1
|
Gong X, Liu Y, Liang K, Chen Z, Ding K, Qiu L, Wei J, Du H. Cucurbitacin I exerts its anticancer effects by inducing cell cycle arrest via the KAT2a-ube2C/E2F1 pathway and inhibiting HepG2-induced macrophage M2 polarization. Biochem Biophys Res Commun 2024; 738:150508. [PMID: 39151295 DOI: 10.1016/j.bbrc.2024.150508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies globally, particularly prevalent in China, where it accounts for nearly half of the world's new cases and deaths each year, but has limited therapeutic options. This study systematically investigated the impact of cucurbitacin I on HCC cell lines including SK-Hep-1, Huh-7, and HepG2. The results revealed that cucurbitacin I not only inhibited cell proliferation, cell migration and colony formation, but also induced apoptosis in HCC cells. The apoptotic induction was accompanied by a decrease in the expression of the anti-apoptotic factor B-cell lymphoma 2 (Bcl2), and an elevation in the expression levels of pro-apoptotic factors, including tumor protein p53 (P53), bcl2 associated X-apoptosis regulator (Bax), and caspase3 (Cas3). Additionally, cucurbitacin I caused cell cycle arrest by modulating the lysine acetyltransferase 2A (KAT2A)-E2F transcription factor 1 (E2F1)/Ubiquitin-conjugating enzyme E2 C (UBE2C) signaling axis. In terms of regulation on tumor microenvironment, cucurbitacin I was demonstrated the ability to inhibit HCC cell-induced M2 polarization of macrophages. This comprehensive study unveils the multifaceted anti-cancer mechanisms of cucurbitacin I, providing robust support for its potential application in the treatment of HCC, offering new avenues for the future development of HCC treatment strategies.
Collapse
Affiliation(s)
- Xiaocheng Gong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
| | - Yunfei Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
| | - Keying Liang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
| | - Zixi Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
| | - Ke Ding
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
| | - Li Qiu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
| | - Jinfen Wei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China.
| |
Collapse
|
2
|
Kumar S, Pandey AK. Potential Molecular Targeted Therapy for Unresectable Hepatocellular Carcinoma. Curr Oncol 2023; 30:1363-1380. [PMID: 36826066 PMCID: PMC9955633 DOI: 10.3390/curroncol30020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal cancers, representing a serious worldwide health concern. The recurrence incidence of hepatocellular carcinoma (HCC) following surgery or ablation is as high as 70%. Thus, the clinical applicability of standard surgery and other locoregional therapy to improve the outcomes of advanced HCC is restricted and far from ideal. The registered trials did not identify a treatment that prolonged recurrence-free survival, the primary outcome of the majority of research. Several investigator-initiated trials have demonstrated that various treatments extend patients' recurrence-free or overall survival after curative therapies. In the past decade, targeted therapy has made significant strides in the treatment of advanced HCC. These targeted medicines produce antitumour effects via specific signals, such as anti-angiogenesis or advancement of the cell cycle. As a typical systemic treatment option, it significantly improves the prognosis of this fatal disease. In addition, the combination of targeted therapy with an immune checkpoint inhibitor is redefining the paradigm of advanced HCC treatment. In this review, we focused on the role of approved targeted medicines and potential therapeutic targets in unresectable HCC.
Collapse
Affiliation(s)
- Shashank Kumar
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Guddha, Bathinda 151401, Punjab, India
| | - Abhay Kumar Pandey
- Department of Biochemistry, University of Allahabad, University Road, Prayagraj 211002, Uttar Pradesh, India
| |
Collapse
|
3
|
Zhong Z, Xu M, Tan J. Identification of an Oxidative Stress-Related LncRNA Signature for Predicting Prognosis and Chemotherapy in Patients With Hepatocellular Carcinoma. Pathol Oncol Res 2022; 28:1610670. [PMID: 36277962 PMCID: PMC9579291 DOI: 10.3389/pore.2022.1610670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/22/2022] [Indexed: 12/16/2022]
Abstract
Background: Oxidative stress plays a critical role in oncogenesis and tumor progression. However, the prognostic role of oxidative stress-related lncRNA in hepatocellular carcinomas (HCC) has not been fully explored. Methods: We used the gene expression data and clinical data from The Cancer Genome Atlas (TCGA) database to identify oxidative stress-related differentially expressed lncRNAs (DElncRNAs) by pearson correlation analysis. A four-oxidative stress-related DElncRNA signature was constructed by LASSO regression and Cox regression analyses. The predictive signature was further validated by Kaplan-Meier (K-M) survival analysis, receiver operating characteristic (ROC) curves, nomogram and calibration plots, and principal component analysis (PCA). Single-sample gene set enrichment analysis (ssGSEA) was used to explore the relationship between the signature and immune status. Finally, the correlation between the signature and chemotherapeutic response of HCC patients was analyzed. Results: In our study, the four-DElncRNA signature was not only proved to be a robust independent prognostic factor for overall survival (OS) prediction, but also played a crucial role in the regulation of progression and chemotherapeutic response of HCC. ssGSEA showed that the signature was correlated with the infiltration level of immune cells. HCC patients in high-risk group were more sensitive to the conventional chemotherapeutic drugs including Sorafenib, lapatinib, Nilotinib, Gefitinib, Erlotinib and Dasatinib, which pave the way for targeting DElncRNA-associated treatments for HCC patients. Conclusion: Our study has originated a prognostic signature for HCC based on oxidative stress-related DElncRNAs, deepened the understanding of the biological role of four key DElncRNAs in HCC and laid a theoretical foundation for the choice of chemotherapy.
