1
|
Katrak VK, Patel NA, Ijardar SP. The Physicochemical Properties and Plausible Implication of Deep Eutectic Solvents in Analytical Techniques. Crit Rev Anal Chem 2025:1-24. [PMID: 40203288 DOI: 10.1080/10408347.2025.2486209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Volatile organic solvents and fluoride-containing ionic liquids (ILs) have few drawbacks like toxicity, non-biodegradability, and environmental issues. Even though ILs are considered as new safest solvent for their lower volatility. They pose toxicity and sustainability concerns. Deep eutectic solvents (DESs) have garnered significant attention as substitutes for these solvents, addressing their drawbacks and aligning with specific principles of green chemistry, such as reduced toxicity, biodegradability, and the use of renewable resources. This review thoroughly explains the emergence and inception of DESs through their development. It deals with the physicochemical properties like density, polarity, and viscosity. The factors dealing with variation in density and viscosity of DES have been discussed. The preparation and operation of DESs, encompassing their various variants such as hydrophobic and hydrophilic types are examined to provide a comprehensive grasp of their chemical properties. Beyond basic characteristics, the article delves into a few specific DES applications to demonstrate their flexibility. DESs show promising multifarious utility, ranging from acting as extractant to critical roles in sorbent-based extractions, solvent-based extractions, and their role in various analytical techniques. The article covers the opportunities and difficulties associated with DESs, offering a prospective viewpoint on future advancements and difficulties. The review outlines different facets of DES research, emphasizing the level of knowledge at the moment and their potential influence in the emerging subject of DESs.
Collapse
Affiliation(s)
- Vahishta K Katrak
- Department of Chemistry, Veer Narmad South Gujarat University, Surat, India
| | - Nensi A Patel
- Department of Chemistry, Veer Narmad South Gujarat University, Surat, India
| | - Sushma P Ijardar
- Department of Chemistry, Veer Narmad South Gujarat University, Surat, India
| |
Collapse
|
2
|
Dugheri S, Cappelli G, Fanfani N, Squillaci D, Rapi I, Venturini L, Vita C, Gori R, Sirini P, Cipriano D, Sajewicz M, Mucci N. Vacuum-Assisted MonoTrap TM Extraction for Volatile Organic Compounds (VOCs) Profiling from Hot Mix Asphalt. Molecules 2024; 29:4943. [PMID: 39459311 PMCID: PMC11510596 DOI: 10.3390/molecules29204943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/02/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
MonoTrapTM was introduced in 2009 as a novel miniaturized configuration for sorptive sampling. The method for the characterization of volatile organic compound (VOC) emission profiles from hot mix asphalt (HMA) consisted of a two-step procedure: the analytes, initially adsorbed into the coating in no vacuum- or vacuum-assistance mode, were then analyzed following an automated thermal desorption (TD) step. We took advantage of the theoretical formulation to reach some conclusions on the relationship between the physical characteristics of the monolithic material and uptake rates. A total of 35 odor-active volatile compounds, determined by gas chromatography-mass spectrometry/olfactometry analysis, contributed as key odor compounds for HMA, consisting mainly of aldehydes, alcohols, and ketones. Chemometric analysis revealed that MonoTrapTM RGC18-TD was the better coating in terms of peak area and equilibrium time. A comparison of performance showed that Vac/no-Vac ratios increased, about an order of magnitude, as the boiling point of target analytes increased. The innovative hybrid adsorbent of silica and graphite carbon monolith technology, having a large surface area bonded with octadecylsilane, showed effective adsorption capability, especially to polar compounds.
