1
|
Liu S, Liu Z, Lei H, Miao YB, Chen J. Programmable Nanomodulators for Precision Therapy, Engineering Tumor Metabolism to Enhance Therapeutic Efficacy. Adv Healthc Mater 2025; 14:e2403019. [PMID: 39529548 DOI: 10.1002/adhm.202403019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Tumor metabolism is crucial in the continuous advancement and complex growth of cancer. The emerging field of nanotechnology has made significant strides in enhancing the understanding of the complex metabolic intricacies inherent to tumors, offering potential avenues for their strategic manipulation to achieve therapeutic goals. This comprehensive review delves into the interplay between tumor metabolism and various facets of cancer, encompassing its origins, progression, and the formidable challenges posed by metastasis. Simultaneously, it underscores the classification of programmable nanomodulators and their transformative impact on enhancing cancer treatment, particularly when integrated with modalities such as chemotherapy, radiotherapy, and immunotherapy. This review also encapsulates the mechanisms by which nanomodulators modulate tumor metabolism, including the delivery of metabolic inhibitors, regulation of oxidative stress, pH value modulation, nanoenzyme catalysis, nutrient deprivation, and RNA interference technology, among others. Additionally, the review delves into the prospects and challenges of nanomodulators in clinical applications. Finally, the innovative concept of using nanomodulators to reprogram metabolic pathways is introduced, aiming to transform cancer cells back into normal cells. This review underscores the profound impact that tailored nanomodulators can have on tumor metabolic, charting a path toward pioneering precision therapies for cancer.
Collapse
Affiliation(s)
- Siwei Liu
- Women & Children's Molecular Medicine Center, Department of Gynecology, Guangyuan Central Hospital, No. 16, Jingxiangzi, Lizhou District, Guangyuan, 628000, P. R. China
| | - Zhijun Liu
- Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, China
| | - Huajiang Lei
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Jiao Chen
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| |
Collapse
|
2
|
Kasprzak A. Autophagy and the Insulin-like Growth Factor (IGF) System in Colonic Cells: Implications for Colorectal Neoplasia. Int J Mol Sci 2023; 24:ijms24043665. [PMID: 36835075 PMCID: PMC9959216 DOI: 10.3390/ijms24043665] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common human malignancies worldwide. Along with apoptosis and inflammation, autophagy is one of three important mechanisms in CRC. The presence of autophagy/mitophagy in most normal mature intestinal epithelial cells has been confirmed, where it has mainly protective functions against reactive oxygen species (ROS)-induced DNA and protein damage. Autophagy regulates cell proliferation, metabolism, differentiation, secretion of mucins and/or anti-microbial peptides. Abnormal autophagy in intestinal epithelial cells leads to dysbiosis, a decline in local immunity and a decrease in cell secretory function. The insulin-like growth factor (IGF) signaling pathway plays an important role in colorectal carcinogenesis. This is evidenced by the biological activities of IGFs (IGF-1 and IGF-2), IGF-1 receptor type 1 (IGF-1R) and IGF-binding proteins (IGF BPs), which have been reported to regulate cell survival, proliferation, differentiation and apoptosis. Defects in autophagy are found in patients with metabolic syndrome (MetS), inflammatory bowel diseases (IBD) and CRC. In neoplastic cells, the IGF system modulates the autophagy process bidirectionally. In the current era of improving CRC therapies, it seems important to investigate the exact mechanisms not only of apoptosis, but also of autophagy in different populations of tumor microenvironment (TME) cells. The role of the IGF system in autophagy in normal as well as transformed colorectal cells still seems poorly understood. Hence, the aim of the review was to summarize the latest knowledge on the role of the IGF system in the molecular mechanisms of autophagy in the normal colon mucosa and in CRC, taking into account the cellular heterogeneity of the colonic and rectal epithelium.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Swiecicki Street 6, 60-781 Poznan, Poland
| |
Collapse
|
3
|
Insulin‑like growth factor axis: A potential nanotherapy target for resistant cervical cancer tumors (Review). Oncol Lett 2023; 25:128. [PMID: 36844628 PMCID: PMC9950333 DOI: 10.3892/ol.2023.13714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 09/07/2022] [Indexed: 02/12/2023] Open
Abstract
Cervical cancer is among the most frequently occurring neoplasms worldwide, and it particularly affects individuals in developing countries. Factors such as the low quality of screening tests, the high incidence of locally advanced cancer stages and the intrinsic resistance of certain tumors are the main causes of failure in the treatment of this neoplasm. Due to advances in the understanding of carcinogenic mechanisms and bioengineering research, advanced biological nanomaterials have been manufactured. The insulin-like growth factor (IGF) system comprises multiple growth factor receptors, including IGF receptor 1. These receptors are activated by binding to their respective growth factor ligands, IGF-1 and IGF-2, and insulin, and play an important role in the development, maintenance, progression, survival and treatment resistance of cervical cancer. In the present review, the role of the IGF system in cervical cancer and three nanotechnological applications that use elements of this system are described, namely Trap decoys, magnetic iron oxide nanoparticles and protein nanotubes. Their use in the treatment of resistant cervical cancer tumors is also discussed.
Collapse
|
4
|
Insulin-Like Growth Factor 1 (IGF-1) Signaling in Glucose Metabolism in Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22126434. [PMID: 34208601 PMCID: PMC8234711 DOI: 10.3390/ijms22126434] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common aggressive carcinoma types worldwide, characterized by unfavorable curative effect and poor prognosis. Epidemiological data re-vealed that CRC risk is increased in patients with metabolic syndrome (MetS) and its serum components (e.g., hyperglycemia). High glycemic index diets, which chronically raise post-prandial blood glucose, may at least in part increase colon cancer risk via the insulin/insulin-like growth factor 1 (IGF-1) signaling pathway. However, the underlying mechanisms linking IGF-1 and MetS are still poorly understood. Hyperactivated glucose uptake and aerobic glycolysis (the Warburg effect) are considered as a one of six hallmarks of cancer, including CRC. However, the role of insulin/IGF-1 signaling during the acquisition of the Warburg metabolic phenotypes by CRC cells is still poorly understood. It most likely results from the interaction of multiple processes, directly or indirectly regulated by IGF-1, such as activation of PI3K/Akt/mTORC, and Raf/MAPK signaling pathways, activation of glucose transporters (e.g., GLUT1), activation of key glycolytic enzymes (e.g., LDHA, LDH5, HK II, and PFKFB3), aberrant expression of the oncogenes (e.g., MYC, and KRAS) and/or overexpression of signaling proteins (e.g., HIF-1, TGF-β1, PI3K, ERK, Akt, and mTOR). This review describes the role of IGF-1 in glucose metabolism in physiology and colorectal carcinogenesis, including the role of the insulin/IGF system in the Warburg effect. Furthermore, current therapeutic strategies aimed at repairing impaired glucose metabolism in CRC are indicated.