Collapse
Affiliation(s)
- Zixuan Zhong
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, China
- Department of Experimental Center, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Minxuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, China
| |
Collapse
|
4
|
Kamal MA, Mandour YM, Abd El-Aziz MK, Stein U, El Tayebi HM. Small Molecule Inhibitors for Hepatocellular Carcinoma: Advances and Challenges. Molecules 2022; 27:5537. [PMID: 36080304 PMCID: PMC9457820 DOI: 10.3390/molecules27175537] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 12/12/2022] Open
Abstract
According to data provided by World Health Organization, hepatocellular carcinoma (HCC) is the sixth most common cause of deaths due to cancer worldwide. Tremendous progress has been achieved over the last 10 years developing novel agents for HCC treatment, including small-molecule kinase inhibitors. Several small molecule inhibitors currently form the core of HCC treatment due to their versatility since they would be more easily absorbed and have higher oral bioavailability, thus easier to formulate and administer to patients. In addition, they can be altered structurally to have greater volumes of distribution, allowing them to block extravascular molecular targets and to accumulate in a high concentration in the tumor microenvironment. Moreover, they can be designed to have shortened half-lives to control for immune-related adverse events. Most importantly, they would spare patients, healthcare institutions, and society as a whole from the burden of high drug costs. The present review provides an overview of the pharmaceutical compounds that are licensed for HCC treatment and other emerging compounds that are still investigated in preclinical and clinical trials. These molecules are targeting different molecular targets and pathways that are proven to be involved in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Monica A. Kamal
- The Molecular Pharmacology Research Group, Department of Pharmacology, Toxicology and Clinical Pharmacy, Faculty of Pharmacy and Biotechnology, German University in Cairo-GUC, Cairo 11835, Egypt
| | - Yasmine M. Mandour
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo 11578, Egypt
| | - Mostafa K. Abd El-Aziz
- The Molecular Pharmacology Research Group, Department of Pharmacology, Toxicology and Clinical Pharmacy, Faculty of Pharmacy and Biotechnology, German University in Cairo-GUC, Cairo 11835, Egypt
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Hend M. El Tayebi
- The Molecular Pharmacology Research Group, Department of Pharmacology, Toxicology and Clinical Pharmacy, Faculty of Pharmacy and Biotechnology, German University in Cairo-GUC, Cairo 11835, Egypt
| |
Collapse
|
5
|
Xie H, Shi M, Liu Y, Cheng C, Song L, Ding Z, Jin H, Cui X, Wang Y, Yao D, Wang P, Yao M, Zhang H. Identification of m6A- and ferroptosis-related lncRNA signature for predicting immune efficacy in hepatocellular carcinoma. Front Immunol 2022; 13:914977. [PMID: 36032107 PMCID: PMC9402990 DOI: 10.3389/fimmu.2022.914977] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/13/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) methylation and ferroptosis assist long noncoding RNAs (lncRNAs) in promoting immune escape in hepatocellular carcinoma (HCC). However, the predictive value of m6A- and ferroptosis-related lncRNAs (mfrlncRNAs) in terms of immune efficacy remains unknown. METHOD A total of 365 HCC patients with complete data from The Cancer Genome Atlas (TCGA) database were used as the training cohort, and half of them were randomly selected as the validation cohort. A total of 161 HCC patients from the International Cancer Genome Consortium (ICGC) database were used as external validation (ICGC cohort). RESULTS We first identified a group of specific lncRNAs associated with both m6A regulators and ferroptosis-related genes and then constructed prognosis-related mfrlncRNA pairs. Based on this, the mfrlncRNA signature was constructed using the least absolute shrinkage and selection operator (LASSO) analysis and Cox regression. Notably, the risk score of patients was proven to be an independent prognostic factor and was better than the TNM stage and tumor grade. Moreover, patients with high-risk scores had lower survival rates, higher infiltration of immunosuppressive cells (macrophages and Tregs), lower infiltration of cytotoxic immune cells (natural killer cells), poorer immune efficacy (both immunophenoscore and score of tumor immune dysfunction and exclusion), higher IC50, and enrichment of the induced Treg pathway, which confirmed that the mfrlncRNA signature contributed to survival prediction and risk stratification of patients with HCC. CONCLUSIONS The mfrlncRNA signature, which has great prognostic value, provides new clues for identifying "cold" and "hot" tumors and might have crucial implications for individualized therapy to improve the survival rate of patients with HCC.