Collapse
Affiliation(s)
- Stefano Dugheri
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (G.C.); (N.F.); (D.S.); (I.R.); (L.V.); (N.M.)
| | - Giovanni Cappelli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (G.C.); (N.F.); (D.S.); (I.R.); (L.V.); (N.M.)
| | - Niccolò Fanfani
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (G.C.); (N.F.); (D.S.); (I.R.); (L.V.); (N.M.)
| | - Donato Squillaci
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (G.C.); (N.F.); (D.S.); (I.R.); (L.V.); (N.M.)
| | - Ilaria Rapi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (G.C.); (N.F.); (D.S.); (I.R.); (L.V.); (N.M.)
| | - Lorenzo Venturini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (G.C.); (N.F.); (D.S.); (I.R.); (L.V.); (N.M.)
| | - Chiara Vita
- PIN—University Center “Città di Prato” Educational and Scientific Service, University of Florence, 59100 Prato, Italy;
| | - Riccardo Gori
- Department of Civil and Environmental Engineering, University of Florence, 50139 Florence, Italy; (R.G.); (P.S.)
| | - Piero Sirini
- Department of Civil and Environmental Engineering, University of Florence, 50139 Florence, Italy; (R.G.); (P.S.)
| | | | | | - Nicola Mucci
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (G.C.); (N.F.); (D.S.); (I.R.); (L.V.); (N.M.)
| |
Collapse
|
3
|
Samadifar M, Yamini Y, Khataei MM, Shirani M. Automated and semi-automated packed sorbent solid phase (micro) extraction methods for extraction of organic and inorganic pollutants. J Chromatogr A 2023; 1706:464227. [PMID: 37506462 DOI: 10.1016/j.chroma.2023.464227] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/06/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
In this study, the packed sorbent solid phase (micro) extraction methods from manual to automated modes are reviewed. The automatic methods have several remarkable advantages such as high sample throughput, reproducibility, sensitivity, and extraction efficiency. These methods include solid-phase extraction, pipette tip micro-solid phase extraction, microextraction by packed sorbent, in-tip solid phase microextraction, in-tube solid phase microextraction, lab-on-a-chip, and lab-on-a-valve. The recent application of these methods for the extraction of organic and inorganic compounds are discussed. Also, the combination of novel technologies (3D printing and robotic platforms) with the (semi)automated methods are investigated as the future trend.
Collapse
Affiliation(s)
- Mahsa Samadifar
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yadollah Yamini
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran.
| | | | - Mahboue Shirani
- Department of Chemistry, Faculty of Sciences, University of Jiroft, Jiroft, Iran
| |
Collapse
|
4
|
Sun S, Meng F, Qi H. Simultaneous determination of fourteen pharmaceuticals in sewage sludge using online solid-phase extraction-liquid chromatography-tandem mass spectrometry combined with accelerated solvent extraction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62522-62531. [PMID: 36943570 DOI: 10.1007/s11356-023-26072-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/18/2023] [Indexed: 05/10/2023]
Abstract
An online solid-phase extraction (SPE) liquid chromatography tandem mass spectrometry method (HPLC-MS/MS) combined with accelerated solvent extraction (ASE) was developed for simultaneous determination of 14 pharmaceuticals in sludge. In the online SPE procedures, ultrapure water with no additives was used as the loading solvent. In addition, low molecular weight targets such as atenolol were difficult to retain on SPE column after acetone was added to the washing solvent. The response signal of analytes can be greatly improved by adding 0.2% formic acid to the mobile phase. Under the optimized conditions, the recoveries of all the analytes ranged between 75.1 and 112%. Moreover, the limit of detections ranged from 1.8 to 7.9 ug/kg. The precision of analytical data was determined with relative standard deviation (RSD) ≤ 4.87%. This method was successfully applied to determine the concentration of pharmaceuticals in sludge.
Collapse
Affiliation(s)
- Shaojing Sun
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei University of Engineering, Handan, 056038, China
| | - Fan Meng
- Key Laboratory of Urban Water Resource and Environment, & School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Hong Qi
- Key Laboratory of Urban Water Resource and Environment, & School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
5
|
Epping R, Koch M. On-Site Detection of Volatile Organic Compounds (VOCs). Molecules 2023; 28:1598. [PMID: 36838585 PMCID: PMC9966347 DOI: 10.3390/molecules28041598] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Volatile organic compounds (VOCs) are of interest in many different fields. Among them are food and fragrance analysis, environmental and atmospheric research, industrial applications, security or medical and life science. In the past, the characterization of these compounds was mostly performed via sample collection and off-site analysis with gas chromatography coupled to mass spectrometry (GC-MS) as the gold standard. While powerful, this method also has several drawbacks such as being slow, expensive, and demanding on the user. For decades, intense research has been dedicated to find methods for fast VOC analysis on-site with time and spatial resolution. We present the working principles of the most important, utilized, and researched technologies for this purpose and highlight important publications from the last five years. In this overview, non-selective gas sensors, electronic noses, spectroscopic methods, miniaturized gas chromatography, ion mobility spectrometry and direct injection mass spectrometry are covered. The advantages and limitations of the different methods are compared. Finally, we give our outlook into the future progression of this field of research.
