineage seems to have a higher rate of ROS (reactive oxygen species) formation. Melanoma has been linked to an increased oxidative state, and all facets of melanoma pathophysiology rely on redox biology. Several redox-modulating pathways have arisen to resist oxidative stress. One of which, the Nrf2 (nuclear factor erythroid 2-related factor 2), has been recognized as a master regulator of cellular response to oxidative or electrophilic challenges. The activation of Nrf2 signaling causes a wide range of antioxidant and detoxification enzyme genes to be expressed. As a result, this transcription factor has lately received a lot of interest as a possible cancer treatment target.On the other hand, Nrf2 has been found to have a variety of activities in addition to its antioxidant abilities, constant Nrf2 activation in malignant cells may accelerate metastasis and chemoresistance. Hence, based on the cell type and context, Nrf2 has different roles in either preventing or promoting cancer. In this study, we aimed to systematically review all the studies discussing the function of Nrf2 in melanoma and the factors determining its alteration.
Collapse
Affiliation(s)
- Zahra Malakoutikhah
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Zahra Mohajeri
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
19
|
Wang C, Cheng T, Lu Q, Li W, Liu B, Yue L, Du M, Sheng W, Lu Z, Yang J, Geng F, Gao X, Lü J, Pan X. Oxygen therapy accelerates apoptosis induced by selenium compounds via regulating Nrf2/MAPK signaling pathway in hepatocellular carcinoma. Pharmacol Res 2023; 187:106624. [PMID: 36563868 DOI: 10.1016/j.phrs.2022.106624] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 12/25/2022]
Abstract
Selenium has good antitumor effects in vitro, but the hypoxic microenvironment in solid tumors makes its clinical efficacy unsatisfactory. We hypothesized that the combination with oxygen therapy might improve the treatment efficacy of selenium in hypoxic tumors through the changes of redox environment. In this work, two selenium compounds, Na2SeO3 and CysSeSeCys, were selected to interrogate their therapeutic effects on hepatocellular carcinoma (HCC) under different oxygen levels. In tumor-bearing mice, both selenium compounds significantly inhibited the tumor growth, and combined with oxygen therapy further reduced the tumor volume about 50 %. In vitro HepG2 cell experiments, selenium induced autophagy and delayed apoptosis under hypoxia (1 % O2), while inhibited autophagy and accelerated apoptosis under hyperoxia (60 % O2). We found that, in contrast to hypoxia, the hyperoxic environment facilitated the H2Se, produced by the selenium metabolism in cells, to be rapidly oxidized to generate H2O2, leading to inhibit the expression level of Nrf2 and to increase that of phosphorylation of p38 and MKK4, resulting in inhibiting autophagy and accelerating apoptosis. Once the Nrf2 gene was knocked down, selenium compounds combined with hyperoxia treatment would further activate the MAPK signaling pathway and further increase apoptosis. These findings highlight oxygen can significantly enhance the anti-HCC effect of selenium compounds through regulating the Nrf2 and MAPK signaling pathways, thus providing novel therapeutic strategy for the hypoxic tumors and pave the way for the application of selenium in clinical treatment.
Collapse
Affiliation(s)
- Cheng Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | | | - Qianqian Lu
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264003, China
| | - Wenzhen Li
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Ben Liu
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264003, China
| | - Lijun Yue
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Maoru Du
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Wenxue Sheng
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Zhaochen Lu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jingnan Yang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Feng Geng
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xue Gao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Junhong Lü
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250000, China.; Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Xiaohong Pan
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
20
|
Cheraghi O, Dabirmanesh B, Ghazi F, Amanlou M, Atabakhshi-kashi M, Fathollahi Y, Khajeh K. The effect of Nrf2 deletion on the proteomic signature in a human colorectal cancer cell line. BMC Cancer 2022; 22:979. [PMID: 36100939 PMCID: PMC9472369 DOI: 10.1186/s12885-022-10055-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/05/2022] [Indexed: 12/03/2022] Open
Abstract
Background Colorectal cancer is one of the most common cancer and the third leading cause of death worldwide. Increased generation of reactive oxygen species (ROS) is observed in many types of cancer cells. Several studies have reported that an increase in ROS production could affect the expression of proteins involved in ROS-scavenging, detoxification and drug resistance. Nuclear factor erythroid 2 related factor 2 (Nrf2) is a known transcription factor for cellular response to oxidative stress. Several researches exhibited that Nrf2 could exert multiple functions and expected to be a promising therapeutic target in many cancers. Here, Nrf2 was knocked down in colorectal cancer cell line HT29 and changes that occurred in signaling pathways and survival mechanisms were evaluated. Methods The influence of chemotherapy drugs (doxorubicin and cisplatin), metastasis and cell viability were investigated. To explore the association between specific pathways and viability in HT29-Nrf2−, proteomic analysis, realtime PCR and western blotting were performed. Results In the absence of Nrf2 (Nrf2−), ROS scavenging and detoxification potential were dramatically faded and the HT29-Nrf2− cells became more susceptible to drugs. However, a severe decrease in viability was not observed. Bioinformatic analysis of proteomic data revealed that in Nrf2− cells, proteins involved in detoxification processes, respiratory electron transport chain and mitochondrial-related compartment were down regulated. Furthermore, proteins related to MAPKs, JNK and FOXO pathways were up regulated that possibly helped to overcome the detrimental effect of excessive ROS production. Conclusions Our results revealed MAPKs, JNK and FOXO pathways connections in reducing the deleterious effect of Nrf2 deficiency, which can be considered in cancer therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10055-y.
Collapse
|
21
|
Ghosh S, Singh R, Vanwinkle ZM, Guo H, Vemula PK, Goel A, Haribabu B, Jala VR. Microbial metabolite restricts 5-fluorouracil-resistant colonic tumor progression by sensitizing drug transporters via regulation of FOXO3-FOXM1 axis. Theranostics 2022; 12:5574-5595. [PMID: 35910798 PMCID: PMC9330515 DOI: 10.7150/thno.70754] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022] Open
Abstract
The survival rate of colorectal cancer patients is adversely affected by the selection of tumors resistant to conventional anti-cancer drugs such as 5-fluorouracil (5FU). Although there is mounting evidence that commensal gut microbiota is essential for effective colon cancer treatment, the detailed molecular mechanisms and the role of gut microbial metabolites remain elusive. The goal of this study is to decipher the impact and mechanisms of gut microbial metabolite, urolithin A (UroA) and its structural analogue, UAS03 on reversal of 5FU-resistant (5FUR) colon cancers. Methods: We have utilized the SW480 and HCT-116 parental (5FU-sensitive) and 5FUR colon cancer cells to examine the chemosensitization effects of UroA or UAS03 by using both in vitro and in vivo models. The effects of mono (UroA/UAS03/5FU) and combinatorial therapy (UroA/UAS03 + 5FU) on cell proliferation, apoptosis, cell migration and invasion, regulation of epithelial mesenchymal transition (EMT) mediators, expression and activities of drug transporters, and their regulatory transcription factors were examined using molecular, cellular, immunological and flowcytometric methods. Further, the anti-tumor effects of mono/combination therapy (UroA or UAS03 or 5FU or UroA/UAS03 + 5FU) were examined using pre-clinical models of 5FUR-tumor xenografts in NRGS mice and azoxymethane (AOM)-dextran sodium sulfate (DSS)-induced colon tumors. Results: Our data showed that UroA or UAS03 in combination with 5FU significantly inhibited cell viability, proliferation, invasiveness as well as induced apoptosis of the 5FUR colon cancer cells compared to mono treatments. Mechanistically, UroA or UAS03 chemosensitized the 5FUR cancer cells by downregulating the expression and activities of drug transporters (MDR1, BCRP, MRP2 and MRP7) leading to a decrease in the efflux of 5FU. Further, our data suggested the UroA or UAS03 chemosensitized 5FUR cancer cells to 5FU treatment through regulating FOXO3-FOXM1 axis. Oral treatment with UroA or UAS03 in combination with low dose i.p. 5FU significantly reduced the growth of 5FUR-tumor xenografts in NRGS mice. Further, combination therapy significantly abrogated colonic tumors in AOM-DSS-induced colon tumors in mice. Conclusions: In summary, gut microbial metabolite UroA and its structural analogue UAS03 chemosensitized the 5FUR colon cancers for effective 5FU chemotherapy. This study provided the novel characteristics of gut microbial metabolites to have significant translational implications in drug-resistant cancer therapeutics.