Collapse
Affiliation(s)
- Hongjun Xie
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, and Medical School of Nantong University, Nantong, China
| | - Muqi Shi
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, and Medical School of Nantong University, Nantong, China
| | - Yifei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Changhong Cheng
- Department of Clinical Laboratory, People’s Hospital of Ganyu District, Lianyungang, China
| | - Lining Song
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, and Medical School of Nantong University, Nantong, China
| | - Zihan Ding
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, and Medical School of Nantong University, Nantong, China
| | - Huanzhi Jin
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, and Medical School of Nantong University, Nantong, China
| | - Xiaohong Cui
- Department of General Surgery, Shanghai Electric Power Hospital, Shanghai, China
| | - Yan Wang
- Department of Emergency, Affiliated Hospital of Nantong University, Nantong, China
| | - Dengfu Yao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, and Medical School of Nantong University, Nantong, China
| | - Peng Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Min Yao
- Department of Immunology, Medical School of Nantong University, Nantong, China
| | - Haijian Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, and Medical School of Nantong University, Nantong, China
| |
Collapse
|
6
|
Brown ZJ, Hewitt DB, Pawlik TM. Experimental drug treatments for hepatocellular carcinoma: Clinical trial failures 2015 to 2021. Expert Opin Investig Drugs 2022; 31:693-706. [PMID: 35580650 DOI: 10.1080/13543784.2022.2079491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is a major health problem worldwide with limited systemic therapy options. Since the approval of sorafenib in 2008, no systemic therapy has provided a sustained/robust/survival benefit for patients with advanced HCC until recently. Many initially promising therapies have been trialed, but survival outcomes remained stagnant. As such, knowledge concerning previous treatment failures may help guide further areas of study, as well inform future therapeutic approaches. AREA COVERED This article reviews recent advances in the treatment of HCC. Despite some recent success, many systemic and locoregional therapies have failed to produce significant improvements in outcome. These treatment failures are examined and insight into pathways for future success are discussed. EXPERT OPINION Combination atezolizumab and bevacizumab has changed the landscape of systemic treatment for patients with HCC when it became the first therapy after demonstrating improve outcomes over sorafenib. Clinical trials in patients with advanced HCC have inherent difficulty with challenges to determine if a patient's declining liver function is secondary to disease progression, worsening cirrhosis, or drug toxicity, which may skew results. As we gain more knowledge of underlying genetic alterations behind the pathophysiology of the development of HCC, molecular markers may be identified to assist in predicting which patients would respond to a specific therapy.
Collapse
|
7
|
T-box transcription factor 19 promotes hepatocellular carcinoma metastasis through upregulating EGFR and RAC1. Oncogene 2022; 41:2225-2238. [PMID: 35217793 DOI: 10.1038/s41388-022-02249-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/29/2022] [Accepted: 02/14/2022] [Indexed: 12/21/2022]
Abstract
The effect of targeted therapy for metastatic hepatocellular carcinoma (HCC) is still unsatisfactory. Exploring the underlying mechanism of HCC metastasis is favorable to provide new therapeutic strategies. T-box (TBX) transcription factor family genes, which are crucial regulators in embryo and organ development, are vital for regulating tumor initiation, growth and metastasis. Here we explored the role of TBX19 in HCC metastasis, which is one of the most upregulated TBX family genes in human HCC tissues. TBX19 expression was markedly upregulated in HCC tissues and elevated TBX19 expression predicted poor prognosis. Overexpression of TBX19 enhanced HCC metastasis through upregulating epidermal growth factor receptor (EGFR) and Rac family small GTPase 1 (RAC1) expression. Downregulation of EGFR and RAC1 inhibited TBX19-mediated HCC metastasis, while upregulation of EGFR and RAC1 restored inhibition of HCC metastasis mediated by TBX19 knockdown. Furthermore, epidermal growth factor (EGF)/EGFR signaling upregulated TBX19 expression via the extracellular signal-regulated kinase (ERK)/nuclear factor (NF)-kB axis. Besides, the combined application of EGFR inhibitor Erlotinib and RAC1 inhibitor NSC23766 markedly inhibited TBX19-mediated HCC metastasis. In HCC cohorts, TBX19 expression was positively associated with EGFR and RAC1 expression. Patients with positive coexpression of TBX19/EGFR or TBX19/RAC1 displayed the poorest prognosis. In conclusion, EGF/EGFR signaling upregulated TBX19 expression via ERK/NF-kB pathway and TBX19 fostered HCC metastasis by enhancing EGFR and RAC1 expression, which formed an EGF-TBX19-EGFR positive feedback loop. Targeting this signaling pathway may offer a potential therapeutic strategy to efficiently restrain TBX19-mediated HCC metastasis.