Collapse
Affiliation(s)
- Ruben Epping
- Division of Organic Trace and Food Analysis, Bundesanstalt für Materialforschung und -Prüfung, 12489 Berlin, Germany
| | - Matthias Koch
- Division of Organic Trace and Food Analysis, Bundesanstalt für Materialforschung und -Prüfung, 12489 Berlin, Germany
| |
Collapse
|
6
|
Werner J, Grześkowiak T, Zgoła-Grześkowiak A. A polydimethylsiloxane/deep eutectic solvent sol-gel thin film sorbent and its application to solid-phase microextraction of parabens. Anal Chim Acta 2022; 1202:339666. [DOI: 10.1016/j.aca.2022.339666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 11/01/2022]
|
7
|
Werner J, Zgoła-Grześkowiak A, Grześkowiak T. Development of novel thin-film solid-phase microextraction materials based on deep eutectic solvents for preconcentration of trace amounts of parabens in surface waters. J Sep Sci 2022; 45:1374-1384. [PMID: 35137554 DOI: 10.1002/jssc.202100917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/16/2022] [Accepted: 01/31/2022] [Indexed: 11/09/2022]
Abstract
A green and sensitive thin-film solid-phase microextraction method based on deep eutectic solvent was developed that enables simultaneous isolation, preconcentration, and determination of parabens in surface waters. Six new deep eutectic solvents were synthesized and used directly to prepare thin-film coatings on a stainless steel mesh support. Among the compounds obtained, the highest efficiency in the extraction of parabens was found for a material consisting of trihexyltetradecylphosphonium chloride and n-docosanol in a molar ratio of 1:2. For the proposed method, parameters affecting the extraction efficiency of parabens, such as the coating material, the desorption solvent, the volume of the sample, the pH of the sample, the extraction and desorption time, and the salting-out effect, were optimized. Under optimal conditions, the proposed method allowed us to achieve good precision between 3.6 and 6.5% and recovery ranging from 68.1 to 91.4%. The limits of detection range from 0.018 to 0.055 ng mL-1 . This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Justyna Werner
- Poznan University of Technology, Faculty of Chemical Technology, Poland
| | | | | |
Collapse
|
8
|
Dugheri S, Mucci N, Cappelli G, Trevisani L, Bonari A, Bucaletti E, Squillaci D, Arcangeli G. Advanced Solid-Phase Microextraction Techniques and Related Automation: A Review of Commercially Available Technologies. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:8690569. [PMID: 35154846 PMCID: PMC8837452 DOI: 10.1155/2022/8690569] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
The solid-phase microextraction (SPME), invented by Pawliszyn in 1989, today has a renewed and growing use and interest in the scientific community with fourteen techniques currently available on the market. The miniaturization of traditional sample preparation devices fulfills the new request of an environmental friendly analytical chemistry. The recent upswing of these solid-phase microextraction technologies has brought new availability and range of robotic automation. The microextraction solutions propose today on the market can cover a wide variety of analytical fields and applications. This review reports on the state-of-the-art innovative solid-phase microextraction techniques, especially those used for chromatographic separation and mass-spectrometric detection, given the recent improvements in availability and range of automation techniques. The progressively implemented solid-phase microextraction techniques and related automated commercially available devices are classified and described to offer a valuable tool to summarize their potential combinations to face all the laboratories requirements in terms of analytical applications, robustness, sensitivity, and throughput.