Collapse
Affiliation(s)
- Sweta Ghosh
- Department of Microbiology and Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, USA
| | - Rajbir Singh
- Department of Microbiology and Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, USA
| | - Zachary Matthew Vanwinkle
- Department of Microbiology and Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, USA
| | - Haixun Guo
- Department of Radiology, Center for Predictive Medicine, University of Louisville, Louisville, KY, USA
| | - Praveen Kumar Vemula
- Institute for Stem Cell Biology and Regenerative Medicine (inStem), GKVK campus, Bangalore, Karnataka 560065, India
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Bodduluri Haribabu
- Department of Microbiology and Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, USA
| | - Venkatakrishna Rao Jala
- Department of Microbiology and Immunology, Brown Cancer Center, Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, USA
| |
Collapse
|
22
|
Pouremamali F, Pouremamali A, Dadashpour M, Soozangar N, Jeddi F. An update of Nrf2 activators and inhibitors in cancer prevention/promotion. Cell Commun Signal 2022; 20:100. [PMID: 35773670 PMCID: PMC9245222 DOI: 10.1186/s12964-022-00906-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/09/2022] [Indexed: 01/01/2023] Open
Abstract
NF-E2-related factor 2 (Nrf2) protein is a basic-region leucine zipper transcription factor that defends against endogenous or exogenous stressors. By inducing several cytoprotective and detoxifying gene expressions, Nrf2 can increase the sensitivity of the cells to oxidants and electrophiles. Transient Nrf2 activation, by its specific activators, has protective roles against carcinogenesis and cancer development. However, permanent activation of Nrf2 promotes various cancer properties, comprising malignant progression, chemo/radio resistance, and poor patient prognosis. Taken together, these findings suggest that reaching an optimal balance between paradoxical functions of Nrf2 in malignancy may render a selective improvement to identify therapeutic strategies in cancer treatment. In this review, we describe lately discovered Nrf2 inducers and inhibitors, and their chemopreventive and/or anticancer activities. The Nrf2 pathway signifies one of the most significant cell defense procedures against exogenous or endogenous stressors. Certainly, by increasing the expression of several cytoprotective genes, the transcription factor Nrf2 can shelter cells and tissues from multiple sources of damage including electrophilic, xenobiotic, metabolic, and oxidative stress. Notably, the aberrant activation or accumulation of Nrf2, a common event in many tumors, confers a selective advantage to cancer cells and is connected to malignant progression, therapy resistance, and poor prognosis. Therefore, lately, Nrf2 has arisen as a hopeful target in treatment of cancer, and many struggles have been made to detect therapeutic strategies intended at disrupting its pro-oncogenic role. By summarizing the outcomes from past and recent studies, this review provided an overview concerning the Nrf2 pathway and the molecular mechanisms causing Nrf2 hyperactivation in cancer cells. Finally, this paper also described some of the most promising therapeutic approaches that have been successfully employed to counteract Nrf2 activity in tumors, with a particular emphasis on the development of natural compounds and the adoption of drug repurposing strategies. Video abstract
Collapse
Affiliation(s)
- Farhad Pouremamali
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Pouremamali
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.,Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Narges Soozangar
- Digestive Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran. .,Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Farhad Jeddi
- Department of Genetics and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
23
|
DNA Methylation Biomarkers for Prediction of Response to Platinum-Based Chemotherapy: Where Do We Stand? Cancers (Basel) 2022; 14:cancers14122918. [PMID: 35740584 PMCID: PMC9221086 DOI: 10.3390/cancers14122918] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Platinum-based agents are one of the most widely used chemotherapy drugs for various types of cancer. However, one of the main challenges in the application of platinum drugs is resistance, which is currently being widely investigated. Epigenetic DNA methylation-based biomarkers are promising to aid in the selection of patients, helping to foresee their platinum therapy response in advance. These biomarkers enable minimally invasive patient sample collection, short analysis, and good sensitivity. Hence, improved methodologies for the detection and quantification of DNA methylation biomarkers will facilitate their use in the choice of an optimal treatment strategy. Abstract Platinum-based chemotherapy is routinely used for the treatment of several cancers. Despite all the advances made in cancer research regarding this therapy and its mechanisms of action, tumor resistance remains a major concern, limiting its effectiveness. DNA methylation-based biomarkers may assist in the selection of patients that may benefit (or not) from this type of treatment and provide new targets to circumvent platinum chemoresistance, namely, through demethylating agents. We performed a systematic search of studies on biomarkers that might be predictive of platinum-based chemotherapy resistance, including in vitro and in vivo pre-clinical models and clinical studies using patient samples. DNA methylation biomarkers predictive of response to platinum remain mostly unexplored but seem promising in assisting clinicians in the generation of more personalized follow-up and treatment strategies. Improved methodologies for their detection and quantification, including non-invasively in liquid biopsies, are additional attractive features that can bring these biomarkers into clinical practice, fostering precision medicine.
Collapse
|
24
|
Garufi A, Pistritto G, D’Orazi V, Cirone M, D’Orazi G. The Impact of NRF2 Inhibition on Drug-Induced Colon Cancer Cell Death and p53 Activity: A Pilot Study. Biomolecules 2022; 12:461. [PMID: 35327653 PMCID: PMC8946796 DOI: 10.3390/biom12030461] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/07/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
Nuclear factor erythroid 2 (NF-E2) p45-related factor 2 (NRF2) protein is the master regulator of oxidative stress, which is at the basis of various chronic diseases including cancer. Hyperactivation of NRF2 in already established cancers can promote cell proliferation and resistance to therapies, such as in colorectal cancer (CRC), one of the most lethal and prevalent malignancies in industrialized countries with limited patient overall survival due to its escape mechanisms in both chemo- and targeted therapies. In this study, we generated stable NRF2 knockout colon cancer cells (NRF2-Cas9) to investigate the cell response to chemotherapeutic drugs with regard to p53 oncosuppressor, whose inhibition we previously showed to correlate with NRF2 pathway activation. Here, we found that NRF2 activation by sulforaphane (SFN) reduced cisplatin (CDDP)-induced cell death only in NRF2-proficient cells (NRF2-ctr) compared to NRF2-Cas9 cells. Mechanistically, we found that NRF2 activation protected NRF2-ctr cells from the drug-induced DNA damage and the apoptotic function of the unfolded protein response (UPR), in correlation with reduction of p53 activity, effects that were not observed in NRF2-Cas9 cells. Finally, we found that ZnCl2 supplementation rescued the cisplatin cytotoxic effects, as it impaired NRF2 activation, restoring p53 activity. These findings highlight NRF2's key role in neutralizing the cytotoxic effects of chemotherapeutic drugs in correlation with reduced DNA damage and p53 activity. They also suggest that NRF2 inhibition could be a useful strategy for efficient anticancer chemotherapy and support the use of ZnCl2 to inhibit NRF2 pathway in combination therapies.
Collapse
Affiliation(s)
- Alessia Garufi
- Unit of Cellular Networks, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Giuseppa Pistritto
- Centralized Procedures Office, Italian Medicines Agency (AIFA), 00187 Rome, Italy;
| | - Valerio D’Orazi
- Department of Surgical Sciences, Sapienza University, 00185 Rome, Italy;
| | - Mara Cirone
- Laboratory Affiliated to Pasteur Institute Italy Foundation Cenci Bolognetti, Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy;
| | - Gabriella D’Orazi
- Unit of Cellular Networks, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. D’Annunzio”, 66013 Chieti, Italy
- UniCamillus International Medical University in Rome, 00131 Rome, Italy
| |
Collapse
|
25
|
Pouremamali F, Jeddi F, Samadi N. Nrf2-ME-1 axis is associated with 5-FU resistance in gastric cancer cell line. Process Biochem 2022. [DOI: 10.1016/j.procbio.2020.01.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Ricciuti B, Arbour KC, Lin JJ, Vajdi A, Vokes N, Hong L, Zhang J, Tolstorukov MY, Li YY, Spurr LF, Cherniack AD, Recondo G, Lamberti G, Wang X, Venkatraman D, Alessi JV, Vaz VR, Rizvi H, Egger J, Plodkowski AJ, Khosrowjerdi S, Digumarthy S, Park H, Vaz N, Nishino M, Sholl LM, Barbie D, Altan M, Heymach JV, Skoulidis F, Gainor JF, Hellmann MD, Awad MM. Diminished Efficacy of Programmed Death-(Ligand)1 Inhibition in STK11- and KEAP1-Mutant Lung Adenocarcinoma Is Affected by KRAS Mutation Status. J Thorac Oncol 2022; 17:399-410. [PMID: 34740862 PMCID: PMC10980559 DOI: 10.1016/j.jtho.2021.10.013] [Citation(s) in RCA: 214] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION STK11 and KEAP1 mutations (STK11 mutant [STK11MUT] and KEAP1MUT) are among the most often mutated genes in lung adenocarcinoma (LUAD). Although STK11MUT has been associated with resistance to programmed death-(ligand)1 (PD-[L]1) inhibition in KRASMUT LUAD, its impact on immunotherapy efficacy in KRAS wild-type (KRASWT) LUAD is currently unknown. Whether KEAP1MUT differentially affects outcomes to PD-(L)1 inhibition in KRASMUT and KRASWT LUAD is also unknown. METHODS Clinicopathologic and genomic data were collected from September 2013 to September 2020 from patients with advanced LUAD at the Dana-Farber Cancer Institute/Massachusetts General Hospital cohort and the Memorial Sloan Kettering Cancer Center/MD Anderson Cancer Center cohort. Clinical outcomes to PD-(L)1 inhibition were analyzed according to KRAS, STK11, and KEAP1 mutation status in two independent cohorts. The Cancer Genome Atlas transcriptomic data were interrogated to identify differences in tumor gene expression and tumor immune cell subsets, respectively, according to KRAS/STK11 and KRAS/KEAP1 comutation status. RESULTS In the combined cohort (Dana-Farber Cancer Institute/Massachusetts General Hospital + Memorial Sloan Kettering Cancer Center/MD Anderson Cancer Center) of 1261 patients (median age = 61 y [range: 22-92], 708 women [56.1%], 1065 smokers [84.4%]), KRAS mutations were detected in 536 cases (42.5%), and deleterious STK11 and KEAP1 mutations were found in 20.6% (260 of 1261) and 19.2% (231 of 1202) of assessable cases, respectively. In each independent cohort and in the combined cohort, STK11 and KEAP1 mutations were associated with significantly worse progression-free (STK11 hazard ratio [HR] = 2.04, p < 0.0001; KEAP1 HR = 2.05, p < 0.0001) and overall (STK11 HR = 2.09, p < 0.0001; KEAP1 HR = 2.24, p < 0.0001) survival to immunotherapy uniquely among KRASMUT but not KRASWT LUADs. Gene expression ontology and immune cell enrichment analyses revealed that the presence of STK11 or KEAP1 mutations results in distinct immunophenotypes in KRASMUT, but not in KRASWT, lung cancers. CONCLUSIONS STK11 and KEAP1 mutations confer worse outcomes to immunotherapy among patients with KRASMUT but not among KRASWT LUAD. Tumors harboring concurrent KRAS/STK11 and KRAS/KEAP1 mutations display distinct immune profiles in terms of gene expression and immune cell infiltration.