Collapse
|
5
|
Mexitalia M, Utari A, Pratiwi R, Dewantiningrum J. Association of cord blood insulin-like growth factor-1 and leptin levels and changes in fetal weight gain in the third trimester of pregnancy. J Clin Neonatol 2021. [DOI: 10.4103/jcn.jcn_32_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
6
|
Jin YJ, Aycheh HM, Han S, Chamberlin J, Shin J, Byun S, Lee Y. Differential alternative splicing between hepatocellular carcinoma with normal and elevated serum alpha-fetoprotein. BMC Med Genomics 2020; 13:194. [PMID: 33371894 PMCID: PMC7771076 DOI: 10.1186/s12920-020-00836-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Serum alpha-fetoprotein (AFP) is the approved serum marker for hepatocellular carcinoma (HCC) screening. However, not all HCC patients show high (≥ 20 ng/mL) serum AFP, and the molecular mechanisms of HCCs with normal (< 20 ng/mL) serum AFP remain to be elucidated. Therefore, we aimed to identify biological features of HCCs with normal serum AFP by investigating differential alternative splicing (AS) between HCCs with normal and high serum AFP. METHODS We performed a genome-wide survey of AS events in 249 HCCs with normal (n = 131) and high (n = 118) serum AFP levels using RNA-sequencing data obtained from The Cancer Genome Atlas. RESULTS In group comparisons of RNA-seq profiles from HCCs with normal and high serum AFP levels, 161 differential AS events (125 genes; ΔPSI > 0.05, FDR < 0.05) were identified to be alternatively spliced between the two groups. Those genes were enriched in cell migration or proliferation terms such as "the cell migration and growth-cone collapse" and "regulation of insulin-like growth factor (IGF) transport and uptake by IGF binding proteins". Most of all, two AS genes (FN1 and FAM20A) directly interact with AFP; these relate to the regulation of IGF transport and post-translational protein phosphorylation. Interestingly, 42 genes and 27 genes were associated with gender and vascular invasion (VI), respectively, but only eighteen genes were significant in survival analysis. We especially highlight that FN1 exhibited increased differential expression of AS events (ΔPSI > 0.05), in which exons 25 and 33 were more frequently skipped in HCCs with normal (low) serum AFP compared to those with high serum AFP. Moreover, these events were gender and VI dependent. CONCLUSION We found that AS may influence the regulation of transcriptional differences inherent in the occurrence of HCC maintaining normal rather than elevated serum AFP levels.
Collapse
Affiliation(s)
- Young-Joo Jin
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA.,Division of Gastroenterology, Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon, South Korea
| | - Habtamu Minassie Aycheh
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Seonggyun Han
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - John Chamberlin
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jaehang Shin
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Seyoun Byun
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Younghee Lee
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA. .,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
7
|
Cooper KL. Developmental and Evolutionary Allometry of the Mammalian Limb Skeleton. Integr Comp Biol 2020; 59:1356-1368. [PMID: 31180500 DOI: 10.1093/icb/icz082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The variety of limb skeletal proportions enables a remarkable diversity of behaviors that include powered flight in bats and flipper-propelled swimming in whales using extremes of a range of homologous limb architectures. Even within human limbs, bone lengths span more than an order of magnitude from the short finger and toe bones to the long arm and leg bones. Yet all of this diversity arises from embryonic skeletal elements that are each a very similar size at formation. In this review article, I survey what is and is not yet known of the development and evolution of skeletal proportion at multiple hierarchical levels of biological organization. These include the cellular parameters of skeletal elongation in the cartilage growth plate, genes associated with differential growth, and putative gene regulatory mechanisms that would allow both covariant and independent evolution of the forelimbs and hindlimbs and of individual limb segments. Although the genetic mechanisms that shape skeletal proportion are still largely unknown, and most of what is known is limited to mammals, it is becoming increasingly apparent that the diversity of bone lengths is an emergent property of a complex system that controls elongation of individual skeletal elements using a genetic toolkit shared by all.
Collapse
Affiliation(s)
- Kimberly L Cooper
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0377, USA
| |
Collapse
|
8
|
Disser NP, Sugg KB, Talarek JR, Sarver DC, Rourke BJ, Mendias CL. Insulin-like growth factor 1 signaling in tenocytes is required for adult tendon growth. FASEB J 2019; 33:12680-12695. [PMID: 31536390 DOI: 10.1096/fj.201901503r] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tenocytes serve to synthesize and maintain collagen fibrils and other extracellular matrix proteins in tendon. Despite the high prevalence of tendon injury, the underlying biologic mechanisms of postnatal tendon growth and repair are not well understood. IGF1 plays an important role in the growth and remodeling of numerous tissues but less is known about IGF1 in tendon. We hypothesized that IGF1 signaling is required for proper tendon growth in response to mechanical loading through regulation of collagen synthesis and cell proliferation. To test this hypothesis, we conditionally deleted the IGF1 receptor (IGF1R) in scleraxis (Scx)-expressing tenocytes using a tamoxifen-inducible Cre-recombinase system and caused tendon growth in adult mice via mechanical overload of the plantaris tendon. Compared with control Scx-expressing IGF1R-positive (Scx:IGF1R+) mice, in which IGF1R is present in tenocytes, mice that lacked IGF1R in their tenocytes [Scx-expressing IGF1R-negative (Scx:IGF1RΔ) mice] demonstrated reduced cell proliferation and smaller tendons in response to mechanical loading. Additionally, we identified that both the PI3K/protein kinase B and ERK pathways are activated downstream of IGF1 and interact in a coordinated manner to regulate cell proliferation and protein synthesis. These studies indicate that IGF1 signaling is required for proper postnatal tendon growth and support the potential use of IGF1 in the treatment of tendon disorders.-Disser, N. P., Sugg, K. B., Talarek, J. R., Sarver, D. C., Rourke, B. J., Mendias, C. L. Insulin-like growth factor 1 signaling in tenocytes is required for adult tendon growth.