Collapse
Affiliation(s)
- Stefano Dugheri
- Industrial Hygiene and Toxicology Laboratory, University Hospital Careggi, Florence, Italy
| | - Nicola Mucci
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giovanni Cappelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Lucia Trevisani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Elisabetta Bucaletti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Donato Squillaci
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giulio Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
9
|
Campanale C, Massarelli C, Losacco D, Bisaccia D, Triozzi M, Uricchio VF. The monitoring of pesticides in water matrices and the analytical criticalities: A review. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
10
|
Xiao N, Huang H, Liu J, Jiang X, Chen Q, Chen Q, Shi W. Comparison of different edible parts of bighead carp (Aristichthys nobilis) flavor. J Food Biochem 2021; 45:e13946. [PMID: 34569068 DOI: 10.1111/jfbc.13946] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/22/2022]
Abstract
The study aims to obtain the information on taste and odor among different edible parts (white dorsal meat, white abdomen meat, white tail meat, and dark meat) of bighead carp. The results showed that the white dorsal meat and white abdomen meat had the higher content of total amino acids among all edible parts of bighead carp samples. The highest inosine monophosphate and adenosine monophosphate content presented in white abdomen meat, and the highest equivalent umami concentration value presented in dark meat. The principal component analysis result of electronic tongue and electronic nose showed significant differences in the overall taste and odor characteristics among four group samples. Additionally, 41, 30, 42, and 29 volatile compounds were identified by headspace solid-phase microextraction/gas chromatography-mass spectrometry among white dorsal meat, white abdomen meat, white tail meat, and dark meat of bighead carp, respectively. Based on the data of relative olfactory activity value (ROAV ≥ 1), 12 relative olfactory activity compounds may mainly contribute to the overall odor of bighead carp, including 2-methylbutanal, hexanal, heptanal, (E)-2-octenal, nonanal, dodecanal, undecanal, decanal, 3-methyl-1-pentanol, 1-octen-3-ol, (Z)-2-octen-1-ol, and eucalyptol. Furthermore, according to the Partial Least Squares Discriminant Analysis profile derived from the ROAV of 12 characteristic volatile compounds, significant variations in the odor of different edible parts of bighead carp. Overall, there was a significant difference in taste and odor among different edible parts of bighead carp, and this study may provide useful information for unraveling the flavor characteristics of each edible part of raw bighead carp. PRACTICAL APPLICATIONS: The comprehensive information on taste and odor among different edible parts (white dorsal meat, white abdomen meat, white tail meat, and dark meat) of bighead carp were obtained using liquid chromatography-mass spectrometry, automatic amino acid analyzer, electronic tongue (E-tongue), headspace solid-phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS), and electronic nose (E-tongue), respectively. This study may provide useful information for unraveling the flavor characteristics of each edible part of raw bighead carp and improving the flavor of bighead carp products.
Collapse
Affiliation(s)
- Naiyong Xiao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Haiyuan Huang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Junya Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Xin Jiang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Qin Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Qing Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China
| | - Wenzheng Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, P.R. China.,National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai, P.R. China
| |
Collapse
|
11
|
Tinte MM, Chele KH, van der Hooft JJJ, Tugizimana F. Metabolomics-Guided Elucidation of Plant Abiotic Stress Responses in the 4IR Era: An Overview. Metabolites 2021; 11:445. [PMID: 34357339 PMCID: PMC8305945 DOI: 10.3390/metabo11070445] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 12/27/2022] Open
Abstract
Plants are constantly challenged by changing environmental conditions that include abiotic stresses. These are limiting their development and productivity and are subsequently threatening our food security, especially when considering the pressure of the increasing global population. Thus, there is an urgent need for the next generation of crops with high productivity and resilience to climate change. The dawn of a new era characterized by the emergence of fourth industrial revolution (4IR) technologies has redefined the ideological boundaries of research and applications in plant sciences. Recent technological advances and machine learning (ML)-based computational tools and omics data analysis approaches are allowing scientists to derive comprehensive metabolic descriptions and models for the target plant species under specific conditions. Such accurate metabolic descriptions are imperatively essential for devising a roadmap for the next generation of crops that are resilient to environmental deterioration. By synthesizing the recent literature and collating data on metabolomics studies on plant responses to abiotic stresses, in the context of the 4IR era, we point out the opportunities and challenges offered by omics science, analytical intelligence, computational tools and big data analytics. Specifically, we highlight technological advancements in (plant) metabolomics workflows and the use of machine learning and computational tools to decipher the dynamics in the chemical space that define plant responses to abiotic stress conditions.