Collapse
Affiliation(s)
- Biagio Ricciuti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kathryn C Arbour
- Department of Medicine, Weill Cornell Medical College, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jessica J Lin
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Amir Vajdi
- Department of Analytics and Informatics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Natalie Vokes
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Lingzhi Hong
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael Y Tolstorukov
- Department of Analytics and Informatics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Yvonne Y Li
- Department of Analytics and Informatics, Dana-Farber Cancer Institute, Boston, Massachusetts; Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts
| | - Liam F Spurr
- Department of Analytics and Informatics, Dana-Farber Cancer Institute, Boston, Massachusetts; Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts
| | - Andrew D Cherniack
- Department of Analytics and Informatics, Dana-Farber Cancer Institute, Boston, Massachusetts; Cancer Program, Broad Institute of Harvard and Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts
| | - Gonzalo Recondo
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Giuseppe Lamberti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Xinan Wang
- Harvard Graduate School of Arts and Sciences, Harvard University, Cambridge, Massachusetts; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Deepti Venkatraman
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Joao V Alessi
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Victor R Vaz
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Hira Rizvi
- Department of Medicine, Weill Cornell Medical College, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jacklynn Egger
- Department of Medicine, Weill Cornell Medical College, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew J Plodkowski
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sara Khosrowjerdi
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Subba Digumarthy
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Hyesun Park
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Nuno Vaz
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Mizuki Nishino
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - David Barbie
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mehmet Altan
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ferdinandos Skoulidis
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Justin F Gainor
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Matthew D Hellmann
- Department of Medicine, Weill Cornell Medical College, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mark M Awad
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| |
Collapse
|
27
|
Allegra A, Petrarca C, Di Gioacchino M, Casciaro M, Musolino C, Gangemi S. Modulation of Cellular Redox Parameters for Improving Therapeutic Responses in Multiple Myeloma. Antioxidants (Basel) 2022; 11:antiox11030455. [PMID: 35326105 PMCID: PMC8944660 DOI: 10.3390/antiox11030455] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/25/2023] Open
Abstract
Raised oxidative stress and abnormal redox status are typical features of multiple myeloma cells, and the identification of the intimate mechanisms that regulate the relationships between neoplastic cells and redox homeostasis may reveal possible new anti-myeloma therapeutic targets to increase the effectiveness of anti-myeloma drugs synergistically or to eradicate drug-resistant clones while reducing toxicity toward normal cells. An alteration of the oxidative state is not only responsible for the onset of multiple myeloma and its progression, but it also appears essential for the therapeutic response and for developing any chemoresistance. Our review aimed to evaluate the literature’s current data on the effects of oxidative stress on the response to drugs generally employed in the therapy of multiple myeloma, such as proteasome inhibitors, immunomodulators, and autologous transplantation. In the second part of the review, we analyzed the possibility of using other substances, often of natural origin, to modulate the oxidative stress to interfere with the progression of myelomatous disease.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
- Correspondence: (A.A.); (M.D.G.)
| | - Claudia Petrarca
- Center for Advanced Studies and Technology, G. D’Annunzio University, 66100 Chieti, Italy;
- Institute for Clinical Immunotherapy and Advanced Biological Treatments, 65100 Pescara, Italy
| | - Mario Di Gioacchino
- Center for Advanced Studies and Technology, G. D’Annunzio University, 66100 Chieti, Italy;
- Institute for Clinical Immunotherapy and Advanced Biological Treatments, 65100 Pescara, Italy
- Correspondence: (A.A.); (M.D.G.)
| | - Marco Casciaro
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.C.); (S.G.)
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.C.); (S.G.)
| |
Collapse
|
28
|
Ma L, Ma Y, Ma BX, Ma M. Rosiglitazone ameliorates acute hepatic injury via activating the Nrf2 signaling pathway and inhibiting activation of the NLRP3 inflammasome. Exp Ther Med 2022; 23:300. [PMID: 35340872 PMCID: PMC8931635 DOI: 10.3892/etm.2022.11229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/11/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Ling Ma
- Department of Pharmacy, The Eighth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830049, P.R. China
| | - Ying Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Bin-Xi Ma
- Department of Pharmacy, The Eighth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830049, P.R. China
| | - Ming Ma
- Department of Hepatobiliary Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830000, P.R. China
| |
Collapse
|
29
|
Scarborough JA, Scott JG. Translation of Precision Medicine Research Into Biomarker-Informed Care in Radiation Oncology. Semin Radiat Oncol 2022; 32:42-53. [PMID: 34861995 PMCID: PMC8667861 DOI: 10.1016/j.semradonc.2021.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The reach of personalized medicine in radiation oncology has expanded greatly over the past few decades as technical precision has improved the delivery of radiation to each patient's unique anatomy. Yet, the consideration of biological heterogeneity between patients has largely not been translated to clinical care. There are innumerable promising advancements in the discovery and validation of biomarkers, which could be used to alter radiation therapy directly or indirectly. Directly, biomarker-informed care may alter treatment dose or identify patients who would benefit most from radiation therapy and who could safely avoid more aggressive care. Indirectly, a variety of biomarkers could assist with choosing the best radiosensitizing chemotherapies. The translation of these advancements into clinical practice will bring radiation oncology even further into the era of precision medicine, treating patients according to their unique anatomical and biological differences.
Collapse
Affiliation(s)
- Jessica A Scarborough
- Translational Hematology and Oncology Research Department, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland,OH; Systems Biology and Bioinformatics Program, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Jacob G Scott
- Translational Hematology and Oncology Research Department, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland,OH; Radiation Oncology Department, Taussig Cancer Institute, Cleveland Clinic Foundation, 10201 Carnegie Ave, Cleveland, OH.
| |
Collapse
|
30
|
Li Y, Zeng J, Tian YH, Hou Y, Da H, Fang J, Gao K. Isolation, identification, and activity evaluation of diterpenoid alkaloids from Aconitum sinomontanum. PHYTOCHEMISTRY 2021; 190:112880. [PMID: 34311277 DOI: 10.1016/j.phytochem.2021.112880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
A phytochemical study led to the isolation of 25 diterpenoid alkaloids from Aconitum sinomontanum, of which six were described for the first time. Among them compounds 1-3 are anhydrolycoctonine derivatives, rare rearranged aconitine-type C19-diterpenoid alkaloids. To our best knowledge, less than ten of this type of alkaloids were isolated just from the genus Aconitum. The structures of these unreported compounds were elucidated by extensive analysis of NMR spectroscopic data and X-ray diffraction. The biological activities of compounds 1-3, 5-9, and 12-25 were evaluated. Among the tested compounds, compounds 2 and 17 showed potent inhibitory effect on the capsaicin (selective TRPV1 agonist) mediated activation of transient receptor potential vanilloid 1 (TRPV1) channels expressed in HEK-293 cells with inhibition rate of 31.78% and 30.94% at the concentration of 10 μM. Compounds 1-3, 5-9, 13, and 18-25 exhibited weak cytotoxic activity against human tumor cell lines NCI-H226 and MDA-MB-231 with inhibition rate over 10% at the concentration of 10 μM. Compound 16 showed most inhibitory effect on the expression of Nrf2 (NF-E2-related factor-2)-regulated gene with inhibition rate of 25% at the concentration of 20 μM.