Collapse
Affiliation(s)
| | - Kristoffer B Sugg
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Section of Plastic and Reconstructive Surgery, Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jeffrey R Talarek
- Hospital for Special Surgery, New York, New York, USA.,Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Dylan C Sarver
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Brennan J Rourke
- Hospital for Special Surgery, New York, New York, USA.,Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Christopher L Mendias
- Hospital for Special Surgery, New York, New York, USA.,Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
9
|
Hu G, He M, Ko WKW, Ye C, Hu Q, Wong AOL. IGFs Potentiate TAC3-induced SLα Expression via Upregulation of TACR3 Expression in Grass Carp Pituitary Cells. Cells 2019; 8:cells8080887. [PMID: 31412674 PMCID: PMC6721824 DOI: 10.3390/cells8080887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/06/2019] [Accepted: 08/10/2019] [Indexed: 12/28/2022] Open
Abstract
In mammals, the tachykinin 3 (TAC3)/tachykinin receptor 3 (TACR3) systems have been confirmed to play an important role in the regulation of puberty onset. Using grass carp pituitary cells as the model, our recent study found that the TAC3 gene products could significantly induce somatolactin α (SLα) synthesis and secretion via TACR3 activation. In the present study, we seek to examine if pituitary TACR3 can serve as a regulatory target and contribute to TAC3 interactions with other SLα regulators. Firstly, grass carp TACR3 was cloned and tissue distribution showed that it could be highly detected in grass carp pituitary. Using HEK293 cells as the model, functional expression also revealed that grass carp TACR3 exhibited ligand binding selectivity and post-receptor signaling highly comparable to its mammalian counterpart. Using grass carp pituitary cells as the model, TACR3 mRNA expression could be stimulated by insulin-like growth factor (IGF)-I and -II via the IGF-I receptor coupled to phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) and mitogen-activated protein kinase (MAPK) pathways. Interestingly, IGF-I/-II cotreatment could also significantly enhance TAC3-induced SLα mRNA expression and the potentiating effect was dependent on TACR3 expression and activation of adenylate cyclase (AC)/cAMP/protein kinase A (PKA), phospholipase C (PLC)/inositol 1,4,5-triphosphate (IP3)/protein kinase C (PKC), and Ca2+/calmodulin (CaM)/calmodulin-dependent protein kinase II (CaMK-II) cascades. Besides, IGF-I-induced Akt phosphorylation but not MEK, extracellular signal-regulated kinase (ERK1/2), and P38MAPK phosphorylation was notably enhanced by TACR3 activation. These results, as a whole, suggest that the potentiating effect of IGFs on TAC3 gene products-induced SLα mRNA expression was mediated by TACR3 upregulation and functional crosstalk of post-receptor signaling in the pituitary.
Collapse
Affiliation(s)
- Guangfu Hu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mulan He
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Wendy K W Ko
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Cheng Ye
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiongyao Hu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Anderson O L Wong
- School of Biological Sciences, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
10
|
Lin X, Luo C, He D, Matro E, Chen Q, Li H, Zhou J. Urinary miRNA-29a-3p levels are associated with metabolic parameters via regulation of IGF1 in patients with metabolic syndrome. Biomed Rep 2019; 10:250-258. [PMID: 30972221 DOI: 10.3892/br.2019.1195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/19/2019] [Indexed: 12/29/2022] Open
Abstract
Circulating microRNAs (miRNAs or miRs) have been demonstrated to serve as diagnostic and prognostic biomarkers in metabolic syndrome (MetS). The role of urinary miRNAs in MetS diagnosis remains unknown. Here, elevated miR-29a-3p levels were observed in urine samples of patients with MetS compared with control subjects using a microarray analysis (n=4/group) and validation via reverse transcription-quantitative polymerase chain reaction (n=40/group). Associations between urinary miR-29a-3p levels and parameters associated with metabolism, such as adiposity, insulin resistance, lipid profiles and hepatic enzymes were further assessed. Multiple linear regression analyses revealed that urinary miR-29a-3p levels were independently correlated with fasting insulin (β=0.561; P<0.001), high density lipoprotein-cholesterol (β=0.242; P<0.001) and body mass index (β=-0.141; P<0.05). The area under the receiver operating characteristic curve was 0.776 and miR-29a-3p had a diagnostic value for MetS with 68.2% sensitivity and 77.3% specificity. Furthermore, insulin-like growth factor 1 was identified as a target of miR-29a-3p by searching bioinformatics databases and was validated by dual-luciferase reporter and western blot assays. In conclusion, elevated urinary miR-29a-3p levels were positively associated with MetS and demonstrated to have a potential value as biomarkers in the diagnosis of MetS. The findings provided a better understanding of the role of urinary miRNAs in pathogenesis of MetS.
Collapse
Affiliation(s)
- Xihua Lin
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China.,Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Cheng Luo
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Dongjuan He
- Department of Endocrinology, The Third Hospital of Quzhou, Quzhou, Zhejiang 324003, P.R. China
| | - Erik Matro
- College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Qilong Chen
- College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Hong Li
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Jiaqiang Zhou
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
11
|
Kwon S, An SM, Yu GE, Hwang JH, Park DH, Kang DG, Kim TW, Park HC, Ha J, Kim CW. A prognostic method for the litter size in Berkshire pigs based on DNA methylation of IGFBP4 gene. CANADIAN JOURNAL OF ANIMAL SCIENCE 2018. [DOI: 10.1139/cjas-2017-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Litter size is an important trait in the pig industry. Therefore, a lot of effort has been put into improving this trait. DNA methylation is an essential epigenetic modification present in unique DNA sequences. Alterations in methylation can affect transcription and phenotypic variation. The purpose of this study was to investigate the effect of DNA methylation on litter size. Methylation-specific restriction enzymes are simple and useful tools for detecting DNA methylation status. We used a pair of methylation-sensitive isoschizomers, which have the same recognition site, HpaII and MspI. Insulin-like growth factor binding protein 4 (IGFBP4) is a key regulator of ovarian follicular development and fetal growth in eutherian mammals. In this study, we discovered that IGFBP4 was hyper-methylated in the uterus tissue of a larger litter size group using bisulfite sequencing, and validated the positive relationship between the methylation status of IGFBP4 and the total number born of pigs using the porcine methylation-specific restriction enzyme polymerase chain reaction (PMP) assay. We suggest that the IGFPB4 gene can be used as a prognostic biomarker for hyperprolific sows and that the PMP assay is a useful tool for methylation status screening.