Collapse
|
8
|
Golriz Khatami S, Mubeen S, Bharadhwaj VS, Kodamullil AT, Hofmann-Apitius M, Domingo-Fernández D. Using predictive machine learning models for drug response simulation by calibrating patient-specific pathway signatures. NPJ Syst Biol Appl 2021; 7:40. [PMID: 34707117 PMCID: PMC8551267 DOI: 10.1038/s41540-021-00199-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 09/21/2021] [Indexed: 11/21/2022] Open
Abstract
The utility of pathway signatures lies in their capability to determine whether a specific pathway or biological process is dysregulated in a given patient. These signatures have been widely used in machine learning (ML) methods for a variety of applications including precision medicine, drug repurposing, and drug discovery. In this work, we leverage highly predictive ML models for drug response simulation in individual patients by calibrating the pathway activity scores of disease samples. Using these ML models and an intuitive scoring algorithm to modify the signatures of patients, we evaluate whether a given sample that was formerly classified as diseased, could be predicted as normal following drug treatment simulation. We then use this technique as a proxy for the identification of potential drug candidates. Furthermore, we demonstrate the ability of our methodology to successfully identify approved and clinically investigated drugs for four different cancers, outperforming six comparable state-of-the-art methods. We also show how this approach can deconvolute a drugs' mechanism of action and propose combination therapies. Taken together, our methodology could be promising to support clinical decision-making in personalized medicine by simulating a drugs' effect on a given patient.
Collapse
Affiliation(s)
- Sepehr Golriz Khatami
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin, 53757, Germany.
- Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, 53115, Bonn, Germany.
| | - Sarah Mubeen
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin, 53757, Germany
- Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, 53115, Bonn, Germany
- Fraunhofer Center for Machine Learning, Sankt Augustin, Germany
| | - Vinay Srinivas Bharadhwaj
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin, 53757, Germany
- Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, 53115, Bonn, Germany
| | - Alpha Tom Kodamullil
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin, 53757, Germany
| | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin, 53757, Germany
- Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, 53115, Bonn, Germany
| | - Daniel Domingo-Fernández
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Sankt Augustin, 53757, Germany.
- Fraunhofer Center for Machine Learning, Sankt Augustin, Germany.
- Enveda Biosciences, Boulder, CO, 80301, USA.
| |
Collapse
|
9
|
Álvarez-Mercado AI, Caballeria-Casals A, Rojano-Alfonso C, Chávez-Reyes J, Micó-Carnero M, Sanchez-Gonzalez A, Casillas-Ramírez A, Gracia-Sancho J, Peralta C. Insights into Growth Factors in Liver Carcinogenesis and Regeneration: An Ongoing Debate on Minimizing Cancer Recurrence after Liver Resection. Biomedicines 2021; 9:1158. [PMID: 34572344 PMCID: PMC8470173 DOI: 10.3390/biomedicines9091158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma has become a leading cause of cancer-associated mortality throughout the world, and is of great concern. Currently used chemotherapeutic drugs in the treatment of hepatocellular carcinoma lead to severe side effects, thus underscoring the need for further research to develop novel and safer therapies. Liver resection in cancer patients is routinely performed. After partial resection, liver regeneration is a perfectly calibrated response apparently sensed by the body's required liver function. This process hinges on the effect of several growth factors, among other molecules. However, dysregulation of growth factor signals also leads to growth signaling autonomy and tumor progression, so control of growth factor expression may prevent tumor progression. This review describes the role of some of the main growth factors whose dysregulation promotes liver tumor progression, and are also key in regenerating the remaining liver following resection. We herein summarize and discuss studies focused on partial hepatectomy and liver carcinogenesis, referring to hepatocyte growth factor, insulin-like growth factor, and epidermal growth factor, as well as their suitability as targets in the treatment of hepatocellular carcinoma. Finally, and given that drugs remain one of the mainstay treatment options in liver carcinogenesis, we have reviewed the current pharmacological approaches approved for clinical use or research targeting these factors.