Collapse
Affiliation(s)
- Ya Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Jun Zeng
- Chongqing Institute for Food and Drug Control, Chongqing, 401121, China
| | - Yu-Hua Tian
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical Collage, #1 Ningde Road, Qingdao, 266073, China
| | - Yanan Hou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Honghong Da
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
31
|
Grattarola M, Cucci MA, Roetto A, Dianzani C, Barrera G, Pizzimenti S. Post-translational down-regulation of Nrf2 and YAP proteins, by targeting deubiquitinases, reduces growth and chemoresistance in pancreatic cancer cells. Free Radic Biol Med 2021; 174:202-210. [PMID: 34364982 DOI: 10.1016/j.freeradbiomed.2021.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 12/15/2022]
Abstract
The intrinsic chemoresistance of pancreatic ductal adenocarcinoma (PDAC) represents the main obstacle in treating this aggressive malignancy. It has been observed that high antioxidant levels and upregulated Nrf2 and the YAP protein expression can be involved in PDAC chemoresistance. The mechanisms of Nrf2 and YAP increase need to be clarified. We chose a panel of PDAC cell lines with diverse sensitivity to cisplatin and gemcitabine. In PANC-1 chemoresistant cells, we found a low level of oxidative stress and high levels of Nrf2 and YAP protein expressions and their respective targets. On the contrary, in CFPAC-1 chemosensitive cells, we found high levels of oxidative stress and low level of these two proteins, as well as their respective targets. In MiaPaCa-2 cells with a middle chemoresistance, we observed intermediate features. When Nrf2 and YAP were inhibited in PANC-1 cells by Ailanthone, a plant extract, we observed a reduction of viability, thus sustaining the role of these two proteins in maintaining the PDAC chemoresistance. We then delved into the mechanisms of the Nrf2 and YAP protein upregulation in chemoresistance, discovering that it was at a post-translational level since the mRNA expressions did not match the protein levels. Treatments of PANC-1 cells with the proteasome inhibitor MG-132 and the protein synthesis inhibitor cycloheximide further confirmed this observation. The expression of DUB3 and OTUD1 deubiquitinases, involved in the control of Nrf2 and YAP protein level, respectively, was also investigated. Both protein expressions were higher in PANC-1 cells, intermediate in MiaPaCa-2 cells, and lower in CFPAC-1 cells. When DUB3 or OTUD1 were silenced, both Nrf2 and YAP expressions were downregulated. Importantly, in deubiquitinase-silenced cells, we observed a great reduction of proliferation and a higher sensitivity to gemcitabine treatment, suggesting that DUB3 and OTUD1 can represent a suitable target to overcome chemoresistance in PDAC cells.
Collapse
Affiliation(s)
- Margherita Grattarola
- Department of Clinical and Biological Science, University of Turin, Corso Raffaello 30, 10125, Torino, Italy
| | - Marie Angèle Cucci
- Department of Clinical and Biological Science, University of Turin, Corso Raffaello 30, 10125, Torino, Italy
| | - Antonella Roetto
- Department of Clinical and Biological Science, University of Turin, Corso Raffaello 30, 10125, Torino, Italy
| | - Chiara Dianzani
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125, Turin, Italy
| | - Giuseppina Barrera
- Department of Clinical and Biological Science, University of Turin, Corso Raffaello 30, 10125, Torino, Italy
| | - Stefania Pizzimenti
- Department of Clinical and Biological Science, University of Turin, Corso Raffaello 30, 10125, Torino, Italy.
| |
Collapse
|
32
|
Hosseini A, Hamblin MR, Mirzaei H, Mirzaei HR. Role of the bone marrow microenvironment in drug resistance of hematological malignances. Curr Med Chem 2021; 29:2290-2305. [PMID: 34514979 DOI: 10.2174/0929867328666210910124319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/07/2021] [Accepted: 07/20/2021] [Indexed: 11/22/2022]
Abstract
The unique features of the tumor microenvironment (TME) govern the biological properties of many cancers, including hematological malignancies. TME factors can trigger invasion, and protect against drug cytotoxicity by inhibiting apoptosis and activating specific signaling pathways (e.g. NF-ΚB). TME remodeling is facilitated due to the high self-renewal ability of the bone marrow. Progressing tumor cells can alter some extracellular matrix (ECM) components which act as a barrier to drug penetration in the TME. The initial progression of the cell cycle is controlled by the MAPK pathway (Raf/MEK/ERK) and Hippo pathway, while the final phase is regulated by the PI3K/Akt /mTOR and WNT pathways. In this review we summarize the main signaling pathways involved in drug resistance (DR) and some mechanisms by which DR can occur in the bone marrow. The relationship between autophagy, endoplasmic reticulum stress, and cellular signaling pathways in DR and apoptosis are covered in relation to the TME.
Collapse
Affiliation(s)
- Alireza Hosseini
- Laboratory Hematology and Blood Banking, Tehran University of Medical Sciences, Tehran. Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028. South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan. Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran. Iran
| |
Collapse
|
33
|
Current Perspective on the Natural Compounds and Drug Delivery Techniques in Glioblastoma Multiforme. Cancers (Basel) 2021; 13:cancers13112765. [PMID: 34199460 PMCID: PMC8199612 DOI: 10.3390/cancers13112765] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Glioblastoma multiforme (GBM) is one of the belligerent neoplasia that metastasize to other brain regions and invade nearby healthy tissues. However, the treatments available are associated with some limitations, such as high variations in solid tumors and deregulation of multiple cellular pathways. The heterogeneity of the GBM tumor and its aggressive infiltration into the nearby tissues makes it difficult to treat. Hence, the development of multimodality therapy that can be more effective, novel, with fewer side effects, improving the prognosis for GBM is highly desired. This review evaluated the use of natural phytoconstituents as an alternative for the development of a new therapeutic strategy. The key aspects of GBM and the potential of drug delivery techniques were also assessed, for tumor site delivery with limited side-effects. These efforts will help to provide better therapeutic options to combat GBM in future. Abstract Glioblastoma multiforme (GBM) is one of the debilitating brain tumors, being associated with extremely poor prognosis and short median patient survival. GBM is associated with complex pathogenesis with alterations in various cellular signaling events, that participate in cell proliferation and survival. The impairment in cellular redox pathways leads to tumorigenesis. The current standard pharmacological regimen available for glioblastomas, such as radiotherapy and surgical resection following treatment with chemotherapeutic drug temozolomide, remains fatal, due to drug resistance, metastasis and tumor recurrence. Thus, the demand for an effective therapeutic strategy for GBM remains elusive. Hopefully, novel products from natural compounds are suggested as possible solutions. They protect glial cells by reducing oxidative stress and neuroinflammation, inhibiting proliferation, inducing apoptosis, inhibiting pro-oncogene events and intensifying the potent anti-tumor therapies. Targeting aberrant cellular pathways in the amelioration of GBM could promote the development of new therapeutic options that improve patient quality of life and extend survival. Consequently, our review emphasizes several natural compounds in GBM treatment. We also assessed the potential of drug delivery techniques such as nanoparticles, Gliadel wafers and drug delivery using cellular carriers which could lead to a novel path for the obliteration of GBM.
Collapse
|
34
|
Oxidative Stress in Cancer Cell Metabolism. Antioxidants (Basel) 2021; 10:antiox10050642. [PMID: 33922139 PMCID: PMC8143540 DOI: 10.3390/antiox10050642] [Citation(s) in RCA: 319] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/10/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species (ROS) are important in regulating normal cellular processes whereas deregulated ROS leads to the development of a diseased state in humans including cancers. Several studies have been found to be marked with increased ROS production which activates pro-tumorigenic signaling, enhances cell survival and proliferation and drives DNA damage and genetic instability. However, higher ROS levels have been found to promote anti-tumorigenic signaling by initiating oxidative stress-induced tumor cell death. Tumor cells develop a mechanism where they adjust to the high ROS by expressing elevated levels of antioxidant proteins to detoxify them while maintaining pro-tumorigenic signaling and resistance to apoptosis. Therefore, ROS manipulation can be a potential target for cancer therapies as cancer cells present an altered redox balance in comparison to their normal counterparts. In this review, we aim to provide an overview of the generation and sources of ROS within tumor cells, ROS-associated signaling pathways, their regulation by antioxidant defense systems, as well as the effect of elevated ROS production in tumor progression. It will provide an insight into how pro- and anti-tumorigenic ROS signaling pathways could be manipulated during the treatment of cancer.
Collapse
|
35
|
Chikkegowda P, Pookunoth BC, Bovilla VR, Veeresh PM, Leihang Z, Thippeswamy T, Padukudru MA, Hathur B, Kanchugarakoppal RS, Madhunapantula SV. Design, Synthesis, Characterization, and Crystal Structure Studies of Nrf2 Modulators for Inhibiting Cancer Cell Growth In Vitro and In Vivo. ACS OMEGA 2021; 6:10054-10071. [PMID: 34056161 PMCID: PMC8153663 DOI: 10.1021/acsomega.0c06345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/24/2021] [Indexed: 05/03/2023]
Abstract
Nrf2 is one of the important therapeutic targets studied extensively in several cancers including the carcinomas of the colon and rectum. However, to date, not many Nrf2 inhibitors showed promising results for retarding the growth of colorectal cancers (CRCs). Therefore, in this study, first, we have demonstrated the therapeutic effect of siRNA-mediated downmodulation of Nrf2 on the proliferation rate of CRC cell lines. Next, we have designed, synthesized, characterized, and determined the crystal structures for a series of tetrahydrocarbazoles (THCs) and assessed their potential to modulate the activity of Nrf2 target gene NAD(P)H:quinone oxidoreductase (NQO1) activity by treating colorectal carcinoma cell line HCT-116. Later, the cytotoxic potential of compounds was assessed against cell lines expressing varying amounts of Nrf2, viz., breast cancer cell lines MDA-MB-231 and T47D (low functionally active Nrf2), HCT-116 (moderately active Nrf2), and lung cancer cell line A549 (highly active Nrf2), and the lead compound 5b was tested for its effect on cell cycle progression in vitro and for retarding the growth of Ehrlich ascites carcinomas (EACs) in mice. Data from our study demonstrated that among various compounds 5b exhibited better therapeutic index and retarded the growth of EAC cells in mice. Therefore, compound 5b is recommended for further development to target cancers.