Collapse
Affiliation(s)
- Seulgi Kwon
- Swine Science and Technology Center, Gyeongnam National University of Science and Technology, Jinju 52725, South Korea
| | - Sang Mi An
- Swine Science and Technology Center, Gyeongnam National University of Science and Technology, Jinju 52725, South Korea
| | - Go Eun Yu
- Swine Science and Technology Center, Gyeongnam National University of Science and Technology, Jinju 52725, South Korea
| | - Jung Hye Hwang
- Swine Science and Technology Center, Gyeongnam National University of Science and Technology, Jinju 52725, South Korea
| | - Da Hye Park
- Swine Science and Technology Center, Gyeongnam National University of Science and Technology, Jinju 52725, South Korea
| | - Deok Gyeong Kang
- Swine Science and Technology Center, Gyeongnam National University of Science and Technology, Jinju 52725, South Korea
| | - Tae Wan Kim
- Swine Science and Technology Center, Gyeongnam National University of Science and Technology, Jinju 52725, South Korea
| | - Hwa Chun Park
- Dasan Pig Breeding Co., Namwon-si 590-831, South Korea
| | - Jeongim Ha
- Swine Science and Technology Center, Gyeongnam National University of Science and Technology, Jinju 52725, South Korea
| | - Chul Wook Kim
- Swine Science and Technology Center, Gyeongnam National University of Science and Technology, Jinju 52725, South Korea
| |
Collapse
|
12
|
Lei Q, Pan Q, Li N, Zhou Z, Zhang J, He X, Peng S, Li G, Sidhu K, Chen S, Hua J. H19 regulates the proliferation of bovine male germline stem cells via IGF-1 signaling pathway. J Cell Physiol 2018; 234:915-926. [PMID: 30069947 DOI: 10.1002/jcp.26920] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 06/13/2018] [Indexed: 01/12/2023]
Abstract
Self-renewal and differentiation of male germline stem cells (mGSCs) provide the basic function for continual spermatogenesis. Studies of in vitro culture of germline stem cells are important and meaningful for basic biological research and practical application. Growth factors, such as GDNF, bFGF, CSF1, and EGF, could maintain the self-renewal of mGSCs. Insulin-like growth factor 1 (IGF-1), an important growth factor, and its pathway have been reported to maintain the survival of several types of stem cells and play important roles in male reproduction. However, the mechanism through which the IGF-1 pathway acts to regulate the self-renewal of mGSCs remains unclear. We analyzed the effect of IGF-1 on the proliferation and apoptosis of bovine mGSCs. We evaluated the expression profile of long noncoding RNA (LncRNA) H19 in bovine and mouse tissues. Moreover, we investigated whether LncRNA H19 could regulate the IGF-1 pathway. Results showed that IGF-1 could activate the phosphorylation of AKT and ERK signaling pathways, and the IGF-1 pathway played an important role in regulating the proliferation and apoptosis of bovine mGSCs. The proliferation rate of mGSCs decreased, whereas the apoptosis rate of mGSCs increased when the IGF-1 receptor (IGF-1R) was blocked using the IGF-1R-specific inhibitor (picropodophyllin). LncRNA H19 could regulate the IGF-1 signaling pathway and, consequently, the proliferation and apoptosis of mGSCs. The number of cells in the seminiferous tubule decreased when H19 was interfered by injecting a virus-containing supernatant. Hence, LncRNA H19 participated in the regulation of the proliferation and apoptosis of mGSCs via the IGF-1 signaling pathway.
Collapse
Affiliation(s)
- Qijing Lei
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, China
| | - Qin Pan
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, China
| | - Zhe Zhou
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, China
| | - Juqing Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, China
| | - Xin He
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, China
| | - Guangpeng Li
- Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Kuldip Sidhu
- Centre for Healthy Brain Ageing, UNSW Medicine, High St Randwick, NSW, Australia
| | - Shulin Chen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
13
|
Wang Y, MacDonald RG, Thinakaran G, Kar S. Insulin-Like Growth Factor-II/Cation-Independent Mannose 6-Phosphate Receptor in Neurodegenerative Diseases. Mol Neurobiol 2017; 54:2636-2658. [PMID: 26993302 PMCID: PMC5901910 DOI: 10.1007/s12035-016-9849-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/09/2016] [Indexed: 12/11/2022]
Abstract
The insulin-like growth factor II/mannose 6-phosphate (IGF-II/M6P) receptor is a multifunctional single transmembrane glycoprotein. Recent studies have advanced our understanding of the structure, ligand-binding properties, and trafficking of the IGF-II/M6P receptor. This receptor has been implicated in a variety of important cellular processes including growth and development, clearance of IGF-II, proteolytic activation of enzymes, and growth factor precursors, in addition to its well-known role in the delivery of lysosomal enzymes. The IGF-II/M6P receptor, distributed widely in the central nervous system, has additional roles in mediating neurotransmitter release and memory enhancement/consolidation, possibly through activating IGF-II-related intracellular signaling pathways. Recent studies suggest that overexpression of the IGF-II/M6P receptor may have an important role in regulating the levels of transcripts and proteins involved in the development of Alzheimer's disease (AD)-the prevalent cause of dementia affecting the elderly population in our society. It is reported that IGF-II/M6P receptor overexpression can increase the levels/processing of amyloid precursor protein leading to the generation of β-amyloid peptide, which is associated with degeneration of neurons and subsequent development of AD pathology. Given the significance of the receptor in mediating the transport and functioning of the lysosomal enzymes, it is being considered for therapeutic delivery of enzymes to the lysosomes to treat lysosomal storage disorders. Notwithstanding these results, additional studies are required to validate and fully characterize the function of the IGF-II/M6P receptor in the normal brain and its involvement in various neurodegenerative disorders including AD. It is also critical to understand the interaction between the IGF-II/M6P receptor and lysosomal enzymes in neurodegenerative processes, which may shed some light on developing approaches to detect and prevent neurodegeneration through the dysfunction of the receptor and the endosomal-lysosomal system.
Collapse
Affiliation(s)
- Y Wang
- Department of Psychiatry, University of Alberta, Edmonton, AB, T6G 2M8, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - R G MacDonald
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - G Thinakaran
- Departments of Neurobiology, Neurology, and Pathology, The University of Chicago, Chicago, IL, 60637, USA
| | - S Kar
- Department of Psychiatry, University of Alberta, Edmonton, AB, T6G 2M8, Canada.
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada.
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, T6G 2M8, Canada.
| |
Collapse
|
14
|
Costa-Silva DR, Barros-Oliveira MDAC, Borges RS, Tavares CB, Borges US, Alves-Ribeiro FA, Silva VC, Silva BBDA. Insulin-like Growth Factor 1 gene polymorphism and breast cancer risk. AN ACAD BRAS CIENC 2016; 88:2349-2356. [PMID: 27925035 DOI: 10.1590/0001-3765201620160169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/23/2016] [Indexed: 11/22/2022] Open
Abstract
Insulin-like Growth Factor-1 (IGF-1) gene polymorphism has been associated with an increased risk for breast cancer. IGF-1 is a key regulator of proliferation, cell differentiation and apoptosis. It has important mitogenic and anti-apoptotic activities in normal cells and in breast cancer cells, acting synergistically with estrogen to increase neoplastic cell proliferation. This review aims to present the recent finds of IGF-1 gene polymorphism and its relationship with the risk of breast cancer through following the polymorphic dinucleotide repeat cytosine-adenine (CA) and single nucleotide polymorphisms (SNPs) by searching in the PubMed database publications focused studies published from 2010 to 2015 related to IGF-1 gene polymorphism and breast cancer risk. A growing number of studies support an association between IGF-1 gene polymorphism and breast cancer risk with conflicting results, nevertheless elucidation of the patterns of IGF-1 gene expression may permit characterization of women at high-risk for breast cancer, as well as the development of strategies for early diagnosis and efficient treatment against the disease.