Collapse
Affiliation(s)
- Ana I. Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology, Biomedical Research Center, University of Granada, 18016 Armilla, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Albert Caballeria-Casals
- Hepatic Ischemia-Reperfusion Injury Department, Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.C.-C.); (C.R.-A.); (M.M.-C.)
| | - Carlos Rojano-Alfonso
- Hepatic Ischemia-Reperfusion Injury Department, Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.C.-C.); (C.R.-A.); (M.M.-C.)
| | - Jesús Chávez-Reyes
- Facultad de Medicina e Ingeniería en Sistemas Computacionales Matamoros, Universidad Autónoma de Tamaulipas, Matamoros 87300, Mexico; (J.C.-R.); (A.C.-R.)
| | - Marc Micó-Carnero
- Hepatic Ischemia-Reperfusion Injury Department, Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.C.-C.); (C.R.-A.); (M.M.-C.)
| | - Alfredo Sanchez-Gonzalez
- Teaching and Research Department, Hospital Regional de Alta Especialidad de Ciudad Victoria “Bicentenario 2010”, Ciudad Victoria 87087, Mexico;
| | - Araní Casillas-Ramírez
- Facultad de Medicina e Ingeniería en Sistemas Computacionales Matamoros, Universidad Autónoma de Tamaulipas, Matamoros 87300, Mexico; (J.C.-R.); (A.C.-R.)
- Teaching and Research Department, Hospital Regional de Alta Especialidad de Ciudad Victoria “Bicentenario 2010”, Ciudad Victoria 87087, Mexico;
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, CIBEREHD, 03036 Barcelona, Spain;
- Barcelona Hepatic Hemodynamic Laboratory, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
| | - Carmen Peralta
- Hepatic Ischemia-Reperfusion Injury Department, Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (A.C.-C.); (C.R.-A.); (M.M.-C.)
| |
Collapse
|
10
|
Qing X, Xu W, Zong J, Du X, Peng H, Zhang Y. Emerging treatment modalities for systemic therapy in hepatocellular carcinoma. Biomark Res 2021; 9:64. [PMID: 34419152 PMCID: PMC8380325 DOI: 10.1186/s40364-021-00319-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has long been a major global clinical problem as one of the most common malignant tumours with a high rate of recurrence and mortality. Although potentially curative therapies are available for the early and intermediate stages, the treatment of patients with advanced HCC remains to be resolved. Fortunately, the past few years have shown the emergence of successful systemic therapies to treat HCC. At the molecular level, HCC is a heterogeneous disease, and current research on the molecular characteristics of HCC has revealed numerous therapeutic targets. Targeted agents based on signalling molecules have been successfully supported in clinical trials, and molecular targeted therapy has already become a milestone for disease management in patients with HCC. Immunotherapy, a viable approach for the treatment of HCC, recognizes the antigens expressed by the tumour and treats the tumour using the immune system of the host, making it both selective and specific. In addition, the pipeline for HCC is evolving towards combination therapies with promising clinical outcomes. More drugs designed to focus on specific pathways and immune checkpoints are being developed in the clinic. It has been demonstrated that some drugs can improve the prognosis of patients with HCC in first- or second-line settings, and these drugs have been approved by the Food and Drug Administration or are nearing approval. This review describes targeting pathways and systemic treatment strategies in HCC and summarizes effective targeted and immune-based drugs for patients with HCC and the problems encountered.
Collapse
Affiliation(s)
- Xin Qing
- Department of General Surgery, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Wenjing Xu
- Department of General Surgery, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Jingjing Zong
- Department of General Surgery, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Xuanlong Du
- Department of General Surgery, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Hao Peng
- Department of General Surgery, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Yewei Zhang
- Department of General Surgery, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
11
|
Zheng S, Ni J, Li Y, Lu M, Yao Y, Guo H, Jiao M, Jin T, Zhang H, Yuan A, Wang Z, Yang Y, Chen Z, Wu H, Hu W. 2-Methoxyestradiol synergizes with Erlotinib to suppress hepatocellular carcinoma by disrupting the PLAGL2-EGFR-HIF-1/2α signaling loop. Pharmacol Res 2021; 169:105685. [PMID: 34022398 DOI: 10.1016/j.phrs.2021.105685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/29/2022]
Abstract
Erlotinib, an EGFR tyrosine kinase inhibitor has been introduced into cancer chemotherapy. However, the therapeutic effects of erlotinib in hepatocellular carcinoma (HCC) remain vaguely understood. Our previous study found that a hypoxia-mediated PLAGL2-EGFR-HIF-1/2α signaling loop in HCC decreased response to erlotinib. The current study has demonstrated that the combination of erlotinib and 2ME2 exerted synergistic antitumor effects against HCC. Further investigation showed that erlotinib increased the expression level of EGFR, HIF-2α, and PLAGL2, which contributes to the insensitivity of hypoxic HCC cells to erlotinib. The simultaneous exposure to 2ME2 effectively inhibited the expression level of EGFR, HIF-2α, and PLAGL2 that was induced by erlotinib. This contributes to the synergistic effect of the two therapeutic agents. Furthermore, the combination of erlotinib and 2ME2 induced apoptosis and inhibited the stemness of hypoxic HCC cells. Our findings potentially explain the mechanism of HCC insensitivity to erlotinib and provide a new strategy of combining EGFR and HIF1/2α inhibitors for HCC treatment.