Collapse
Affiliation(s)
- Prathima Chikkegowda
- Department
of Pharmacology, JSS Medical College, JSS
Academy of Higher Education & Research, Mysore 570015, Karnataka, India
| | - Baburajeev C. Pookunoth
- Laboratory
of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore 570005, Karnataka, India
| | - Venugopal R. Bovilla
- Department
of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
- Center
of Excellence in Molecular Biology and Regenerative Medicine (CEMR,
DST-FIST Supported Center), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
| | - Prashanthkumar M. Veeresh
- Department
of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
- Center
of Excellence in Molecular Biology and Regenerative Medicine (CEMR,
DST-FIST Supported Center), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
| | - Zonunsiami Leihang
- Department
of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
- Center
of Excellence in Molecular Biology and Regenerative Medicine (CEMR,
DST-FIST Supported Center), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
| | - Thippeswamy Thippeswamy
- Department
of General Medicine, JSS Medical College and Hospital, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
| | - Mahesh A. Padukudru
- Department
of Respiratory Medicine, JSS Medical College, and Hospital, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
| | - Basavanagowdappa Hathur
- Center
of Excellence in Molecular Biology and Regenerative Medicine (CEMR,
DST-FIST Supported Center), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
- Department
of General Medicine, JSS Medical College and Hospital, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
- Faculty
of Medicine, JSS Medical College and Hospital, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
- JSS
Medical College and Hospital, JSS Academy
of Higher Education & Research, Mysore 570015, Karnataka, India
- Special
Interest Group in Patient Care Management, JSS Medical College and
Hospital, JSS Academy of Higher Education
& Research, Mysore 570015, Karnataka, India
| | | | - SubbaRao V. Madhunapantula
- Department
of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
- . Mobile: +91-810-527-8621
| |
Collapse
|
36
|
Yang B, Hu M, Fu Y, Sun D, Zheng W, Liao H, Zhang Z, Chen X. LASS2 mediates Nrf2-driven progestin resistance in endometrial cancer. Am J Transl Res 2021; 13:1280-1289. [PMID: 33841656 PMCID: PMC8014362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 11/07/2020] [Indexed: 06/12/2023]
Abstract
UNLABELLED Progestin administration serves as the optimal conservative treatment method for women with endometrial cancer or precancer lesions who want to preserve fertility. However, there are still at least 30% of patients in which progestin resistance occurs. LASS2 (Ceramide Synthase 2) has been reported to be involved in chemotherapy resistance, whether it also plays a role in progestin resistance is not clear. Here, we explored the detailed mechanism by which Nrf2/LASS2 contributes to progestin resistance and disease progression. METHODS IHC assays were performed to estimate the expression pattern of Nrf2 and LASS2. Moreover, it bears three antioxidant response elements (ARE) in the promoter region of LASS2 gene, therefore, Luciferase assays were performed to determine if Nrf2 regulates LASS2 by binding with these ARE sequence. Western Blot assays were used to determine the expression of Nrf2 and LASS2 protein among various endometrial cell lines. Relative mRNA expression levels were detected by RT-PCR. Cellular growth was monitored with CCK-8 tests. Apoptosis was determined with Annexin V-PI staining and flow cytometry analysis. siRNA knockdown was performed to investigate the effects of Nrf2 on cell proliferation. RESULT Nrf2/LASS2 is highly expressed in endometrial cancer tissue, as compared to expression levels in normal endometrial tissue. Proliferation assays demonstrated that overexpression of Nrf2/LASS2 resulted in progestin resistance. Conversely, knockdown of LASS2 increased apoptosis and decreased cell viability. In addition, metformin overcame progestin resistance by down-regulating Nrf2/LASS2 expression. CONCLUSION Our findings provide new insight into the mechanism of progestin resistance in type I endometrial cancer. Nrf2/LASS2 may not only be a possible marker for predicting the prognosis of endometrial cancer but also serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Bin Yang
- Jiangxi Medical College, Nanchang UniversityNanchang 330000, China
- Reproductive Medicine Center, Jiangxi Provincial Maternal and Child Health HospitalNanchang 330006, Jiangxi Province, China
| | - Meiyan Hu
- Jiangxi Medical College, Nanchang UniversityNanchang 330000, China
- Department of Obstetrics and Gynecology, Zhongshan Hospital Wusong Branch, Fudan UniversityShanghai 201900, China
- Reproductive Medicine Center, Shanghai General Hospital, Shanghai Jiaotong University100 Haining Road, Shanghai 200080, China
| | - Yue Fu
- Reproductive Medicine Center, Shanghai General Hospital, Shanghai Jiaotong University100 Haining Road, Shanghai 200080, China
| | - Di Sun
- Reproductive Medicine Center, Shanghai General Hospital, Shanghai Jiaotong University100 Haining Road, Shanghai 200080, China
| | - Wenxin Zheng
- Department of Pathology, University of Texas Southwestern Medical CenterDallas, TX 75390, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallas, TX 75390, USA
| | - Hong Liao
- The Graduate School, Tongji University School of MedicineShanghai 200040, China
- Department of Laboratory Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of MedicineShanghai 200040, China
| | - Zhenbo Zhang
- Reproductive Medicine Center, Shanghai General Hospital, Shanghai Jiaotong University100 Haining Road, Shanghai 200080, China
| | - Xiong Chen
- Jiangxi Medical College, Nanchang UniversityNanchang 330000, China
- Department of Obstetrics and Gynecology, Zhongshan Hospital Wusong Branch, Fudan UniversityShanghai 201900, China
| |
Collapse
|
37
|
Garufi A, Giorno E, Gilardini Montani MS, Pistritto G, Crispini A, Cirone M, D’Orazi G. P62/SQSTM1/Keap1/NRF2 Axis Reduces Cancer Cells Death-Sensitivity in Response to Zn(II)-Curcumin Complex. Biomolecules 2021; 11:biom11030348. [PMID: 33669070 PMCID: PMC7996602 DOI: 10.3390/biom11030348] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
The hyperactivation of nuclear factor erythroid 2 p45-related factor 2 (NRF2), frequently found in many tumor types, can be responsible for cancer resistance to therapies and poor patient prognosis. Curcumin has been shown to activate NRF2 that has cytotprotective or protumorigenic roles according to tumor stage. The present study aimed at investigating whether the zinc–curcumin Zn(II)–curc compound, which we previously showed to display anticancer effects through multiple mechanisms, could induce NRF2 activation and to explore the underlying molecular mechanisms. Biochemical studies showed that Zn(II)–curc treatment increased the NRF2 protein levels along with its targets, heme oxygenase-1 (HO-1) and p62/SQSTM1, while markedly reduced the levels of Keap1 (Kelch-like ECH-associated protein 1), the NRF2 inhibitor, in the cancer cell lines analyzed. The silencing of either NRF2 or p62/SQSTM1 with specific siRNA demonstrated the crosstalk between the two molecules and that the knockdown of either molecule increased the cancer cell sensitivity to Zn(II)–curc-induced cell death. This suggests that the crosstalk between p62/SQSTM1 and NRF2 could be therapeutically exploited to increase cancer patient response to therapies.
Collapse
Affiliation(s)
- Alessia Garufi
- Unit of Cellular Networks, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
- School of Medicine, University “G. D’Annunzio”, 66013 Chieti, Italy
| | - Eugenia Giorno
- Laboratory MAT_IN LAB, Department of Chemistry and Chemical Technologies, Calabria University, 87036 Rende, Italy; (E.G.); (A.C.)
| | - Maria Saveria Gilardini Montani
- Department of Experimental Medicine, Sapienza University of Rome, Laboratory Affiliated to Pasteur Institute Italy Foundation Cenci Bolognetti, 00185 Rome, Italy; (M.S.G.M.); (M.C.)
| | - Giuseppa Pistritto
- Centralized Procedures Office, Italian Medicines Agency (AIFA), 00187 Rome, Italy;
| | - Alessandra Crispini
- Laboratory MAT_IN LAB, Department of Chemistry and Chemical Technologies, Calabria University, 87036 Rende, Italy; (E.G.); (A.C.)
| | - Mara Cirone
- Department of Experimental Medicine, Sapienza University of Rome, Laboratory Affiliated to Pasteur Institute Italy Foundation Cenci Bolognetti, 00185 Rome, Italy; (M.S.G.M.); (M.C.)
| | - Gabriella D’Orazi
- Unit of Cellular Networks, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. D’Annunzio”, 66013 Chieti, Italy
- Correspondence:
| |
Collapse
|
38
|
Qiu L, Ma Z, Li X, Deng Y, Duan G, Zhao LE, Xu X, Xiao L, Liu H, Zhu Z, Chen H. DJ-1 is involved in the multidrug resistance of SGC7901 gastric cancer cells through PTEN/PI3K/Akt/Nrf2 pathway. Acta Biochim Biophys Sin (Shanghai) 2020; 52:1202-1214. [PMID: 33079995 DOI: 10.1093/abbs/gmaa110] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/18/2020] [Accepted: 08/18/2020] [Indexed: 01/08/2023] Open
Abstract
Gastric cancer is a common malignancy worldwide. The occurrence of multidrug resistance (MDR) is the major obstacle for effective gastric cancer chemotherapy. In this study, the in-depth molecular mechanism of the DJ-1-induced MDR in SGC7901 gastric cancer cells was investigated. The results showed that DJ-1 expression level was higher in MDR variant SGC7901/VCR cells than that in its parental SGC7901 cells. Moreover, DJ-1 overexpression conferred the MDR phenotype to SGC7901 cells, while DJ-1 knockdown in SGC7901/VCR cells induced re-sensitization to adriamycin, vincristine, cisplatin, and 5-fluorouracil. These results suggested that DJ-1 mediated the development of MDR in SGC7901 gastric cancer cells. Importantly, further data revealed that the activation of PI3k/Akt and Nrf2 signaling pathway were required for the DJ-1-induced MDR phenotype in SGC7901 gastric cancer cells. Meanwhile, we found that PI3k/Akt pathway was activated probably through DJ-1 directly binding to and negatively regulating PTEN, consequently resulting in Nrf2 phosphorylation and activation, and thereby inducing Nrf2-dependent P-glycoprotein (P-gp) and Bcl-2 expressions in the DJ-1-mediated MDR of SGC7901 gastric cancer cells. Overall, these results revealed that activating PTEN/PI3K/Akt/Nrf2 pathway and subsequently upregulating P-gp and Bcl-2 expression could be a critical mechanism by which DJ-1 mediates the development of MDR in SGC7901 gastric cancer cells. The new findings may be helpful for understanding the mechanisms of MDR in gastric cancer cells, prompting its further investigation as a molecular target to overcome MDR.