Collapse
Affiliation(s)
- Danylo R Costa-Silva
- Programa de Pós-Graduação em Ciências e Saúde, Universidade Federal do Piauí, Av. Frei Serafim, 2280, Centro, 64001-020 Teresina, PI, Brazil
| | - Maria DA Conceição Barros-Oliveira
- Programa de Pós-Graduação em Ciências e Saúde, Universidade Federal do Piauí, Av. Frei Serafim, 2280, Centro, 64001-020 Teresina, PI, Brazil
| | - Rafael S Borges
- Setor de Mastologia do Hospital Getulio Vargas, Universidade Federal do Piauí, Av. Frei Serafim, 2352, Centro, 64001-020 Teresina, PI, Brazil
| | - Cléciton B Tavares
- Programa de Pós-Graduação em Ciências e Saúde, Universidade Federal do Piauí, Av. Frei Serafim, 2280, Centro, 64001-020 Teresina, PI, Brazil
| | - Umbelina S Borges
- Programa de Pós-Graduação em Ciências e Saúde, Universidade Federal do Piauí, Av. Frei Serafim, 2280, Centro, 64001-020 Teresina, PI, Brazil
| | - Francisco A Alves-Ribeiro
- Setor de Mastologia do Hospital Getulio Vargas, Universidade Federal do Piauí, Av. Frei Serafim, 2352, Centro, 64001-020 Teresina, PI, Brazil
| | - Vladimir C Silva
- Serviço de Biologia Molecular, Hospital Natan Portella, Universidade Federal do Piauí, Rua Governador Raimundo Artur de Vasconcelos, 151, Centro/Sul, 64001-450 Teresina, PI, Brazil
| | - Benedito B DA Silva
- Programa de Pós-Graduação em Ciências e Saúde, Universidade Federal do Piauí, Av. Frei Serafim, 2280, Centro, 64001-020 Teresina, PI, Brazil.,Setor de Mastologia do Hospital Getulio Vargas, Universidade Federal do Piauí, Av. Frei Serafim, 2352, Centro, 64001-020 Teresina, PI, Brazil
| |
Collapse
|
15
|
Meyerholz MM, Mense K, Lietzau M, Kassens A, Linden M, Knaack H, Wirthgen E, Hoeflich A, Raliou M, Richard C, Sandra O, Schuberth HJ, Hoedemaker M, Schmicke M. Serum IGFBP4 concentration decreased in dairy heifers towards day 18 of pregnancy. J Vet Sci 2016; 16:413-21. [PMID: 26243597 PMCID: PMC4701733 DOI: 10.4142/jvs.2015.16.4.413] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/22/2015] [Accepted: 07/03/2015] [Indexed: 01/01/2023] Open
Abstract
This study was conducted to determine if the main components of the somatotropic axis change during the early phase of pregnancy in the maternal blood system and whether differences exist on day 18 after pregnancy recognition by the maternal organism. Blood samples of pregnant heifers (Holstein Friesian; n = 10 after embryo transfer) were obtained on the day of ovulation (day 0), as well as on days 7, 14, 16 and 18 and during pregnant, non-pregnant and negative control cycles. The oncentrations of progesterone (P4), oestrogen, growth hormone (GH), insulin-like growth factor-1 and -2 (IGF1, -2) and IGF-binding protein-2, -3 and -4 (IGFBP2, -3, -4) were measured. The mRNA expressions of growth hormone receptor 1A, IGF1, IGF2, IGFBP2, IGFBP3 and IGFBP4 were detected using RT-qPCR in liver biopsy specimens (day 18). In all groups, total serum IGF1 decreased from day 0 to 16. Notably, IGFBP4 maternal blood concentrations were lower during pregnancy than during non-pregnant cycles and synchronized control cycles. It can be speculated that the lower IGFBP4 in maternal blood may result in an increase of free IGF1 for local action. Further studies regarding IGFBP4 concentration and healthy early pregnancy are warranted.
Collapse
Affiliation(s)
- Marie M Meyerholz
- Endocrinology Laboratory, University of Veterinary Medicine, 30173 Hanover, Germany
| | - Kirsten Mense
- Endocrinology Laboratory, University of Veterinary Medicine, 30173 Hanover, Germany
| | - Michael Lietzau
- Clinic for Cattle, University of Veterinary Medicine, 30173 Hanover, Germany
| | - Ana Kassens
- Reproduction Unit, University of Veterinary Medicine, 30173 Hanover, Germany
| | - Matthias Linden
- Faculty of Mathematics and Physics, Leibniz University, 30167 Hanover, Germany
| | - Hendrike Knaack
- Endocrinology Laboratory, University of Veterinary Medicine, 30173 Hanover, Germany
| | | | - Andreas Hoeflich
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany
| | - Mariam Raliou
- National Institute for Agricultural Research, UMR1198 INRA-ENVA, Biologie du Développe et Reproduction, F-78350 Jouy-en-Josas, France
| | - Christophe Richard
- National Institute for Agricultural Research, UMR1198 INRA-ENVA, Biologie du Développe et Reproduction, F-78350 Jouy-en-Josas, France
| | - Olivier Sandra
- National Institute for Agricultural Research, UMR1198 INRA-ENVA, Biologie du Développe et Reproduction, F-78350 Jouy-en-Josas, France
| | | | - Martina Hoedemaker
- Clinic for Cattle, University of Veterinary Medicine, 30173 Hanover, Germany
| | - Marion Schmicke
- Endocrinology Laboratory, University of Veterinary Medicine, 30173 Hanover, Germany
| |
Collapse
|
16
|
Ma Y, Han CC, Li Y, Wang Y, Wei W. Insulin-like growth factor-binding protein-3 inhibits IGF-1-induced proliferation of human hepatocellular carcinoma cells by controlling bFGF and PDGF autocrine/paracrine loops. Biochem Biophys Res Commun 2016; 478:964-9. [DOI: 10.1016/j.bbrc.2016.08.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 08/09/2016] [Indexed: 01/04/2023]
|
17
|
El Tayebi HM, Abdelaziz AI. Epigenetic regulation of insulin-like growth factor axis in hepatocellular carcinoma. World J Gastroenterol 2016; 22:2668-2677. [PMID: 26973407 PMCID: PMC4777991 DOI: 10.3748/wjg.v22.i9.2668] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/29/2015] [Accepted: 12/08/2015] [Indexed: 02/06/2023] Open
Abstract
The insulin-like growth factor (IGF) signaling pathway is an important pathway in the process of hepatocarcinogenesis, and the IGF network is clearly dysregulated in many cancers and developmental abnormalities. In hepatocellular carcinoma (HCC), only a minority of patients are eligible for curative treatments, such as tumor resection or liver transplant. Unfortunately, there is a high recurrence of HCC after surgical tumor removal. Recent research efforts have focused on targeting IGF axis members in an attempt to find therapeutic options for many health problems. In this review, we shed lights on the regulation of members of the IGF axis, mainly by microRNAs in HCC. MicroRNAs in HCC attempt to halt the aberrant expression of the IGF network, and a single microRNA can have multiple downstream targets in one or more signaling pathways. Targeting microRNAs is a relatively new approach for identifying an efficient radical cure for HCC.
