1
|
Tylicka M, Matuszczak E, Kamińska J, Modzelewska B, Koper-Lenkiewicz OM. Proteasomes and Ubiquitin C-Terminal Hydrolase L1 as Biomarkers of Tissue Damage and Inflammatory Response to Different Types of Injury-A Short Review. Life (Basel) 2025; 15:413. [PMID: 40141757 PMCID: PMC11944130 DOI: 10.3390/life15030413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
The proteasomal system of protein degradation is crucial for various cellular processes, including transduction of signals and differentiation of cells. Proteasome activity rises after various traumatic stressors such as hyperoxia, radiation, or oxidative damage. Removal of damaged proteins is essential to provide the necessary conditions for cell repair. Several studies report the activation of the proteasomal degradation system after thermal injury, CNS injury, abdominal trauma, ischemia-reperfusion injury, and possible clinical implications of the use of proteasome inhibitors. It is important to highlight the distinct and crucial roles of UCHL1, 26S, and 20S proteasome subunits as biomarkers. UCHL1 appears to be particularly relevant for identifying brain and neuronal damage and in advancing the diagnosis and prognosis of traumatic brain injury (TBI) and other neurological conditions. Meanwhile, the 26S and 20S proteasomes may serve as markers for peripheral tissue damage. This differentiation enhances our understanding and ability to target specific types of tissue damage in clinical settings.
Collapse
Affiliation(s)
- Marzena Tylicka
- Department of Biophysics, Medical University of Bialystok, Mickiewicza 2a, 15-222 Bialystok, Poland;
| | - Ewa Matuszczak
- Department of Pediatric Surgery, Medical University of Bialystok, Waszyngtona 17, 15-274 Bialystok, Poland;
| | - Joanna Kamińska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland; (J.K.); (O.M.K.-L.)
| | - Beata Modzelewska
- Department of Biophysics, Medical University of Bialystok, Mickiewicza 2a, 15-222 Bialystok, Poland;
| | - Olga Martyna Koper-Lenkiewicz
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland; (J.K.); (O.M.K.-L.)
| |
Collapse
|
2
|
Kurek K, Swieczkowski D, Pruc M, Tomaszewska M, Cubala WJ, Szarpak L. Predictive Performance of Neuron-Specific Enolase (NSE) for Survival after Resuscitation from Cardiac Arrest: A Systematic Review and Meta-Analysis. J Clin Med 2023; 12:7655. [PMID: 38137724 PMCID: PMC10744223 DOI: 10.3390/jcm12247655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The prediction of outcomes following cardiac arrest continues to provide significant difficulties. A preferred strategy involves adopting a multimodal approach, which encompasses the careful evaluation of the biomarker neuron-specific enolase (NSE). This systematic review and meta-analysis aimed to gather and summarize new and existing evidence on the prediction effect of neuron-specific enolase for survival to hospital discharge among adult patients with cardiac arrest. We searched PubMed Central, Scopus, EMBASE databases, and the Cochrane Library without language restrictions from their inceptions until 30 October 2023 and checked the reference lists of the included studies. Pooled results were reported as standardized mean differences (SMDs) and were presented with corresponding 95% confidence intervals (CIs). The primary outcome was survival to hospital discharge (SHD). Eighty-six articles with 10,845 participants were included. NSE showed a notable degree of specificity in its ability to predict mortality as well as neurological status among individuals who experienced cardiac arrest (p < 0.05). This study demonstrates the ability to predict fatality rates and neurological outcomes, both during the time of admission and at various time intervals after cardiac arrest. The use of NSE in a multimodal neuroprognostication algorithm has promise in improving the accuracy of prognoses for persons who have undergone cardiac arrest.