Collapse
Affiliation(s)
- Lejia Qiu
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, China
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Zhaoxia Ma
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, China
| | - Xiaoran Li
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, China
| | - Yizhang Deng
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, China
| | - Guangling Duan
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, China
| | - L e Zhao
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, China
| | - Xingwang Xu
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, China
| | - Lin Xiao
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, China
| | - Haoyue Liu
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, China
| | - Zhengming Zhu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Heping Chen
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang 330006, China
| |
Collapse
|
39
|
Liu RM, Xu P, Chen Q, Feng SL, Xie Y. A multiple-targets alkaloid nuciferine overcomes paclitaxel-induced drug resistance in vitro and in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 79:153342. [PMID: 32992085 DOI: 10.1016/j.phymed.2020.153342] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/13/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE Multidrug resistance (MDR) is the major barrier to the successful treatment of chemotherapy. Compounds from nature products working as MDR sensitizers provided new treatment strategies for chemo-resistant cancers patients. METHODS We investigated the reversal effects of nuciferine (NF), an alkaloid from Nelumbo nucifera and Nymphaea caerulea, on the paclitaxel (PTX) resistance ABCB1-overexpressing cancer in vitro and in vivo, and explored the underlying mechanism by evaluating drug sensitivity, cell cycle perturbations, intracellular accumulation, function and protein expression of efflux transporters as well as molecular signaling involved in governing transporters expression and development of MDR in cancer. RESULTS NF overcomes the resistance of chemotherapeutic agents included PTX, doxorubicin (DOX), docetaxel, and daunorubicin to HCT-8/T and A549/T cancer cells. Notably, NF suppressed the colony formation of MDR cells in vitro and the tumor growth in A549/T xenograft mice in vivo, which demonstrated a very strong synergetic cytotoxic effect between NF and PTX as combination index (CI) (CI<0.1) indicated. Furthermore, NF increased the intracellular accumulation of P-gp substrates included DOX and Rho123 in the MDR cells and inhibited verapamil-stimulated ATPase activity. Mechanistically, inhibition of PI3K/AKT/ERK pathways by NF suppressed the activation of Nrf2 and HIF-1α, and further reduced the expression of P-gp and BCRP, contributing to the sensitizing effects of NF against MDR in cancer. CONCLUSION This novel finding provides a promising treatment strategy for overcoming MDR and improving the efficiency of chemotherapy by using a multiple-targets MDR sensitizer NF.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Animals
- Antineoplastic Agents, Phytogenic/pharmacology
- Aporphines/pharmacology
- Cell Line, Tumor
- Docetaxel/pharmacology
- Doxorubicin/pharmacology
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Neoplasm/drug effects
- Female
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Mice, Inbred BALB C
- Molecular Targeted Therapy
- Neoplasm Proteins/metabolism
- Paclitaxel/pharmacology
- Phosphatidylinositol 3-Kinases/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Rui-Ming Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau (SAR)
| | - Peng Xu
- Department of Nephrology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, P. R. China
| | - Qi Chen
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau (SAR)
| | - Sen-Ling Feng
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau (SAR)
| | - Ying Xie
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau (SAR).
| |
Collapse
|
40
|
Zhu Y, Yang Q, Liu H, Song Z, Chen W. Phytochemical compounds targeting on Nrf2 for chemoprevention in colorectal cancer. Eur J Pharmacol 2020; 887:173588. [PMID: 32961170 DOI: 10.1016/j.ejphar.2020.173588] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022]
Abstract
Colorectal cancer (CRC) has become one of the major factors of tumor-related morbidity and mortality in the world because of its poor prognosis and consequences of metastatic spread. Currently, chemoprevention has been considered as a way of preventing cancer who takes advantage of plant phytochemicals and synthetic compounds. Phytochemical compounds are receiving much considerable attention for their ability in chemoprevention due to low toxicity and cost. For strategies of chemoprevention, keeping the balance of internal and external environment in cells or tissues is important. Hence, it is particularly important to eliminate overmuch carcinogens and carcinogenic metabolites by phase 2 detoxifying enzymes and antioxidant enzymes such as glutathione S-transferase (GST), heme oxygenase-1(HO-1) and so on. Nuclear factor-erythroid 2-related factor 2 (Nrf2) plays a key role in regulating these enzymes via mediating antioxidant response elements (ARE). In this review, we collected recent studies of phytochemical compounds targeting on Nrf2 in CRC treatment. We summarized the mechanisms of these compounds in activating Nrf2, and their effects on chemotherapeutic agents.
Collapse
Affiliation(s)
- Yuandong Zhu
- Department of Colorectal and Anal Surgery, Yiwu Central Hospital, Zhejiang Province, Yiwu, 322000, China.
| | - Qinghua Yang
- Department of Colorectal and Anal Surgery, Yiwu Central Hospital, Zhejiang Province, Yiwu, 322000, China
| | - Haiyuan Liu
- Department of Colorectal and Anal Surgery, Yiwu Central Hospital, Zhejiang Province, Yiwu, 322000, China
| | - Zhengming Song
- Department of Colorectal and Anal Surgery, Yiwu Central Hospital, Zhejiang Province, Yiwu, 322000, China
| | - Wenbin Chen
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, 310003, China
| |
Collapse
|
41
|
Safflor Yellow B Attenuates Ischemic Brain Injury via Downregulation of Long Noncoding AK046177 and Inhibition of MicroRNA-134 Expression in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4586839. [PMID: 32566081 PMCID: PMC7292966 DOI: 10.1155/2020/4586839] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 03/11/2020] [Accepted: 04/29/2020] [Indexed: 12/21/2022]
Abstract
Stroke breaks the oxidative balance in the body and causes extra reactive oxygen species (ROS) generation, leading to oxidative stress damage. Long noncoding RNAs (lncRNAs) and microRNAs play pivotal roles in oxidative stress-mediated brain injury. Safflor yellow B (SYB) was able to effectively reduce ischemia-mediated brain damage by increasing antioxidant capacity and inhibiting cell apoptosis. In this study, we investigated the putative involvement of lncRNA AK046177 and microRNA-134 (miR-134) regulation in SYB against ischemia/reperfusion- (I/R-) induced neuronal injury. I/R and oxygen-glucose deprivation/reoxygenation (OGD/R) were established in vivo and in vitro. Cerebral infarct volume, neuronal apoptosis, and protein expression were detected. The effects of SYB on cell activity, cell respiration, nuclear factor erythroid 2-related factor 2 (Nrf2), antioxidant enzymes, and ROS were evaluated. I/R or OGD/R upregulated the expression of AK046177 and miR-134 and subsequently inhibited the activation and expression of CREB, which caused ROS generation and brain/cell injury. SYB attenuated the effects of AK046177, inhibited miR-134 expression, and promoted CREB activation, which in turn promoted Nrf2 expression, and then increased antioxidant capacities, improved cell respiration, and reduced apoptosis. We suggested that the antioxidant effects of SYB were driven by an AK046177/miR-134/CREB-dependent mechanism that inhibited this pathway, and that SYB has potential use in reducing or possibly preventing I/R-induced neuronal injury.
Collapse
|
42
|
Ueda S, Takanashi M, Sudo K, Kanekura K, Kuroda M. miR-27a ameliorates chemoresistance of breast cancer cells by disruption of reactive oxygen species homeostasis and impairment of autophagy. J Transl Med 2020; 100:863-873. [PMID: 32066826 DOI: 10.1038/s41374-020-0409-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/28/2020] [Indexed: 12/16/2022] Open
Abstract
In patients with breast cancer, primary chemotherapy often fails due to survival of chemoresistant breast cancer stem cells (BCSCs) which results in recurrence and metastasis of the tumor. However, the factors determining the chemoresistance of BCSCs have remained to be investigated. Here, we profiled a series of differentially expressed microRNAs (miRNAs) between parental adherent breast cancer cells and BCSC-mimicking mammosphere-derived cancer cells, and identified hsa-miR-27a as a negative regulator for survival and chemoresistance of BCSCs. In the mammosphere, we found that the expression of hsa-miR-27a was downregulated, and ectopic overexpression of hsa-miR-27a reduced both number and size of mammospheres. In addition, overexpression of hsa-miR-27a sensitized breast cancer cells to anticancer drugs by downregulation of genes essential for detoxification of reactive oxygen species (ROS) and impairment of autophagy. Therefore, enhancing the hsa-miR-27a signaling pathway can be a potential therapeutic modality for breast cancer.