Collapse
Affiliation(s)
- Morena M. Tinte
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.T.); (K.H.C.)
| | - Kekeletso H. Chele
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.T.); (K.H.C.)
| | | | - Fidele Tugizimana
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.T.); (K.H.C.)
- International Research and Development Division, Omnia Group, Ltd., Johannesburg 2021, South Africa
| |
Collapse
|
12
|
Paiva AC, Crucello J, de Aguiar Porto N, Hantao LW. Fundamentals of and recent advances in sorbent-based headspace extractions. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116252] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
13
|
Dugheri S, Marrubini G, Mucci N, Cappelli G, Bonari A, Pompilio I, Trevisani L, Arcangeli G. A review of micro-solid-phase extraction techniques and devices applied in sample pretreatment coupled with chromatographic analysis. ACTA CHROMATOGR 2021. [DOI: 10.1556/1326.2020.00790] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AbstractSample pretreatment is one of the most crucial and error-prone steps of an analytical procedure; it consents to improve selectivity and sensitivity by sample clean-up and pre-concentration. Nowadays, the arousing interest in greener and sustainable analytical chemistry has increased the development of microextraction techniques as alternative sample preparation procedures. In this review, we aimed to show two different categorizations of the most used micro-solid-phase extraction (μSPE) techniques. In essence, the first one concerns the solid-phase extraction (SPE) sorbent selection and structure: normal-phase, reversed-phase, ion-exchange, mixed-mode, molecular imprinted polymer, and special techniques (e.g., doped cartridges for specific analytes). The second is a grouping of the commercially available μSPE products in categories and sub-categories. We present every device and technology into the classifications paying attention to their historical development and the actual state of the art. So, this study aims to provide the state-of-the-art of μSPE techniques, highlighting their advantages, disadvantages, and possible future developments in sample pretreatment.
Collapse
Affiliation(s)
- Stefano Dugheri
- 1Industrial Hygiene and Toxicology Laboratory, Careggi University Hospital, Florence, Italy
| | | | - Nicola Mucci
- 3Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giovanni Cappelli
- 3Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Ilenia Pompilio
- 4General Laboratory, Careggi University Hospital, Florence, Italy
| | - Lucia Trevisani
- 3Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giulio Arcangeli
- 3Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
14
|
Erarpat S, Bodur S, Bakırdere S. Nanoparticles Based Extraction Strategies for Accurate and Sensitive Determination of Different Pesticides. Crit Rev Anal Chem 2021; 52:1370-1385. [PMID: 33576246 DOI: 10.1080/10408347.2021.1876552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Sample preparation methods have become indispensable steps in analytical measurements not only to lower the detection limit but also to eliminate the matrix effect although more sophisticated instruments are being commonly used in routine analyses. Solid phase extraction (SPE) is one of the main extraction/preconcentration methods used to extract and purify target analytes along with simple and rapid procedures but some limitations have led to seek for an easy, sensitive and fast extraction methods with analyte-selective sorbents. Nanoparticles with different modifications have been used as spotlight to enhance extraction efficiency of target pesticides from complicated matrices. Carbon-based, metal and metal oxides, silica and polymer-based nanoparticles have been explored as promising sorbents for pesticide extraction. In this review, different types of nanoparticles used in the preconcentration of pesticides in various samples are outlined and examined. Latest studies in the literature are discussed in terms of their instrumental detection, sample matrix and limit of detection values. Novel strategies and future directions of nanoparticles used in the extraction and preconcentration of pesticides are also discussed.