Collapse
Affiliation(s)
- Krzysztof Kurek
- Department of Clinical Research and Development, LUXMED Group, 02-676 Warsaw, Poland
| | - Damian Swieczkowski
- Department of Toxicology, Faculty of Pharmacy, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Michal Pruc
- Research Unit, Polish Society of Disaster Medicine, 05-806 Warsaw, Poland
- Department of Public Health, International Academy of Ecology and Medicine, 02000 Kyiv, Ukraine
| | - Monika Tomaszewska
- Department of Clinical Research and Development, LUXMED Group, 02-676 Warsaw, Poland
| | | | - Lukasz Szarpak
- Institute of Outcomes Research, Maria Sklodowska-Curie Medical Academy, 03-411 Warsaw, Poland
- Henry JN Taub Department of Emergency Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Research Unit, Maria Sklodowska-Curie Bialystok Oncology Center, 15-027 Bialystok, Poland
| |
Collapse
|
3
|
Voelker P, Weible AP, Niell CM, Rothbart MK, Posner MI. Molecular Mechanisms for Changing Brain Connectivity in Mice and Humans. Int J Mol Sci 2023; 24:15840. [PMID: 37958822 PMCID: PMC10648558 DOI: 10.3390/ijms242115840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
The goal of this study was to examine commonalities in the molecular basis of learning in mice and humans. In previous work we have demonstrated that the anterior cingulate cortex (ACC) and hippocampus (HC) are involved in learning a two-choice visuospatial discrimination task. Here, we began by looking for candidate genes upregulated in mouse ACC and HC with learning. We then determined which of these were also upregulated in mouse blood. Finally, we used RT-PCR to compare candidate gene expression in mouse blood with that from humans following one of two forms of learning: a working memory task (network training) or meditation (a generalized training shown to change many networks). Two genes were upregulated in mice following learning: caspase recruitment domain-containing protein 6 (Card6) and inosine monophosphate dehydrogenase 2 (Impdh2). The Impdh2 gene product catalyzes the first committed step of guanine nucleotide synthesis and is tightly linked to cell proliferation. The Card6 gene product positively modulates signal transduction. In humans, Card6 was significantly upregulated, and Impdh2 trended toward upregulation with training. These genes have been shown to regulate pathways that influence nuclear factor kappa B (NF-κB), a factor previously found to be related to enhanced synaptic function and learning.
Collapse
Affiliation(s)
- Pascale Voelker
- Department of Psychology, University of Oregon, Eugene, OR 97403, USA (M.I.P.)
| | - Aldis P. Weible
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA; (A.P.W.); (C.M.N.)
| | - Cristopher M. Niell
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA; (A.P.W.); (C.M.N.)
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Mary K. Rothbart
- Department of Psychology, University of Oregon, Eugene, OR 97403, USA (M.I.P.)
| | - Michael I. Posner
- Department of Psychology, University of Oregon, Eugene, OR 97403, USA (M.I.P.)
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA; (A.P.W.); (C.M.N.)
| |
Collapse
|
4
|
Olczak M, Poniatowski ŁA, Siwińska A, Kwiatkowska M. Post-mortem detection of neuronal and astroglial biochemical markers in serum and urine for diagnostics of traumatic brain injury. Int J Legal Med 2023; 137:1441-1452. [PMID: 37272985 DOI: 10.1007/s00414-023-02990-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/21/2023] [Indexed: 06/06/2023]
Abstract
Currently available epidemiological data shows that traumatic brain injury (TBI) represents one of the leading causes of death that is associated with medico-legal practice, including forensic autopsy, criminological investigation, and neuropathological examination. Attention focused on TBI research is needed to advance its diagnostics in ante- and post-mortem cases with regard to identification and validation of novel biomarkers. Recently, several markers of neuronal, astroglial, and axonal injury have been explored in various biofluids to assess the clinical origin, progression, severity, and prognosis of TBI. Despite clinical usefulness, understanding their diagnostic accuracy could also potentially help translate them either into forensic or medico-legal practice, or both. The aim of this study was to evaluate post-mortem pro-BDNF, NSE, UCHL1, GFAP, S100B, SPTAN1, NFL, MAPT, and MBP levels in serum and urine in TBI cases. The study was performed using cases (n = 40) of fatal head injury and control cases (n = 20) of sudden death. Serum and urine were collected within ∼ 24 h after death and compared using ELISA test. In our study, we observed the elevated concentration levels of GFAP and MAPT in both serum and urine, elevated concentration levels of S100B and SPTAN1 in serum, and decreased concentration levels of pro-BDNF in serum compared to the control group. The obtained results anticipate the possible implementation of performed assays as an interesting tool for forensic and medico-legal investigations regarding TBI diagnosis where the head injury was not supposed to be the direct cause of death.