Collapse
|
18
|
Zhang L, Wang YY, Fu MZ, Li G, An N, Li SY, Zhou ZQ. The effects of ovariectomy on meat performance and expression of GH/IGF-I in young goats. CANADIAN JOURNAL OF ANIMAL SCIENCE 2014. [DOI: 10.4141/cjas-2014-001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Zhang, L., Wang, Y.-y., Fu, M.-z., Li, G., An, N., Li, S.-y. and Zhou, Z.-q. 2014. The effects of ovariectomy on meat performance and expression of GH/IGF-I in young goats. Can. J. Anim. Sci. 94: 619–626. Experiments were carried out to investigate the effects of ovariectomy on meat production efficiency and to explore the expression of GH/IGF-I in young goats. Animal performance, meat quality, levels of serum growth hormone (GH) and insulin-like growth factor 1 (IGF-I), and mRNA levels of three key genes [GH Receptor (GHR), IGF-I and IGF-I Receptor (IGF-IR)] in longissimus dorsi and biceps femoris muscles were measured. The results show that carcass weight, net meat mass, fat weight and loin eye area of ovariectomized goats were higher than those of the controls, and ovariectomized goats lost 0.40 kg of bone weight (P<0.05). There was no statistically valid difference for the color, pH, water-holding capacity, or cooking rate of meat (P>0.05) between the two groups, except for the shear value, which was significantly lower in the Ovx group than in the control group (P<0.05). The results of this research show for the first time a significant trend (P<0.05) for serum GH and IGF-I in the direction of increasing in ovariectomized goats. Furthermore, the mRNA levels of GHR, IGF-I and IGF-IR in muscle were all up-regulated, except for the IGF-I gene in biceps femoris, by ovariectomy. In summary, ovariectomy showed a beneficial promotion in animal performance, but did not reduce meat quality, and increased serum GH and IGF-I and mRNA expression levels of GHR, IGF-I and IGF-IR in young female goats.
Collapse
Affiliation(s)
- Lei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yan-yan Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ming-zhe Fu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ning An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Si-yao Li
- College of Animal Science and Technology, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhan-qin Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
19
|
Thompson ACS, Bruss MD, Nag N, Kharitonenkov A, Adams AC, Hellerstein MK. Fibroblast growth factor 21 is not required for the reductions in circulating insulin-like growth factor-1 or global cell proliferation rates in response to moderate calorie restriction in adult mice. PLoS One 2014; 9:e111418. [PMID: 25369265 PMCID: PMC4219748 DOI: 10.1371/journal.pone.0111418] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 10/02/2014] [Indexed: 12/14/2022] Open
Abstract
Calorie restriction (CR) delays aging and extends lifespan in numerous organisms, including mice. Down-regulation of the somatotropic axis, including a reduction in insulin-like growth factor-1 (IGF-1), likely plays an important role in CR-induced lifespan extension, possibly by reducing cell proliferation rates, thereby delaying replicative senescence and inhibiting tumor promotion. Accordingly, elucidating the mechanism(s) by which IGF-1 is reduced in response to CR holds therapeutic potential in the fight against age-related diseases. Up-regulation of fibroblast growth factor 21 (FGF21) is one possible mechanism given that FGF21 expression is induced in response to nutritional deprivation and has been implicated as a negative regulator of IGF-1 expression. Here we investigated alterations in hepatic growth hormone (GH)-mediated IGF-1 production and signaling as well as the role of FGF21 in the regulation of IGF-1 levels and cell proliferation rates in response to moderate CR in adult mice. We found that in response to moderate CR, circulating GH and hepatic janus kinase 2 (JAK2) phosphorylation levels are unchanged but that hepatic signal transducer and activator of transcription 5 (STAT5) phosphorylation levels are reduced, identifying STAT5 phosphorylation as a potential key site of CR action within the somatotropic axis. Circadian measurements revealed that the relative level of FGF21 expression is both higher and lower in CR vs. ad libitum (AL)-fed mice, depending on the time of measurement. Employing FGF21-knockout mice, we determined that FGF21 is not required for the reduction in IGF-1 levels or cell proliferation rates in response to moderate CR. However, compared to AL-fed WT mice, AL-fed FGF21-knockout mice exhibited higher basal rates of cell proliferation, suggesting anti-mitotic effects of FGF21. This work provides insights into both GH-mediated IGF-1 production in the context of CR and the complex network that regulates FGF21 and IGF-1 expression and cell proliferation rates in response to nutritional status.
Collapse
Affiliation(s)
- Airlia C. S. Thompson
- Department of Nutritional Science and Toxicology, University of California, Berkeley, California, United States of America
- * E-mail: (ACST); (MKH)
| | - Matthew D. Bruss
- Department of Nutritional Science and Toxicology, University of California, Berkeley, California, United States of America
| | - Nitish Nag
- Department of Nutritional Science and Toxicology, University of California, Berkeley, California, United States of America
| | - Alexei Kharitonenkov
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana, United States of America
| | - Andrew C. Adams
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana, United States of America
| | - Marc K. Hellerstein
- Department of Nutritional Science and Toxicology, University of California, Berkeley, California, United States of America
- KineMed, Inc., Emeryville, California, United States of America
- * E-mail: (ACST); (MKH)
| |
Collapse
|
20
|
Enguita-Germán M, Fortes P. Targeting the insulin-like growth factor pathway in hepatocellular carcinoma. World J Hepatol 2014; 6:716-737. [PMID: 25349643 PMCID: PMC4209417 DOI: 10.4254/wjh.v6.i10.716] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/14/2014] [Accepted: 08/31/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide. Only 30%-40% of the patients with HCC are eligible for curative treatments, which include surgical resection as the first option, liver transplantation and percutaneous ablation. Unfortunately, there is a high frequency of tumor recurrence after surgical resection and most HCC seem resistant to conventional chemotherapy and radiotherapy. Sorafenib, a multi-tyrosine kinase inhibitor, is the only chemotherapeutic option for patients with advanced hepatocellular carcinoma. Patients treated with Sorafenib have a significant increase in overall survival of about three months. Therefore, there is an urgent need to develop alternative treatments. Due to its role in cell growth and development, the insulin-like growth factor system is commonly deregulated in many cancers. Indeed, the insulin-like growth factor (IGF) axis has recently emerged as a potential target for hepatocellular carcinoma treatment. To this aim, several inhibitors of the pathway have been developed such as monoclonal antibodies, small molecules, antisense oligonucleotides or small interfering RNAs. However recent studies suggest that, unlike most tumors, HCC development requires increased signaling through insulin growth factor II rather than insulin growth factor I. This may have great implications in the future treatment of HCC. This review summarizes the role of the IGF axis in liver carcinogenesis and the current status of the strategies designed to target the IGF-I signaling pathway for hepatocellular carcinoma treatment.