Collapse
Affiliation(s)
- Shinobu Ueda
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Masakatsu Takanashi
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Katsuko Sudo
- Preclinical Research Center, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Kohsuke Kanekura
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
| |
Collapse
|
43
|
Cucci MA, Grattarola M, Dianzani C, Damia G, Ricci F, Roetto A, Trotta F, Barrera G, Pizzimenti S. Ailanthone increases oxidative stress in CDDP-resistant ovarian and bladder cancer cells by inhibiting of Nrf2 and YAP expression through a post-translational mechanism. Free Radic Biol Med 2020; 150:125-135. [PMID: 32101771 DOI: 10.1016/j.freeradbiomed.2020.02.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/18/2022]
Abstract
Chemoresistance represents one of the main obstacles in treating several types of cancer, including bladder and ovarian cancers, and it is characterized by an increase of cellular antioxidant potential. Nrf2 and YAP proteins play an important role in increasing chemoresistance and in inducing antioxidant enzymes. It has been reported that Ailanthone (Aila), a compound extracted from the Ailanthus Altissima, has an anticancer activity toward several cancer cell lines, including chemoresistant cell lines. We have examined the effect of Aila on proliferation, migration and expression of Nrf2 and YAP proteins in A2780 (CDDP-sensitive) and A2780/CP70 (CDDP-resistant) ovarian cancer cells. Furthermore, to clarify the mechanism of Aila action we extended our studies to sensitive and CDDP-resistant 253J-BV bladder cancer cells, which have been used in a previous study on the effect of Aila. Results demonstrated that Aila exerted an inhibitory effect on growth and colony formation of sensitive and CDDP-resistant ovarian cancer cells and reduced oriented cell migration with higher effectiveness in CDDP resistant cells. Moreover, Aila strongly reduced Nrf2 and YAP protein expression and reduced the expression of the Nrf2 target GSTA4, and the YAP/TEAD target survivin. In CDDP-resistant ovarian and bladder cancer cells the intracellular oxidative stress level was lower with respect to the sensitive cells. Moreover, Aila treatment further reduced the superoxide anion content of CDDP-resistant cells in correlation with the reduction of Nrf2 and YAP proteins. However, Aila treatment increased Nrf2 and YAP mRNA expression in all cancer cell lines. The inhibition of proteolysis by MG132, a proteasoma inhibitor, restored Nrf2 and YAP protein expressions, suggesting that the Aila effect was at post-translational level. In accordance with this observation, we found an increase of the Nrf2 inhibitor Keap1, a reduction of p62/SQSTM1, a Nrf2 target which leads Keap1 protein to the autophagic degradation, and a reduction of P-YAP. Moreover, UCHL1 deubiquitinase expression, which was increased in bladder and ovarian resistant cells, was down-regulated by Aila treatment. In conclusion we demonstrated that Aila can reduce proliferation and migration of cancer cells through a mechanism involving a post translational reduction of Nrf2 and YAP proteins which, in turn, entailed an increase of oxidative stress particularly in the chemoresistant lines.
Collapse
Affiliation(s)
- Marie Angèle Cucci
- Department of Clinical and Biological Science, University of Turin, Corso Raffaello 30, 10125, Torino, Italy
| | - Margherita Grattarola
- Department of Clinical and Biological Science, University of Turin, Corso Raffaello 30, 10125, Torino, Italy
| | - Chiara Dianzani
- Department of Scienza e Tecnologia del Farmaco, Università di Torino, Via Pietro Giuria 9, 10125, Turin, Italy
| | - Giovanna Damia
- Istituto di Ricerche Farmacologiche "Mario Negri-IRCCS", Via Mario Negri 2, 20156, Milan, Italy
| | - Francesca Ricci
- Istituto di Ricerche Farmacologiche "Mario Negri-IRCCS", Via Mario Negri 2, 20156, Milan, Italy
| | - Antonella Roetto
- Department of Clinical and Biological Science, University of Turin, Corso Raffaello 30, 10125, Torino, Italy
| | - Francesco Trotta
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125, Turin, Italy
| | - Giuseppina Barrera
- Department of Clinical and Biological Science, University of Turin, Corso Raffaello 30, 10125, Torino, Italy
| | - Stefania Pizzimenti
- Department of Clinical and Biological Science, University of Turin, Corso Raffaello 30, 10125, Torino, Italy.
| |
Collapse
|
44
|
Cheng Z, Qian S, Qingtao M, Zhongyuan X, Yeda X. Effects of ATRA on diabetic rats with renal ischemia-reperfusion injury. Acta Cir Bras 2020; 35:e202000106. [PMID: 32236320 PMCID: PMC7106780 DOI: 10.1590/s0102-865020200010000006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/06/2019] [Indexed: 11/24/2022] Open
Abstract
Purpose To explore the role of all-trans retinoic acid (ATRA) in renal ischemia/reperfusion injury of diabetic rats. Methods Sixty adult male rats were randomly divided into 6 groups, including sham group (S group), ischemia-reperfusion group (I/R group), ischemia-reperfusion+ATRA group (A group), diabetic group (D group), diabetic ischemia-reperfusion group (DI/R group), diabetic ischemia-reperfusion +ATRA group (DA group). The levels of creatinine (Cr), cystatin C (Cys-C) and β2-microglobulin (β2-MG) were measured. Morphology of renal tissue was observed under light microscope. Results DJ-1, Nrf2, HO-1 and caspase-3 were detected by western blot. DJ-1, Nrf2, HO-1 and caspase-3 in I/R group, D group and DI/R group was higher than that in S group. Compared with I/R group, Nrf2 and HO-1 in A group was decreased, but caspase-3 was increased. However, Nrf2 in DA group was higher than that in DI/R group, HO-1 and caspase-3 in DA group were lower than that in DI/R group. Compared with group S, Cr, Cys-C and β2-MG in I/R group, A group, D group, and DI/R group were higher. Whereas the levels of Cr, Cys-C, β2-MG and renal injury score in DA group were lower than those in DI/R group. Conclusion ATRA has a protective effect on renal ischemia-reperfusion injury in diabetic rats, maybe relating to DJ/Nrf2 pathway.
Collapse
Affiliation(s)
- Zeng Cheng
- People’s Hospital of Wuhan University, China
| | - Sun Qian
- People’s Hospital of Wuhan University, China
| | | | | | - Xiao Yeda
- People’s Hospital of Wuhan University, China
| |
Collapse
|
45
|
Leung MH, Tsoi H, Gong C, Man EPS, Zona S, Yao S, Lam EWF, Khoo US. A Splice Variant of NCOR2, BQ323636.1, Confers Chemoresistance in Breast Cancer by Altering the Activity of NRF2. Cancers (Basel) 2020; 12:cancers12030533. [PMID: 32110852 PMCID: PMC7139508 DOI: 10.3390/cancers12030533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/12/2020] [Accepted: 02/20/2020] [Indexed: 12/16/2022] Open
Abstract
Breast cancer is the most common type of female cancer. Reactive oxygen species (ROS) are vital in regulating signaling pathways that control cell survival and cell proliferation. Chemotherapeutic drugs such as anthracyclines induce cell death via ROS induction. Chemoresistance development is associated with adaptive response to oxidative stress. NRF2 is the main regulator of cytoprotective response to oxidative stress. NRF2 can enhance cell growth, antioxidant expression, and chemoresistance by providing growth advantage for malignant cells. Previously, we identified BQ323636.1 (BQ), a novel splice variant of nuclear co-repressor NCOR2, which can robustly predict tamoxifen resistance in primary breast cancer. In this study, we found that BQ was overexpressed in epirubicin-resistant cells and demonstrated that BQ overexpression could reduce the levels of epirubicin-induced ROS and confer epirubicin resistance. In vivo analysis using tissue microarray of primary breast cancer showed direct correlation between BQ expression and chemoresistance. In vitro experiments showed BQ could modulate NRF2 transcriptional activity and upregulate antioxidants. Luciferase reporter assays showed that although NCOR2 repressed the transcriptional activity of NRF2, the presence of BQ reduced this repressive activity. Co-immunoprecipitation confirmed that NCOR2 could bind to NRF2 and that this interaction was compromised by BQ overexpression, leading to increased transcriptional activity in NRF2. Our findings suggest BQ can regulate the NRF2 signaling pathway via interference with NCOR2 suppressive activity and reveals a novel role for BQ as a modulator of chemoresistance in breast cancer.
Collapse
Affiliation(s)
- Man-Hong Leung
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; (M.-H.L.); (H.T.); (C.G.)
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Ho Tsoi
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; (M.-H.L.); (H.T.); (C.G.)
| | - Chun Gong
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; (M.-H.L.); (H.T.); (C.G.)
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Ellen PS Man
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; (M.-H.L.); (H.T.); (C.G.)
| | - Stefania Zona
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Shang Yao
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Eric W.-F. Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
- Correspondence: (E.W.-F.L.); (U.-S.K.); Tel.: +44-7594-2810 (E.W.-F.L.); +852-22552664 (U.-S.K.); Fax: +852-2218-5205 (U.-S.K.)
| | - Ui-Soon Khoo
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; (M.-H.L.); (H.T.); (C.G.)