Collapse
Affiliation(s)
- Mieszko Olczak
- Department of Forensic Medicine, Center for Biostructure Research, Medical University of Warsaw, Oczki 1, 02-007, Warsaw, Poland.
| | - Łukasz A Poniatowski
- Department of Neurosurgery, Dietrich-Bonhoeffer-Klinikum, Salvador-Allende-Straße 30, 17036, Neubrandenburg, Germany
| | - Agnieszka Siwińska
- Department of Forensic Medicine, Center for Biostructure Research, Medical University of Warsaw, Oczki 1, 02-007, Warsaw, Poland
| | - Magdalena Kwiatkowska
- Department of Forensic Medicine, Center for Biostructure Research, Medical University of Warsaw, Oczki 1, 02-007, Warsaw, Poland
| |
Collapse
|
5
|
Costamagna D, Casters V, Beltrà M, Sampaolesi M, Van Campenhout A, Ortibus E, Desloovere K, Duelen R. Autologous iPSC-Derived Human Neuromuscular Junction to Model the Pathophysiology of Hereditary Spastic Paraplegia. Cells 2022; 11:3351. [PMID: 36359747 PMCID: PMC9655384 DOI: 10.3390/cells11213351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 08/27/2023] Open
Abstract
Hereditary spastic paraplegia (HSP) is a heterogeneous group of genetic neurodegenerative disorders, characterized by progressive lower limb spasticity and weakness resulting from retrograde axonal degeneration of motor neurons (MNs). Here, we generated in vitro human neuromuscular junctions (NMJs) from five HSP patient-specific induced pluripotent stem cell (hiPSC) lines, by means of microfluidic strategy, to model disease-relevant neuropathologic processes. The strength of our NMJ model lies in the generation of lower MNs and myotubes from autologous hiPSC origin, maintaining the genetic background of the HSP patient donors in both cell types and in the cellular organization due to the microfluidic devices. Three patients characterized by a mutation in the SPG3a gene, encoding the ATLASTIN GTPase 1 protein, and two patients with a mutation in the SPG4 gene, encoding the SPASTIN protein, were included in this study. Differentiation of the HSP-derived lines gave rise to lower MNs that could recapitulate pathological hallmarks, such as axonal swellings with accumulation of Acetyl-α-TUBULIN and reduction of SPASTIN levels. Furthermore, NMJs from HSP-derived lines were lower in number and in contact point complexity, denoting an impaired NMJ profile, also confirmed by some alterations in genes encoding for proteins associated with microtubules and responsible for axonal transport. Considering the complexity of HSP, these patient-derived neuronal and skeletal muscle cell co-cultures offer unique tools to study the pathologic mechanisms and explore novel treatment options for rescuing axonal defects and diverse cellular processes, including membrane trafficking, intracellular motility and protein degradation in HSP.