Collapse
|
21
|
Sharma M, Satyam A, Abhishek A, Khan R, Rajappa M, Sharma A. Molecular and Circulatory Expression of Insulin Growth Factors in Indian Females with Advanced Cervical Cancer. Asian Pac J Cancer Prev 2012; 13:6475-9. [DOI: 10.7314/apjcp.2012.13.12.6475] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
22
|
Zhou Q, Mao YQ, Jiang WD, Chen YR, Huang RY, Zhou XB, Wang YF, Shi Z, Wang ZS, Huang RP. Development of IGF signaling antibody arrays for the identification of hepatocellular carcinoma biomarkers. PLoS One 2012; 7:e46851. [PMID: 23071652 PMCID: PMC3469629 DOI: 10.1371/journal.pone.0046851] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 09/10/2012] [Indexed: 12/16/2022] Open
Abstract
Purpose Our objective was to develop a system to simultaneously and quantitatively measure the expression levels of the insulin-like growth factor (IGF) family proteins in numerous samples and to apply this approach to profile the IGF family proteins levels in cancer and adjacent tissues from patients with hepatocellular carcinoma (HCC). Experimental Design Antibodies against ten IGF family proteins (IGF-1, IGF-1R, IGF-2, IGF-2R, IGFBP-1, IGFBP-2, IGFBP-3, IGFBP-4, IGFBP-6, and Insulin) were immobilized on the surface of a glass slide in an array format to create an IGF signaling antibody array. Tissue lysates prepared from patient's liver cancer tissues and adjacent tissues were then applied to the arrays. The proteins captured by antibodies on the arrays were then incubated with a cocktail of biotinylated detection antibodies and visualized with a fluorescence detection system. By comparison with standard protein amount, the exact protein concentrations in the samples can be determined. The expression levels of the ten IGF family proteins in 25 pairs of HCC and adjacent tissues were quantitatively measured using this novel antibody array technology. The differential expression levels between cancer tissues and adjacent tissues were statistically analyzed. Results A novel IGF signaling antibody array was developed which allows the researcher to simultaneously detect ten proteins involved in IGF signal pathway with high sensitivity and specificity. Using this approach, we found that the levels of IGF-2R and IGFBP-2 in HCC tissues were higher than those in adjacent tissues. Conclusion Our IGF signaling antibody array which can detect the expression of ten IGF family members with high sensitivity and specificity will undoubtedly prove a powerful tool for drug and biomarker discovery.
Collapse
MESH Headings
- Antibodies/immunology
- Antibodies, Immobilized/immunology
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/classification
- Biomarkers, Tumor/immunology
- Blotting, Western
- Carcinoma, Hepatocellular/diagnosis
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/metabolism
- Cluster Analysis
- Enzyme-Linked Immunosorbent Assay
- Humans
- Insulin/analysis
- Insulin/immunology
- Insulin-Like Growth Factor Binding Protein 2/analysis
- Insulin-Like Growth Factor Binding Protein 2/immunology
- Insulin-Like Growth Factor Binding Proteins/analysis
- Insulin-Like Growth Factor Binding Proteins/immunology
- Liver Neoplasms/immunology
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Microarray Analysis/methods
- Protein Isoforms/analysis
- Protein Isoforms/immunology
- Receptor, IGF Type 1/analysis
- Receptor, IGF Type 1/immunology
- Receptor, IGF Type 2/analysis
- Receptor, IGF Type 2/immunology
- Reproducibility of Results
- Sensitivity and Specificity
- Signal Transduction/immunology
- Somatomedins/analysis
- Somatomedins/immunology
Collapse
Affiliation(s)
- Qi Zhou
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ying-Qing Mao
- RayBiotech, Inc., Guangzhou, China
- RayBiotech, Inc., Norcross, Georgia, United States of America
| | - Wei-Dong Jiang
- RayBiotech, Inc., Guangzhou, China
- RayBiotech, Inc., Norcross, Georgia, United States of America
| | | | | | - Xiang-Bing Zhou
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ya-Feng Wang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhi Shi
- RayBiotech, Inc., Guangzhou, China
- South China Biochip Research Center, Guangzhou, China
| | | | - Ruo-Pan Huang
- RayBiotech, Inc., Guangzhou, China
- RayBiotech, Inc., Norcross, Georgia, United States of America
- South China Biochip Research Center, Guangzhou, China
- * E-mail:
| |
Collapse
|
23
|
Li S, Li F, Sun Z, Xiang J. Two spliced variants of insulin-like androgenic gland hormone gene in the Chinese shrimp, Fenneropenaeus chinensis. Gen Comp Endocrinol 2012; 177:246-55. [PMID: 22561290 DOI: 10.1016/j.ygcen.2012.04.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 04/05/2012] [Accepted: 04/12/2012] [Indexed: 01/21/2023]
Abstract
More and more evidence indicates that the insulin-like androgenic gland hormone (IAG) plays an important role in male sexual differentiation in crustaceans. In the present study, two IAG isoforms (Fc-IAG1 and Fc-IAG2) were identified from the penaeid shrimp Fenneropenaeus chinensis. Sequence analysis of IAG gene (Fc-IAG) showed that Fc-IAG1 and Fc-IAG2 were generated by alternative splicing of Fc-IAG pre-mRNA, and they shared almost the same deduced amino acid sequence. Both of them were composed of signal peptide, B chain, C peptide and A chain. They both contained the six conserved cysteine residues and a putative N-linked glycosylated site like IAGs reported in other crustacean species. Tissue distribution and in situ hybridization analysis revealed that they had the highest expression level in the androgenic gland. The transcripts of Fc-IAG1 and Fc-IAG2 could also be detected in hepatopancreas and nerve cord of both sexes at a low expression level. Analysis on their temporal expression profiles showed that they expressed at all embryonic and post-larvae stages. The expression of Fc-IAG1 at different developmental stages displayed a low and stable manner, while the expression of Fc-IAG2 began to increase from post-larvae stages, which suggested that Fc-IAG2 might be involved in male sexual differentiation. In the 5' flanking sequence of Fc-IAG, putative binding sites for transcription factors regulating transcription of hormone genes and genes related to sexual development were predicted, which provided us a primary understanding on the regulation mechanism of Fc-IAG gene. This is the first time to report the gene structure of IAG gene and distinct variants of IAG transcripts in crustaceans.
Collapse
Affiliation(s)
- Shihao Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | | | | | | |
Collapse
|
24
|
Jiang Q, Ko WKW, Wong AOL. Insulin-like growth factor as a novel stimulator for somatolactin secretion and synthesis in carp pituitary cells via activation of MAPK cascades. Am J Physiol Endocrinol Metab 2011; 301:E1208-19. [PMID: 21862722 DOI: 10.1152/ajpendo.00347.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Somatolactin (SL), a member of the growth hormone/prolactin family, is a pituitary hormone unique to fish models. Although SL is known to have diverse functions in fish, the mechanisms regulating its secretion and synthesis have not been fully characterized. Using grass carp pituitary cells as a model, here we examined the role of insulin-like growth factor (IGF) in SL regulation at the pituitary level. As a first step, the antisera for the two SL isoforms expressed in the carp pituitary, SLα and SLβ, were produced, and their specificity was confirmed by antiserum preabsorption and immunohistochemical staining in the carp pituitary. Western blot using these antisera revealed that grass carp SLα and SLβ could be N-linked glycosylated and their basal secretion and cell content in carp pituitary cells could be elevated by IGF-I and -II treatment. These stimulatory effects occurred with parallel rises in SLα and SLβ mRNA levels, and these SL gene expression responses were not mimicked by insulin but blocked by IGF-I receptor inactivation. In carp pituitary cells, IGF-I and -II could induce rapid phosphorylation of IGF-I receptor, MEK1/2, ERK1/2, MKK3/6, and p38 MAPK; and SLα and SLβ secretion, protein production, and mRNA expression caused by IGF-I and -II stimulation were negated by inactivating MEK1/2 and p38 MAPK. Parallel inhibition of PI3K and Akt, however, were not effective in these regards. These results, taken together, provide evidence that IGF can upregulate SL secretion and synthesis at the pituitary level via stimulation of MAPK- but not PI3K/Akt-dependent pathways.