Collapse
Affiliation(s)
- Shufang Zheng
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; College of Pharmacy, Pharmacy Experimental Center, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, China
| | - Jiaping Ni
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Ying Li
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Mingying Lu
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yuchen Yao
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Haixin Guo
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Meng Jiao
- College of Pharmacy, Pharmacy Experimental Center, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, China
| | - Tianle Jin
- College of Pharmacy, Pharmacy Experimental Center, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, China
| | - Haoying Zhang
- College of Pharmacy, Pharmacy Experimental Center, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, China
| | - Ansheng Yuan
- College of Pharmacy, Pharmacy Experimental Center, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, China
| | - Zhuo Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Yong Yang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Zhen Chen
- College of Pharmacy, Pharmacy Experimental Center, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, China.
| | - Hongxi Wu
- College of Pharmacy, Pharmacy Experimental Center, China Pharmaceutical University, Nanjing 211198, Jiangsu Province, China.
| | - Weiwei Hu
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
12
|
Wang T, Zhang Q, Wang N, Liu Z, Zhang B, Zhao Y. Research Progresses of Targeted Therapy and Immunotherapy for Hepatocellular Carcinoma. Curr Med Chem 2021; 28:3107-3146. [PMID: 33050856 DOI: 10.2174/0929867327666201013162144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/25/2020] [Accepted: 09/01/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide, with nearly one million new cases and deaths every year. Owing to the complex pathogenesis, hidden early symptoms, rapidly developing processes, and poor prognosis, the morbidity and mortality of HCC are increasing yearly. With the progress being made in modern medicine, the treatment of HCC is no longer limited to traditional methods. Targeted therapy and immunotherapy have emerged to treat advanced and metastatic HCC in recent years. Since Sorafenib is the first molecular targeting drug against angiogenesis, targeted drugs for HCC are continually emerging. Moreover, immunotherapy plays a vital role in clinical trials. In particular, the application of immune checkpoint inhibitors, which have received increasing attention in the field of cancer treatment, is a possible research path. Interestingly, these two therapies generally complement each other at some stages of HCC, bringing new hope for patients with advanced HCC. In this paper, we discuss the research progress of targeted therapy and immunotherapy for HCC in recent years, which will provide a reference for the further development of drugs for HCC.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qiting Zhang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Ning Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Ziqi Liu
- Department of Pharmacy, the PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Bin Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
13
|
Abdel-Ghany SE, El-Sayed E, Ashraf N, Mokhtar N, Alqosaibi A, Cevik E, Bozkurt A, Mohamed EW, Sabit H. Titanium Oxide Nanoparticles Improve the Chemotherapeutic Action of Erlotinib in Liver Cancer Cells. CURRENT CANCER THERAPY REVIEWS 2020. [DOI: 10.2174/1573394715666191204101739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background:
Hepatocellular carcinoma is the second leading cause of cancer-related
deaths among other types of cancer due to lack of effective treatments and late diagnosis. Nanocarriers
represent a novel method to deliver chemotherapeutic drugs, enhancing their bioavailability
and stability.
Methods:
In the present study, we loaded gold nanoparticles (AuNPs) and titanium oxide
nanoparticles (TiO2NPs) with ERL to investigate the efficiency of the formed composite in inducing
apoptosis in HepG2 liver cancer cells. Cytotoxicity was assessed using MTT assay and cell
phase distribution was assessed by flow cytometry along with apoptosis detection.
Results:
Data obtained indicated the efficiency of the formed composite to significantly induce
cell death and arrest cell cycle and G2/M phase. IRF4 was downregulated after treatment with
loaded ERL.
Conclusion:
Our data showed that loading ERL on TiO2NPs was more efficient than AuNPs.
However, both nanocarriers were efficient compared with control.