Collapse
Affiliation(s)
- Domiziana Costamagna
- Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Research Group for Neurorehabilitation, Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Valérie Casters
- Research Group for Neurorehabilitation, Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Marc Beltrà
- Department of Clinical and Biological Sciences, University of Torino, 10125 Torino, Italy
| | - Maurilio Sampaolesi
- Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Anja Van Campenhout
- Locomotor and Neurological Disorder, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Department of Orthopedic Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Els Ortibus
- Locomotor and Neurological Disorder, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Department of Pediatric Neurology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Kaat Desloovere
- Research Group for Neurorehabilitation, Department of Rehabilitation Sciences, KU Leuven, 3000 Leuven, Belgium
- Clinical Motion Analysis Laboratory, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Robin Duelen
- Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
6
|
KURTULUŞ DERELİ A, SEÇME M, ACAR K. Analysis of Glial Fibrillary Acidic Protein and Ubiquitin C-Terminal Hydrolase L1 in Postmortem Serum and Cerebrospinal Fluid in Traumatic Cerebral Deaths. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2021. [DOI: 10.33808/clinexphealthsci.943779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Leister I, Altendorfer B, Maier D, Mach O, Wutte C, Grillhösl A, Arevalo-Martin A, Garcia-Ovejero D, Aigner L, Grassner L. Serum Levels of Glial Fibrillary Acidic Protein and Neurofilament Light Protein Are Related to the Neurological Impairment and Spinal Edema after Traumatic Spinal Cord Injury. J Neurotrauma 2021; 38:3431-3439. [PMID: 34541888 DOI: 10.1089/neu.2021.0264] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neurological examination in the acute phase after spinal cord injury (SCI) is often impossible and severely confounded by pharmacological sedation or concomitant injuries. Therefore, diagnostic biomarkers that objectively characterize severity or the presence of SCI are urgently needed to facilitate clinical decision-making. This study aimed to determine if serum markers of neural origin are related to: 1) presence and severity of SCI, and 2) magnetic resonance imaging (MRI) parameters in the very acute post-injury phase. We performed a secondary analysis of serological parameters, as well as MRI findings in patients with acute SCI (n = 38). Blood samples were collected between Days 1-4 post-injury. Serum protein levels of glial fibrillary acidic protein (GFAP), neuron-specific enolase (NSE), and neurofilament light protein (NfL) were determined. A group of 41 age- and sex-matched healthy individuals served as control group. In the group of individuals with SCI, pre-operative sagittal and axial T2-weighted and sagittal T1-weighted MRI scans were available for 21 patients. Serum markers of neural origin are different among individuals who sustained traumatic SCI depending on injury severity, and the extent of the lesion according to MRI in the acute injury phase. Unbiased Recursive Partitioning regression with Conditional Inference Trees (URP-CTREE) produced preliminary cut-off values for NfL (75.217 pg/mL) and GFAP (73.121 pg/mL), allowing a differentiation between individuals with SCI and healthy controls within the first 4 days after SCI. Serum proteins NfL and GFAP qualify as diagnostic biomarkers for the presence and severity of SCI in the acute post-injury phase, where the reliability of clinical exams is limited.
Collapse
Affiliation(s)
- Iris Leister
- ParaMove, SCI Research Unit, BG Trauma Center Murnau, Murnau, Germany, and Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury Center, Clinical Research Unit, Neuroradiology and Interventional Radiology, BG Trauma Center Murnau, Murnau, Germany.,Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Barbara Altendorfer
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Doris Maier
- ParaMove, SCI Research Unit, BG Trauma Center Murnau, Murnau, Germany, and Paracelsus Medical University, Salzburg, Austria
| | - Orpheus Mach
- ParaMove, SCI Research Unit, BG Trauma Center Murnau, Murnau, Germany, and Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury Center, Clinical Research Unit, Neuroradiology and Interventional Radiology, BG Trauma Center Murnau, Murnau, Germany
| | - Christof Wutte
- Department of Neurosurgery, Neuroradiology and Interventional Radiology, BG Trauma Center Murnau, Murnau, Germany.,Institute of Biomechanics, BG Trauma Center Murnau, Germany, and Paracelsus Medical University, Salzburg, Austria
| | - Andreas Grillhösl
- Department of Radiology, Neuroradiology and Interventional Radiology, BG Trauma Center Murnau, Murnau, Germany
| | - Angel Arevalo-Martin
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Daniel Garcia-Ovejero
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos, SESCAM, Toledo, Spain
| | - Ludwig Aigner