Collapse
Affiliation(s)
- Sezin Erarpat
- Department of Chemistry, Faculty of Art and Science, Yıldız Technical University, İstanbul, Turkey
| | - Süleyman Bodur
- Department of Chemistry, Faculty of Art and Science, Yıldız Technical University, İstanbul, Turkey
| | - Sezgin Bakırdere
- Department of Chemistry, Faculty of Art and Science, Yıldız Technical University, İstanbul, Turkey.,Turkish Academy of Sciences (TÜBA), Ankara, Turkey
| |
Collapse
|
15
|
Chi J, Zhu D, Chen Y, Huang G, Lin X. Online specific recognition of mycotoxins using aptamer-grafted ionic affinity monolith with mixed-mode mechanism. J Chromatogr A 2021; 1639:461930. [PMID: 33556780 DOI: 10.1016/j.chroma.2021.461930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/10/2021] [Accepted: 01/17/2021] [Indexed: 01/05/2023]
Abstract
Herein, a facile and practical aptamer-grafted ionic affinity monolith with mixed-mode mechanism was explored as a versatile platform for online specific recognition of polar and non-polar mycotoxins. The mixed-mode mechanism including molecular affinity adsorption (between aptamers and targets), hydrophilic interaction and ionic interaction (between stationary phase and targets) were adopted and provided a better flexibility in adjusting separation selectivity to reduce nonspecific adsorption with respect to the single mode. Preparation and characterization of aptamer-based affinity monoliths were investigated, The characterization of pore size distribution, Brunauer-Emmett-Teller (BET) surface area and the specificity and cross-reaction were also evaluated. As a result, the hydrophilic nature and negative charge on affinity monolith were obtained. Multiple interactions including aptamer affinity binding, hydrophilic interaction (HI) and ion exchange (IE) could be adopted for online selective extraction. Specific recognitions of polar ochratoxin A (OTA), non-polar zearalenone (ZEN) and aflatoxin B1 (AFB1) was fulfilled with LODs as 0.03, 0.05 and 0.05 μg/L, respectively. Applied to real cereals, good recoveries of the fortified OTA, AFB1 and ZEN were achieved as 92.6 ± 1.3% ~ 95.6 ± 1.3% (n=3), 93.9 ± 2.3% ~ 98.2 ± 3.4% (n=3) and 92.7 ± 2.0% ~ 96.9 ± 3.5% (n=3) in corn, wheat and rice, respectively. The results displayed that Apt-MCs with hydrophilic and ionic interaction mixed-mode mechanism were efficient enough and competent for the online recognition of mycotoxins in cereals.
Collapse
Affiliation(s)
- Jinxin Chi
- Institute of analytical technology and smart instruments, Xiamen Huaxia University, Xiamen, 361024, China
| | - Dandan Zhu
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, China
| | - Yiqiong Chen
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, China
| | - Guihua Huang
- Institute of analytical technology and smart instruments, Xiamen Huaxia University, Xiamen, 361024, China..
| | - Xucong Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, China..
| |
Collapse
|
16
|
Koga N, Hosomi T, Zwama M, Jirayupat C, Yanagida T, Nishino K, Yamasaki S. Identification of Genetic Variants via Bacterial Respiration Gas Analysis. Front Microbiol 2020; 11:581571. [PMID: 33304330 PMCID: PMC7701088 DOI: 10.3389/fmicb.2020.581571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/27/2020] [Indexed: 11/13/2022] Open
Abstract
Indole is a signal molecule derived from the conversion of tryptophan, and it is present in bacterial respiratory gas. Besides influencing bacterial growth, indole exhibits effects on human health, including a positive effect on inflammation and protection against pathogens. However, a high fecal indole concentration (FIC) can suggest an unbalanced gut flora or the presence of certain pathogens. To analyze the indole produced by bacteria, its collection and detection is required. Traditional methods usually require centrifugation of liquid bacterial culture medium and subsequent extraction of indole from the medium or partial purification of indole from fecal samples (e.g., by distillation or extraction). In this study, we demonstrate the possibility of identifying gas contents directly from bacteria, and we distinguish the difference in species and their genetics without the need to centrifuge or extract. Using an absorbent sheet placed above a liquid culture, we were able to collect gas content directly from bacteria. Gas chromatography-mass spectrometry (GC-MS) was used for the analysis. The GC-MS results showed a clear peak attributed to indole for wild-type Escherichia coli cells (MG1655 and MC4100 strains), whereas the indole peak was absent in the chromatograms of cells where proteins, part of the indole production pathway from tryptophan (TnaA and TnaB), were not expressed (by using tnaAB-deleted cells). The indole observed was measured to be present in a low nmol-range. This method can distinguish whether the bacterial genome contains the tnaAB gene or not and can be used to collect gas compounds from bacterial cultures quickly and easily. This method is useful for other goals and future research, such as for measurements in restrooms, for food-handling facilities, and for various applications in medical settings.