- Correspondence: (E.W.-F.L.); (U.-S.K.); Tel.: +44-7594-2810 (E.W.-F.L.); +852-22552664 (U.-S.K.); Fax: +852-2218-5205 (U.-S.K.)
| |
Collapse
|
46
|
Zhou J, Zhang X, Tang H, Yu J, Zu X, Xie Z, Yang X, Hu J, Tan F, Li Q, Lei X. Nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) in autophagy-induced hepatocellular carcinoma. Clin Chim Acta 2020; 506:1-8. [PMID: 32109431 DOI: 10.1016/j.cca.2020.02.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 12/23/2022]
Abstract
Autophagy, an evolutionarily conserved catabolic process, is the most important pathogenic events in the development and progression of liver diseases. Deregulation of Nrf2 is proposed to play a key pathogenic role in hepatocellular carcinoma (HCC). Under certain pathophysiological conditions, such as oxidative stress, impaired autophagy is accompanied by the Nrf2 activation that leads to the detrimental effects favoring the proliferation and survival of HCC. Elucidating its role and potential mechanism is essential for understanding tumorigenesis and the development of effective clinical application. Nrf2 is participated in HCC proliferation, migration and invasion through autophagy pathways. These includes the negatively regulated-Nrf2 by Keap1 that participates in HCC tumorigenesis via regulating ROS production, in which autophagy may contribute to oxidant metabolic reprogramming of HCC cells. Post-transcriptional modifications, such as phosphorylation and ubiquitination of Nrf2, can be positively or negatively induced by multiple transcription factors. Nrf2 exhibits chemoresistance through its binding sites in the promoter region of the target genes. Nrf2 may be a valuable potential biomarker and therapeutic strategy for diagnostics, prognostics and treatment of HCC.
Collapse
Affiliation(s)
- Juan Zhou
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Key Laboratory of Tumor Microenvironment Response Drug Research, University of South China, Hengyang, Hunan 421001, PR China
| | - Xinxin Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Key Laboratory of Tumor Microenvironment Response Drug Research, University of South China, Hengyang, Hunan 421001, PR China
| | - Huifang Tang
- The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, PR China
| | - Jia Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Key Laboratory of Tumor Microenvironment Response Drug Research, University of South China, Hengyang, Hunan 421001, PR China
| | - Xuyu Zu
- The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, PR China
| | - Zhizhong Xie
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Key Laboratory of Tumor Microenvironment Response Drug Research, University of South China, Hengyang, Hunan 421001, PR China
| | - Xiaoyan Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Key Laboratory of Tumor Microenvironment Response Drug Research, University of South China, Hengyang, Hunan 421001, PR China
| | - Juan Hu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Key Laboratory of Tumor Microenvironment Response Drug Research, University of South China, Hengyang, Hunan 421001, PR China
| | - Fang Tan
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Key Laboratory of Tumor Microenvironment Response Drug Research, University of South China, Hengyang, Hunan 421001, PR China
| | - Qing Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Key Laboratory of Tumor Microenvironment Response Drug Research, University of South China, Hengyang, Hunan 421001, PR China
| | - Xiaoyong Lei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Key Laboratory of Tumor Microenvironment Response Drug Research, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
47
|
Chen X, Cao X, Xiao W, Li B, Xue Q. PRDX5 as a novel binding partner in Nrf2-mediated NSCLC progression under oxidative stress. Aging (Albany NY) 2020; 12:122-137. [PMID: 31899687 PMCID: PMC6977694 DOI: 10.18632/aging.102605] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 12/05/2019] [Indexed: 12/17/2022]
Abstract
Non-small-cell lung cancer (NSCLC) is one of the most common malignant tumors in the world. Reactive oxidative species (ROS) and nuclear factor-related factor 2 (Nrf2) -antioxidant response element (ARE) signal pathway are known to play important roles in the development of NSCLC. In this study, we identified Peroxiredoxin 5 (PRDX5) as a novel binding partner for Nrf2. PRDX5 was significantly increased in human NSCLC specimens and cell lines. Nrf2 interacted with PRDX5 in H2O2-stimulated NCSLC cells, and the interaction promoted the expression of NAD(P)H: quinone oxidoreductase 1 (NQO1) protein in NSCLC cells. Further, high expression of Nrf2 and PRDX5 were associated with worsened prognosis in patients with NSCLC significantly. Moreover, animal studies showed that the growth of tumors treated with Nrf2 and PRDX5 shRNA was significantly lower than that of the other groups. All these data indicated that overexpressed PRDX5 in NSCLC promoted binding with Nrf2 and enhanced NQO1 expression and NSCLC development. Overall, our studies demonstrated that PRDX5 can be a novel binding partner of Nrf2 in promoting NCSLC development under oxidative stress and provide potential opportunity for improving NSCLC therapy.
Collapse
Affiliation(s)
- Xinming Chen
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Xiang Cao
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Weizhang Xiao
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Ben Li
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Qun Xue
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| |
Collapse
|
48
|
Understanding of ROS-Inducing Strategy in Anticancer Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5381692. [PMID: 31929855 PMCID: PMC6939418 DOI: 10.1155/2019/5381692] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 11/19/2019] [Accepted: 11/23/2019] [Indexed: 02/06/2023]
Abstract
Redox homeostasis is essential for the maintenance of diverse cellular processes. Cancer cells have higher levels of reactive oxygen species (ROS) than normal cells as a result of hypermetabolism, but the redox balance is maintained in cancer cells due to their marked antioxidant capacity. Recently, anticancer therapies that induce oxidative stress by increasing ROS and/or inhibiting antioxidant processes have received significant attention. The acceleration of accumulative ROS disrupts redox homeostasis and causes severe damage in cancer cells. In this review, we describe ROS-inducing cancer therapy and the anticancer mechanism employed by prooxidative agents. To understand the comprehensive biological response to certain prooxidative anticancer drugs such as 2-methoxyestradiol, buthionine sulfoximine, cisplatin, doxorubicin, imexon, and motexafin gadolinium, we propose and visualize the drug-gene, drug-cell process, and drug-disease interactions involved in oxidative stress induction and antioxidant process inhibition as well as specific side effects of these drugs using pathway analysis with a big data-based text-mining approach. Our review will be helpful to improve the therapeutic effects of anticancer drugs by providing information about biological changes that occur in response to prooxidants. For future directions, there is still a need for pharmacogenomic studies on prooxidative agents as well as the molecular mechanisms underlying the effects of the prooxidants and/or antioxidant-inhibitor agents for effective anticancer therapy through selective killing of cancer cells.
Collapse
|
49
|
Metabolic Remodelling: An Accomplice for New Therapeutic Strategies to Fight Lung Cancer. Antioxidants (Basel) 2019; 8:antiox8120603. [PMID: 31795465 PMCID: PMC6943435 DOI: 10.3390/antiox8120603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022] Open
Abstract
Metabolic remodelling is a hallmark of cancer, however little has been unravelled in its role in chemoresistance, which is a major hurdle to cancer control. Lung cancer is a leading cause of death by cancer, mainly due to the diagnosis at an advanced stage and to the development of resistance to therapy. Targeted therapeutic agents combined with comprehensive drugs are commonly used to treat lung cancer. However, resistance mechanisms are difficult to avoid. In this review, we will address some of those therapeutic regimens, resistance mechanisms that are eventually developed by lung cancer cells, metabolic alterations that have already been described in lung cancer and putative new therapeutic strategies, and the integration of conventional drugs and genetic and metabolic-targeted therapies. The oxidative stress is pivotal in this whole network. A better understanding of cancer cell metabolism and molecular adaptations underlying resistance mechanisms will provide clues to design new therapeutic strategies, including the combination of chemotherapeutic and targeted agents, considering metabolic intervenients. As cancer cells undergo a constant metabolic adaptive drift, therapeutic regimens must constantly adapt.
Collapse
|
50
|
Inhibition of the Nrf2-TrxR Axis Sensitizes the Drug-Resistant Chronic Myelogenous Leukemia Cell Line K562/G01 to Imatinib Treatments. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6502793. [PMID: 31828114 PMCID: PMC6885806 DOI: 10.1155/2019/6502793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is involved in tumor drug resistance, but its role in imatinib resistance of chronic myeloid leukemia (CML) remains elusive. We aimed to investigate the effects of Nrf2 on drug sensitivity, thioredoxin reductase (TrxR) expression, reactive oxygen species (ROS) production, and apoptosis induction in imatinib-resistant CML K562/G01 cells and explored their potential mechanisms. Stable K562/G01 cells with knockdown of Nrf2 were established by infection of siRNA-expressing lentivirus. The mRNA and protein expression levels of Nrf2 and TrxR were determined by real-time quantitative polymerase chain reaction and western blot, respectively. ROS generation and apoptosis were assayed by flow cytometry, while drug sensitivity was measured by the Cell Counting Kit-8 assay. Imatinib-resistant K562/G01 cells had higher levels of Nrf2 expression than the parental K562 cells at both mRNA and protein levels. Expression levels of Nrf2 and TrxR were positively correlated in K562/G01 cells. Knockdown of Nrf2 in K562/G01 cells enhanced the intracellular ROS level, suppressed cell proliferation, and increased apoptosis in response to imatinib treatments. Nrf2 expression contributes to the imatinib resistance of K562/G01 cells and is positively correlated with TrxR expression. Targeted inhibition of the Nrf2-TrxR axis represents a potential therapeutic approach for imatinib-resistant CML.
Collapse
|