- ParaMove, SCI Research Unit, BG Trauma Center Murnau, Murnau, Germany, and Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury Center, Clinical Research Unit, Neuroradiology and Interventional Radiology, BG Trauma Center Murnau, Murnau, Germany.,Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Lukas Grassner
- ParaMove, SCI Research Unit, BG Trauma Center Murnau, Murnau, Germany, and Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury Center, Clinical Research Unit, Neuroradiology and Interventional Radiology, BG Trauma Center Murnau, Murnau, Germany.,Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria.,Department of Neurosurgery, Neuroradiology and Interventional Radiology, BG Trauma Center Murnau, Murnau, Germany.,Institute of Biomechanics, BG Trauma Center Murnau, Germany, and Paracelsus Medical University, Salzburg, Austria.,Department of Neurosurgery, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
8
|
Liu J, Tian L, Li N. Treatment efficacy of arterial urokinase thrombolysis combined with mechanical thrombectomy for acute cerebral infarction and its influence on neuroprotective factors and factors for neurological injury. Am J Transl Res 2021; 13:3380-3389. [PMID: 34017513 PMCID: PMC8129294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE This study was designed to explore the treatment efficacy of arterial urokinase thrombolysis combined with Solitaire AB stent for acute cerebral infarction (ACI) and its influence on neuroprotective factors and factors for neurological injury. METHODS We randomly assigned 90 patients with ACI to receive arterial urokinase thrombolysis combined with Solitaire AB stent thrombectomy (observation group, OG) or to receive arterial urokinase thrombolysis (control group, CG). The two groups were compared in the National Institutes of Health Stroke Scale (NIHSS) score, activities of daily living (ADL) score, vascular recanalization rate 1 month after treatment, and serum levels of neuroprotective factors (insulin-like growth factor-I (IGF-1), neurotrophic factor (NTF), vascular endothelial growth factor (VEGF), and brain-derived neurotrophic factor (BDNF)) and factors for neurological injury (neuron-specific enolase (NSE), S100B protein (S100B), ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1), glial fibrillary acidic protein (GFAP)) before treatment and the day after treatment. RESULTS The overall treatment response rate and vascular recanalization rate 1 month after treatment were markedly higher in OG than in CG (P<0.05). The NIHSS score decreased and the ADL score in both groups increased after treatment, with a lower NIHSS score and a higher ADL score in OG than in CG (all P<0.001). The difference in the complication rate between the two groups was not statistically significant (P>0.05). The day after treatment, serum levels of IGF-1, NTF, VEGF, and BDNF in both groups increased while levels of NSE, S100B, UCH-L1, and GFAP in them decreased, with higher levels of IGF-1, NTF, VEGF, and BDNF, and lower levels of NSE, S100B, UCH-L1, and GFAP in OG than in CG (all P<0.05). CONCLUSION Arterial urokinase thrombolysis combined with Solitaire AB stent thrombectomy can enhance the treatment efficacy for ACI, stimulate the release of neuroprotective factors, and suppress the release of factors for neurological injury, without aggravating the treatment risk.
Collapse
Affiliation(s)
- Jingfeng Liu
- Department of Interventional Vascular Surgery, Affiliated Hospital of Hebei UniversityBaoding, Hebei Province, China
| | - Ling Tian
- Department of Nephrology, Affiliated Hospital of Hebei UniversityBaoding, Hebei Province, China
| | - Na Li
- Department of Interventional Vascular Surgery, Affiliated Hospital of Hebei UniversityBaoding, Hebei Province, China
| |
Collapse
|
9
|
Pinkowski NJ, Guerin J, Zhang H, Carpentier ST, McCurdy KE, Pacheco JM, Mehos CJ, Brigman JL, Morton RA. Repeated mild traumatic brain injuries impair visual discrimination learning in adolescent mice. Neurobiol Learn Mem 2020; 175:107315. [PMID: 32980477 DOI: 10.1016/j.nlm.2020.107315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/10/2020] [Accepted: 09/18/2020] [Indexed: 12/19/2022]
Abstract
Cognitive deficits following a mild traumatic brain injury (mTBI) are common and are associated with learning deficits in school-age children. Some of these deficits include problems with long-term memory, working memory, processing speeds, attention, mental fatigue, and executive function. Processing speed deficits have been associated with alterations in white matter, but the underlying mechanisms of many of the other deficits are unclear. Without a clear understanding of the underlying mechanisms we cannot effectively treat these injuries. The goal of these studies is to validate a translatable touchscreen discrimination/reversal task to identify deficits in executive function following a single or repeated mTBIs. Using a mild closed skull injury model in adolescent mice we were able to identify clear deficits in discrimination learning following repeated injuries that were not present from a single mTBI. The repeated injuries were not associated with any deficits in motor-based behavior but did induce a robust increase in astrocyte activation. These studies provide an essential platform to interrogate the underlying neurological dysfunction associated with these injuries.