Collapse
Affiliation(s)
- Naoki Koga
- School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Takuro Hosomi
- Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Martijn Zwama
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | | | - Takeshi Yanagida
- Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.,Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan
| | - Kunihiko Nishino
- School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Seiji Yamasaki
- School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan.,Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan
| |
Collapse
|
17
|
Beccaria M, Siqueira ALM, Maniquet A, Giusti P, Piparo M, Stefanuto PH, Focant JF. Advanced mono- and multi-dimensional gas chromatography-mass spectrometry techniques for oxygen-containing compound characterization in biomass and biofuel samples. J Sep Sci 2020; 44:115-134. [PMID: 33185940 DOI: 10.1002/jssc.202000907] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 11/08/2022]
Abstract
A wide variety of biomass, from triglycerides to lignocellulosic-based feedstock, are among promising candidates to possibly fulfill requirements as a substitute for crude oils as primary sources of chemical energy feedstock. During the feedstock processing carried out to increase the H:C ratio of the products, heteroatom-containing compounds can promote corrosion, thus limiting and/or deactivating catalytic processes needed to transform the biomass into fuel. The use of advanced gas chromatography techniques, in particular multi-dimensional gas chromatography, both heart-cutting and comprehensive coupled to mass spectrometry, has been widely exploited in the field of petroleomics over the past 30 years and has also been successfully applied to the characterization of volatile and semi-volatile compounds during the processing of biomass feedstock. This review intends to describe advanced gas chromatography-mass spectrometry-based techniques, mainly focusing in the period 2011-early 2020. Particular emphasis has been devoted to the multi-dimensional gas chromatography-mass spectrometry techniques, for the isolation and characterization of the oxygen-containing compounds in biomass feedstock. Within this context, the most recent advances to sample preparation, derivatization, as well as gas chromatography instrumentation, mass spectrometry ionization, identification, and data handling in the biomass industry, are described.
Collapse
Affiliation(s)
- Marco Beccaria
- Organic and Biological Analytical Chemistry Group, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Anna Luiza Mendes Siqueira
- TOTAL Marketing Services, Research Center, Solaize, France.,International Joint Laboratory - iC2MC: Complex Matrices Molecular Characterization, TRTG, Harfleur, France
| | - Adrien Maniquet
- TOTAL Marketing Services, Research Center, Solaize, France.,International Joint Laboratory - iC2MC: Complex Matrices Molecular Characterization, TRTG, Harfleur, France
| | - Pierre Giusti
- TOTAL Refining and Chemicals, Total Research and Technologies Gonfreville, Harfleur, France.,International Joint Laboratory - iC2MC: Complex Matrices Molecular Characterization, TRTG, Harfleur, France
| | - Marco Piparo
- TOTAL Refining and Chemicals, Total Research and Technologies Gonfreville, Harfleur, France.,International Joint Laboratory - iC2MC: Complex Matrices Molecular Characterization, TRTG, Harfleur, France
| | - Pierre-Hugues Stefanuto
- Organic and Biological Analytical Chemistry Group, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Jean-François Focant
- Organic and Biological Analytical Chemistry Group, MolSys Research Unit, University of Liège, Liège, Belgium
| |
Collapse
|
18
|
da Silva LF, Vargas Medina DA, Lanças FM. Automated needle-sleeve based online hyphenation of solid-phase microextraction and liquid chromatography. Talanta 2020; 221:121608. [PMID: 33076138 DOI: 10.1016/j.talanta.2020.121608] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/23/2020] [Accepted: 08/28/2020] [Indexed: 12/31/2022]
Abstract
A novel approach for the online coupling of solid-phase microextraction (SPME) and liquid chromatography (LC) is introduced. An innovative Si@GO@βCD coated needle-sleeve extractant device was developed and then employed in the automated online SPME-LC-UV determination of estrogen-like isoflavones from human urine samples. The extractant SPME device is easily attachable at the endpoint of an analytical syringe needle and operated by a lab-made autosampler. Fully automated online SPME-LC is accomplished by proper autosampler programming to perform the following steps: i) the analytes extraction by direct immersion of the extractant device into the stirred sample, ii) a rinsing step iii) the analytes desorption/enrichment, iv) the online transference of the extract to the LC injection valve. Besides allowing the online SPME hyphenation, this extraction modality efficiently addressed the drawbacks associated with the clogging and dispersion of graphene-based microextraction techniques performed in packed-bed and dispersive formats. The main extraction parameters and the performance of the automated online SPME-LC method developed were carefully studied. The results show a good sensitivity, reliability, and straightforward analytical strategy for the determination of organic compounds in complex samples. The detection limit of the method was 20 μg L1 for DAI and 10 μg L-1 for GEN, FOR and BIO. The intra-day RSD was below 10% and inter-day RSD was below 13%. The total analysis time was less than 17 min per sample.