Collapse
Affiliation(s)
- Shaimaa E. Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, P.O. Box 77, Giza, Egypt
| | - Eman El-Sayed
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, P.O. Box 77, Giza, Egypt
| | - Nour Ashraf
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, P.O. Box 77, Giza, Egypt
| | - Nada Mokhtar
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, P.O. Box 77, Giza, Egypt
| | - Amany Alqosaibi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| | - Emre Cevik
- Department of Genetics, Institute for Medical Research and Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| | - Ayhan Bozkurt
- Department of Physics, Institute for Medical Research and Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| | - Eman W. Mohamed
- College of Science, Hafr Al Batin University, Hafr Al Batin, Saudi Arabia
| | - Hussein Sabit
- Department of Genetics, Institute for Medical Research and Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| |
Collapse
|
14
|
Vorinostat-loaded titanium oxide nanoparticles (anatase) induce G2/M cell cycle arrest in breast cancer cells via PALB2 upregulation. 3 Biotech 2020; 10:407. [PMID: 32904337 DOI: 10.1007/s13205-020-02391-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is a group of diseases in which cells divide out of controlled, typically resulting in a mass. Erlotinib is targeted cancer drug which functions as an inhibitor of the epidermal growth factor receptor (EGFR) tyrosine kinase. It is used mainly to treat of non-small cell lung cancer patients and has an action against pancreatic cancer. Vorinostat (aka suberanilohydroxamic acid) is an inhibitor of histone deacetylases (HDAC), which has an epigenetic modulation activity. It is used to treat cutaneous T cell lymphoma. In the present study, the erlotinib (ERL) and vorinostat (SAHA) loaded TiO2 nanoparticles (NPs) were used for the treatment of the breast cancer cells (MDA-MB-231 and MCF-7) and human cancerous amniotic cells (WISH). Cell count and viability were negatively affected in all treatments compared to normal cells and bare TiO2 NPs. Apoptosis results indicated a significant increase in the total apoptosis in all treatments compared with control cells. ERL- and SAHA-loaded TiO2 NPs treatments arrested breast cancer cells at G2/M phase, which indicate the cytotoxic effect of these treatment. Partner and localizer of BRCA2 (PALB2) gene expression was assessed using qPCR. The results indicate that PLAB2 was upregulated in ERL- and SAHA-loaded TiO2 NPs compared with control cells and can be used as nanocarrier for chemotherapy drugs. However, this conclusion necessitates further confirmative investigation.
Collapse
|
15
|
Eatrides J, Wang E, Kothari N, Kim R. Role of Systemic Therapy and Future Directions for Hepatocellular Carcinoma. Cancer Control 2018; 24:1073274817729243. [PMID: 28975834 PMCID: PMC5937243 DOI: 10.1177/1073274817729243] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is an aggressive tumor that often arises in the setting of liver cirrhosis. Although early-stage disease is often amenable for surgical resection, transplant, or locoregional therapies, many patients are diagnosed at an advanced stage or have poor liver reserve. Systemic therapy is the mainstay of treatment for these patients. At present, the only approved therapy for the treatment of advanced disease is the tyrosine multikinase inhibitor sorafenib. Candidacy for treatment is based on liver reserve. Novel agents for the treatment of this disease are urgently needed. In this article, we review systemic therapy trials and upcoming data for the treatment of HCC.
Collapse
Affiliation(s)
- Jennifer Eatrides
- 1 Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Emilie Wang
- 1 Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Nishi Kothari
- 1 Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Richard Kim
- 1 Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| |
Collapse
|
16
|
Giovannini C, Fornari F, Dallo R, Gagliardi M, Nipoti E, Vasuri F, Coadă CA, Ravaioli M, Bolondi L, Gramantieri L. MiR-199-3p replacement affects E-cadherin expression through Notch1 targeting in hepatocellular carcinoma. Acta Histochem 2018; 120:95-102. [PMID: 29249451 DOI: 10.1016/j.acthis.2017.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/23/2017] [Accepted: 12/12/2017] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) represents the second cause of cancer-related mortality worldwide and is associated with poor prognosis, due to a high recurrence rate after curative treatments and a drug resistance phenotype. In this scenario, the identification of innovative and effective therapeutic strategies is an unmet clinical need. The safety and efficacy of microRNA (miRNA) mediated approaches in preclinical models and clinical trials have been widely described in cancer. MicroRNA-199a downregulation is a common feature of HCC where its reduced expression contributes to mTOR and c-Met pathways activation. Notch1 activation is also a common event in HCC, influencing epithelial-to-mesenchymal transition, tumor invasion and recurrence at least in part through E-cadherin regulation. Here we identified a negative correlation between miR-199a-3p and Notch1 or E-cadherin protein levels in HCC patients and demonstrated that miR-199a-3p regulates E-cadherin expression through Notch1 direct targeting in in vitro models. Moreover, we showed that a strong correlation exists between miR-199a-5p and miR-199a-3p in HCC specimens and that miR-199a-5p contributes to E-cadherin regulation as well, underlying the complex network of interaction carried out by miR-199a and its influence on tumor aggressiveness. In conclusion, our findings suggest the restoration of miR-199a-3p physiologic levels as a possible therapeutic strategy for the treatment of HCC.