Collapse
Affiliation(s)
- Natalie J Pinkowski
- Department of Neurosciences, University of New Mexico, School of Medicine, Albuquerque, NM 87131, United States
| | - Juliana Guerin
- Department of Neurosciences, University of New Mexico, School of Medicine, Albuquerque, NM 87131, United States
| | - Haikun Zhang
- Center for Brain Recovery and Repair, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Sydney T Carpentier
- Department of Neurosciences, University of New Mexico, School of Medicine, Albuquerque, NM 87131, United States
| | - Kathryn E McCurdy
- Department of Neurosciences, University of New Mexico, School of Medicine, Albuquerque, NM 87131, United States
| | - Johann M Pacheco
- Department of Neurosciences, University of New Mexico, School of Medicine, Albuquerque, NM 87131, United States
| | - Carissa J Mehos
- Center for Brain Recovery and Repair, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico, School of Medicine, Albuquerque, NM 87131, United States; Center for Brain Recovery and Repair, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Russell A Morton
- Department of Neurosciences, University of New Mexico, School of Medicine, Albuquerque, NM 87131, United States; Center for Brain Recovery and Repair, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| |
Collapse
|
10
|
Holmström U, Tsitsopoulos PP, Holtz A, Salci K, Shaw G, Mondello S, Marklund N. Cerebrospinal fluid levels of GFAP and pNF-H are elevated in patients with chronic spinal cord injury and neurological deterioration. Acta Neurochir (Wien) 2020; 162:2075-2086. [PMID: 32588294 PMCID: PMC7415026 DOI: 10.1007/s00701-020-04422-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/04/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Years after a traumatic spinal cord injury (SCI), a subset of patients may develop progressive clinical deterioration due to intradural scar formation and spinal cord tethering, with or without an associated syringomyelia. Meningitis, intradural hemorrhages, or intradural tumor surgery may also trigger glial scar formation and spinal cord tethering, leading to neurological worsening. Surgery is the treatment of choice in these chronic SCI patients. OBJECTIVE We hypothesized that cerebrospinal fluid (CSF) and plasma biomarkers could track ongoing neuronal loss and scar formation in patients with spinal cord tethering and are associated with clinical symptoms. METHODS We prospectively enrolled 12 patients with spinal cord tethering and measured glial fibrillary acidic protein (GFAP), ubiquitin C-terminal hydrolase L1 (UCH-L1), and phosphorylated Neurofilament-heavy (pNF-H) in CSF and blood. Seven patients with benign lumbar intradural tumors and 7 patients with cervical radiculopathy without spinal cord involvement served as controls. RESULTS All evaluated biomarker levels were markedly higher in CSF than in plasma, without any correlation between the two compartments. When compared with radiculopathy controls, CSF GFAP and pNF-H levels were higher in patients with spinal cord tethering (p ≤ 0.05). In contrast, CSF UCH-L1 levels were not altered in chronic SCI patients when compared with either control groups. CONCLUSIONS The present findings suggest that in patients with spinal cord tethering, CSF GFAP and pNF-H levels might reflect ongoing scar formation and neuronal injury potentially responsible for progressive neurological deterioration.
Collapse
Affiliation(s)
- Ulrika Holmström
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Parmenion P Tsitsopoulos
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden.