Collapse
Affiliation(s)
- Luis Felipe da Silva
- University of São Paulo, São Carlos, Institute of Chemistry of São Carlos, SP, Brazil
| | | | - Fernando Mauro Lanças
- University of São Paulo, São Carlos, Institute of Chemistry of São Carlos, SP, Brazil.
| |
Collapse
|
19
|
Kamgang Nzekoue F, Angeloni S, Caprioli G, Cortese M, Maggi F, Marconi UMB, Perali A, Ricciutelli M, Sagratini G, Vittori S. Fiber-Sample Distance, An Important Parameter To Be Considered in Headspace Solid-Phase Microextraction Applications. Anal Chem 2020; 92:7478-7484. [PMID: 32380828 PMCID: PMC8007069 DOI: 10.1021/acs.analchem.9b05386] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
![]()
To
define and control the parameters which impact headspace solid-phase
microextraction (HS-SPME), it is important to reach the highest level
of reproducibility. The present study aims to assess, for the first
time, the effect of fiber–sample distance during HS-SPME in
pre-equilibrium conditions. Analyses were primarily performed on mixtures
of standard volatiles compounds (alkanes, alcohols, organic acids)
designed in our lab and then on various food matrices (wine, chicken,
cheese, tea), repeating already published experiments. Extractions
were performed varying fiber penetration depths (10–60 mm)
at different times (10–60 min) and temperatures of extraction
(30–80 °C). The study revealed that variation of the
distance between the fiber and the sample into the vial clearly impacts
the results obtained during HS-SPME when conditions are such that
no equilibrium is reached in HS. For example, in wine analysis, the
percentage of octanoic acid at 80 °C was higher at 40 mm (7.5
± 0.2%) than that at 20 mm (4.4 ± 0.3%). Moreover, regardless
of the extraction temperature, the lower the time of extraction, the
stronger the dependence on the fiber–sample distance. Indeed,
at 60 °C, the obtained response factors for octadecane at 20
and 40 mm of fiber penetration were 21.8 and 44.5, respectively, after
10 min of extraction, 54.1 and 71.0 after 30 min, and 79.4 and 82.4
after 60 min of extraction. The analyses have been here corroborated
by a theoretical model based on the diffusion equation. Therefore,
to improve the method robustness during HS-SPME studies, we suggest
specifying the fiber penetration depth or the fiber–sample
distance with the other parameters of extraction.
Collapse
|
20
|
Abstract
Thirty years since the invention and public disclosure of solid phase microextraction (SPME), the technology continues evolving and inspiring several other green extraction technologies amenable for the collection of small molecules present in complex matrices. In this manuscript, we review the fundamental and operational aspects of a novel SPME geometry that can be used to “hunt” target molecules in complex matrices: the SPME Arrow. In addition, a series of applications in environmental, food, cannabis and forensic analysis are succinctly covered. Finally, special emphasis is placed on novel interfaces to analytical instrumentation, as well as recent developments in coating materials for the SPME Arrow.
Collapse
|