Collapse
|
17
|
Pei Y, Sun X, Guo X, Yin H, Wang L, Tian F, Jing H, Liang X, Xu J, Shi P. FGF8 promotes cell proliferation and resistance to EGFR inhibitors via upregulation of EGFR in human hepatocellular carcinoma cells. Oncol Rep 2017; 38:2205-2210. [PMID: 28791365 DOI: 10.3892/or.2017.5887] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/13/2017] [Indexed: 11/06/2022] Open
Abstract
Fibroblast growth factor 8 (FGF8), a member of the fibroblast growth factor (FGF) family, is upregulated in several human cancers, including HCC (HCC). Previous studies have demonstrated that FGF8 increased cell growth and invasion of tumor cells. In the present study we investigated whether FGF8 is involved in the cell proliferation and resistance to several drugs in human HCC cells. We stably overexpressed FGF8 by lentiviral transfection. In addition, we also added recombinant FGF8 instead of stably overexpressing FGF8 in human HCC cells. Stable overexpression of FGF8 or exogenous recombinant FGF8 resulted in significantly enhanced cell proliferation in human HCC cells. With the use of CellTiter-Glo assay for the determination of cell viability, we found that FGF8 increased the resistance to epidermal growth factor receptor (EGFR) inhibitors in human HCC cells. Additionally, the expression of EGFR was also upregulated by stably overexpressing FGF8 or exogenous recombinant FGF8. Yes-associated protein 1 (YAP1) was reported to upregulate the expression of EGFR. Moreover, we also found that FGF8 increased the expression of YAP1 and knockdown of YAP1 eliminated the upregulation of EGFR and the resistance to EGFR inhibition induced by FGF8. Our study provides evidence that FGF8 plays an important role in the resistance to EGFR inhibition of human HCC cells.
Collapse
Affiliation(s)
- Yuanmin Pei
- Department of General Surgery, Yidu Central Hospital of Weifang, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Xueling Sun
- Department of General Surgery, Yidu Central Hospital of Weifang, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Xiwei Guo
- Department of General Surgery, Yidu Central Hospital of Weifang, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Huashan Yin
- Department of General Surgery, Yidu Central Hospital of Weifang, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Le Wang
- Shanxi Breast Cancer Center, Shanxi Cancer Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Fugu Tian
- Shanxi Breast Cancer Center, Shanxi Cancer Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Hongxi Jing
- Shanxi Breast Cancer Center, Shanxi Cancer Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xiaobo Liang
- Shanxi Breast Cancer Center, Shanxi Cancer Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jun Xu
- Shanxi Breast Cancer Center, Shanxi Cancer Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Pengcheng Shi
- Shanxi Breast Cancer Center, Shanxi Cancer Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
18
|
de Rosamel L, Blanc JF. Emerging tyrosine kinase inhibitors for the treatment of hepatocellular carcinoma. Expert Opin Emerg Drugs 2017; 22:175-190. [PMID: 28604110 DOI: 10.1080/14728214.2017.1336538] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is the fifth most diagnosed cancer in the world and the third leading cause of death. Unfortunately, when diagnosed two thirds of patients have an advanced disease for which only palliative treatment can be proposed and most likely systemic therapy. Areas covered: As of today only one systemic therapy is validated in the treatment of advanced HCC, a tyrosine kinase inhibitor (TKI): Sorafenib. Treatment options are therefore lacking. With the advent of Sorafenib other TKIs have been studied with some disappointing results. Many explanations can be found to the failure of these tested TKIs such as the underlying cirrhosis leading to rapidly serious adverse events, or trial design imperfections. Expert opinion: Taking into account these failures, new trials with more appropriate designs have led to recent success with multi-target TKIs (Regorafenib and Lenvatinib). This multi-target approach allows to overcome the molecular heterogeneity of advanced HCC which is associated with multiple simultaneously dysregulated signaling pathways. On the contrary, another lead is to study target a specific TKI such as c-MET inhibitors or TGFβR inhibitors in HCC sub-populations with promising results in early phase trials. These results will have to be validated in the ongoing phase III trials.
Collapse
Affiliation(s)
- Laure de Rosamel
- a Service d'Hépato-Gastroentérologie et d'Oncologie Digestive , Hôpital Haut-Lévêque, CHU , Pessac , France
| | - Jean-Frederic Blanc
- a Service d'Hépato-Gastroentérologie et d'Oncologie Digestive , Hôpital Haut-Lévêque, CHU , Pessac , France
| |
Collapse
|