- Department of Neurosurgery, Hippokratio General Hospital, Aristotle University Faculty of Medicine,, Thessaloniki, Greece.
| | - Anders Holtz
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Konstantin Salci
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Gerry Shaw
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Niklas Marklund
- Department of Neuroscience, Neurosurgery, Uppsala University, Uppsala, Sweden
- Department of Clinical Sciences Lund, Neurosurgery Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
11
|
Saber M, Pathak KV, McGilvrey M, Garcia-Mansfield K, Harrison JL, Rowe RK, Lifshitz J, Pirrotte P. Proteomic analysis identifies plasma correlates of remote ischemic conditioning in the context of experimental traumatic brain injury. Sci Rep 2020; 10:12989. [PMID: 32737368 PMCID: PMC7395133 DOI: 10.1038/s41598-020-69865-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 07/20/2020] [Indexed: 12/02/2022] Open
Abstract
Remote ischemic conditioning (RIC), transient restriction and recirculation of blood flow to a limb after traumatic brain injury (TBI), can modify levels of pathology-associated circulating protein. This study sought to identify TBI-induced molecular alterations in plasma and whether RIC would modulate protein and metabolite levels at 24 h after diffuse TBI. Adult male C57BL/6 mice received diffuse TBI by midline fluid percussion or were sham-injured. Mice were assigned to treatment groups 1 h after recovery of righting reflex: sham, TBI, sham RIC, TBI RIC. Nine plasma metabolites were significantly lower post-TBI (six amino acids, two acylcarnitines, one carnosine). RIC intervention returned metabolites to sham levels. Using proteomics analysis, twenty-four putative protein markers for TBI and RIC were identified. After application of Benjamini–Hochberg correction, actin, alpha 1, skeletal muscle (ACTA1) was found to be significantly increased in TBI compared to both sham groups and TBI RIC. Thus, identified metabolites and proteins provide potential biomarkers for TBI and therapeutic RIC in order to monitor disease progression and therapeutic efficacy.
Collapse
Affiliation(s)
- Maha Saber
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA.,Child Health, University of Arizona College of Medicine-Phoenix, 425 N 5th street ABC1, Phoenix, AZ, USA
| | - Khyati V Pathak
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Marissa McGilvrey
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Krystine Garcia-Mansfield
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Jordan L Harrison
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA.,Child Health, University of Arizona College of Medicine-Phoenix, 425 N 5th street ABC1, Phoenix, AZ, USA
| | - Rachel K Rowe
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA.,Child Health, University of Arizona College of Medicine-Phoenix, 425 N 5th street ABC1, Phoenix, AZ, USA.,Phoenix VA Health Care System, Phoenix, AZ, USA
| | - Jonathan Lifshitz
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA. .,Child Health, University of Arizona College of Medicine-Phoenix, 425 N 5th street ABC1, Phoenix, AZ, USA. .,Phoenix VA Health Care System, Phoenix, AZ, USA.
| | - Patrick Pirrotte
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, Phoenix, AZ, USA
| |
Collapse
|
12
|
Kunst G, Gauge N, Salaunkey K, Spazzapan M, Amoako D, Ferreira N, Green DW, Ballard C. Intraoperative Optimization of Both Depth of Anesthesia and Cerebral Oxygenation in Elderly Patients Undergoing Coronary Artery Bypass Graft Surgery—A Randomized Controlled Pilot Trial. J Cardiothorac Vasc Anesth 2020; 34:1172-1181. [DOI: 10.1053/j.jvca.2019.10.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/26/2019] [Accepted: 10/31/2019] [Indexed: 11/11/2022]
|
13
|
Pacheco JM, Hines-Lanham A, Stratton C, Mehos CJ, McCurdy KE, Pinkowski NJ, Zhang H, Shuttleworth CW, Morton RA. Spreading Depolarizations Occur in Mild Traumatic Brain Injuries and Are Associated with Postinjury Behavior. eNeuro 2019; 6:ENEURO.0070-19.2019. [PMID: 31748237 PMCID: PMC6893232 DOI: 10.1523/eneuro.0070-19.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 01/20/2023] Open
Abstract
Millions of people suffer mild traumatic brain injuries (mTBIs) every year, and there is growing evidence that repeated injuries can result in long-term pathology. The acute symptoms of these injuries may or may not include the loss of consciousness but do include disorientation, confusion, and/or the inability to concentrate. Most of these acute symptoms spontaneously resolve within a few hours or days. However, the underlying physiological and cellular mechanisms remain unclear. Spreading depolarizations (SDs) are known to occur in rodents and humans following moderate and severe TBIs, and SDs have long been hypothesized to occur in more mild injuries. Using a closed skull impact model, we investigated the presence of SDs immediately following a mTBI. Animals remained motionless for multiple minutes following an impact and once recovered had fewer episodes of movement. We recorded the defining electrophysiological properties of SDs, including the large extracellular field potential shifts and suppression of high-frequency cortical activity. Impact-induced SDs were also associated with a propagating wave of reduced cerebral blood flow (CBF). In the wake of the SD, there was a prolonged period of reduced CBF that recovered in approximately 90 min. Similar to SDs in more severe injuries, the impact-induced SDs could be blocked with ketamine. Interestingly, impacts at a slower velocity did not produce the prolonged immobility and did not initiate SDs. Our data suggest that SDs play a significant role in mTBIs and SDs may contribute to the acute symptoms of mTBIs.
Collapse
Affiliation(s)
- Johann M Pacheco
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Ashlyn Hines-Lanham
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Claire Stratton
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Carissa J Mehos
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Kathryn E McCurdy
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Natalie J Pinkowski
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Haikun Zhang
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - C William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Russell A Morton
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131
| |
Collapse
|
14
|
Chen M, Soosaipillai A, Fraser DD, Diamandis EP. Discovery of novel plasma biomarker ratios to discriminate traumatic brain injury. F1000Res 2019; 8:1695. [PMID: 32047603 PMCID: PMC6979479 DOI: 10.12688/f1000research.20445.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2019] [Indexed: 01/17/2023] Open
Abstract
Background: Traumatic brain injury (TBI) is a major cause of death and disability. Despite increased awareness, reliable biomarkers are urgently needed to aid in all forms of traumatic brain injury diagnosis and prognosis. Methods: Here, we aim to assess the diagnostic utility of known and novel TBI biomarkers in a pilot patient cohort of severe TBI (sTBI) patients and healthy controls. We analyzed concentrations of S100 calcium binding protein B (S100B), neuron specific enolase (NSE), human kallikrein 6 (hK6) and prostaglandin D2 synthase (PGDS) using ELISA immunoassays. Results: Plasma levels of hK6 and PGDS were significantly lower in sTBI compared with controls, while S100B and NSE were significantly higher. Furthermore, we show that ratios of NSE and S100B with hK6 and PGDS may be able to determine the presence of sTBI better than single markers alone. Conclusions: The findings presented here represent a starting point for future validation, where biomarker ratios can be tested in independent TBI cohorts.
Collapse
Affiliation(s)
- Michelle Chen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Antoninus Soosaipillai
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Douglas D. Fraser
- Department of Pediatrics, Western University, London, Ontario, Canada
| | - Eleftherios P. Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Clinical Biochemistry, University Health Network, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Fong TG, Vasunilashorn SM, Libermann T, Marcantonio ER, Inouye SK. Delirium and Alzheimer disease: A proposed model for shared pathophysiology. Int J Geriatr Psychiatry 2019; 34:781-789. [PMID: 30773695 PMCID: PMC6830540 DOI: 10.1002/gps.5088] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 02/07/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Tamara G. Fong
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA,Aging Brain Center, Institute for Aging Research, Hebrew SeniorLife, Boston, MA,Harvard Medical School, Boston, MA
| | | | - Towia Libermann
- Harvard Medical School, Boston, MA,Division of Interdisciplinary Medicine and Biotechnology, BIDMC, Boston, MA.,BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center, Boston, MA
| | - Edward R. Marcantonio
- Harvard Medical School, Boston, MA,Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Sharon K. Inouye
- Aging Brain Center, Institute for Aging Research, Hebrew SeniorLife, Boston, MA,Harvard Medical School, Boston, MA,Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| |
Collapse
|
16
|
Predicting Concussion Recovery in Children and Adolescents in the Emergency Department. Curr Neurol Neurosci Rep 2018; 18:78. [DOI: 10.1007/s11910-018-0881-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
The protective effect of α-lipoic acid against bisphenol A-induced neurobehavioral toxicity. Neurochem Int 2018; 118:166-175. [DOI: 10.1016/j.neuint.2018.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/30/2018] [Accepted: 06/12/2018] [Indexed: 01/09/2023]
|