Collapse
Affiliation(s)
- Quan Jiang
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | | | | |
Collapse
|
25
|
Hormonal status and regulation of glycemia in neonatal calves during the first hours of postnatal life. ACTA VETERINARIA 2011. [DOI: 10.2298/avb1104349k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Capoluongo E. Insulin-like growth factor system and sporadic malignant melanoma. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 178:26-31. [PMID: 21224039 DOI: 10.1016/j.ajpath.2010.11.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Revised: 07/15/2010] [Accepted: 08/10/2010] [Indexed: 11/18/2022]
Abstract
Insulin and insulin-like growth factors (IGFs) are important regulators of energy metabolism and growth. Several findings have outlined an important role played by this family of molecules in both tumor maintenance and development. Despite the established contribution of the IGF system in carcinogenesis, little and contrasting data have been reported concerning the intertwined relationships between melanoma and this family of molecules. The present minireview aims to summarize the main topics and evidence concerning this malignant skin cancer, with a focus on the following: i) melanoma and cell proliferation effects induced by the IGF system, ii) in vitro and in vivo experimental data, and iii) targeting studies. Because of consistent findings regarding the role of the IGF-1 receptor in the modulation of IGF-1 activity, possible therapeutic strategies combining the use of antisense oligonucleotides against IGF-1 receptor mRNA could be applied in the future.
Collapse
Affiliation(s)
- Ettore Capoluongo
- Laboratory of Clinical Molecular Diagnostic, Institute of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Italy.
| |
Collapse
|
27
|
Rosen O, Manor R, Weil S, Gafni O, Linial A, Aflalo ED, Ventura T, Sagi A. A sexual shift induced by silencing of a single insulin-like gene in crayfish: ovarian upregulation and testicular degeneration. PLoS One 2010; 5:e15281. [PMID: 21151555 PMCID: PMC3000327 DOI: 10.1371/journal.pone.0015281] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 11/04/2010] [Indexed: 11/18/2022] Open
Abstract
In sequential hermaphrodites, intersexuality occurs naturally, usually as a transition state during sexual re-differentiation processes. In crustaceans, male sexual differentiation is controlled by the male-specific androgenic gland (AG). An AG-specific insulin-like gene, previously identified in the red-claw crayfish Cherax quadricarinatus (designated Cq-IAG), was found in this study to be the prominent transcript in an AG cDNA subtractive library. In C. quadricarinatus, sexual plasticity is exhibited by intersex individuals in the form of an active male reproductive system and male secondary sex characters, along with a constantly arrested ovary. This intersexuality was exploited to follow changes caused by single gene silencing, accomplished via dsRNA injection. Cq-IAG silencing induced dramatic sex-related alterations, including male feature feminization, a reduction in sperm production, extensive testicular degeneration, expression of the vitellogenin gene, and accumulation of yolk proteins in the developing oocytes. Upon silencing of the gene, AG cells hypertrophied, possibly to compensate for low hormone levels, as reflected in the poor production of the insulin-like hormone (and revealed by immunohistochemistry). These results demonstrate both the functionality of Cq-IAG as an androgenic hormone-encoding gene and the dependence of male gonad viability on the Cq-IAG product. This study is the first to provide evidence that silencing an insulin-like gene in intersex C. quadricarinatus feminizes male-related phenotypes. These findings, moreover, contribute to the understanding of the regulation of sexual shifts, whether naturally occurring in sequential hermaphrodites or abnormally induced by endocrine disruptors found in the environment, and offer insight into an unusual gender-related link to the evolution of insulins.
Collapse
Affiliation(s)
- Ohad Rosen
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Rivka Manor
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Simy Weil
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ohad Gafni
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Assaf Linial
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eliahu D. Aflalo
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tomer Ventura
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Amir Sagi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- * E-mail:
| |
Collapse
|
28
|
|
29
|
Ruan W, Ying K. Abnormal expression of IGF-binding proteins, an initiating event in idiopathic pulmonary fibrosis? Pathol Res Pract 2010; 206:537-43. [PMID: 20452131 DOI: 10.1016/j.prp.2010.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 02/21/2010] [Accepted: 03/25/2010] [Indexed: 02/06/2023]
Abstract
For significant improvements to occur in the survival of patients with idiopathic pulmonary fibrosis (IPF), it is necessary to develop novel and more precisely targeted therapies. The selection of future appropriate regimens must critically depend on improved characterization of the molecules driving the pathogenesis of IPF. It is well defined that IPF is characterized by the expression of genes indicating an active tissue remodeling program, including extracellular matrix (ECM) and basement membrane components, as well as myofibroblast-associated and epithelial cell-related genes. A few recent advances are worth mentioning. Pulmonary research demonstrates abnormal expression of insulin-like growth factor (IGF) binding proteins (IGFBPs) in IPF, including human IPF bronchoalveolar lavage (BAL) cells and BAL fluids, human IPF fibroblasts, as well as fibrotic lung tissues of bleomycin-induced mice and IPF patients, analyzed by microarray, reverse transcription-polymerase chain reaction (RT-PCR), ribonuclease protection assay (RPA), Western blot, immunohistochemistry, or enzyme-linked immunosorbent assay (ELISA). Simultaneously, in vitro and in vivo studies indicate the involvement of IGFBPs in the initiation and development of the fibrosis process, including fibroblast activation and transdifferentiation to a myofibroblast phenotype, epithelial-mesenchymal transition (EMT), increased ECM production, and decreased ECM degradation, possibly contributing to the final lung fibrosis. These observations suggest that dysregulation of IGFBPs may be a key factor responsible for the initiation and perpetuation of IPF. Such efforts could lead to potential candidate molecules being exploited for therapeutic manipulation.
Collapse
Affiliation(s)
- Wenjing Ruan
- Department of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University, 3 East Qingchun Road, Hangzhou 310016, China
| | | |
Collapse
|
30
|
Resistance to age-dependent thymic atrophy in long-lived mice that are deficient in pregnancy-associated plasma protein A. Proc Natl Acad Sci U S A 2009; 106:11252-7. [PMID: 19549878 DOI: 10.1073/pnas.0807025106] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pregnancy-associated plasma protein A (PAPPA) is a metalloproteinase that controls the tissue availability of insulin-like growth factor (IGF). Homozygous deletion of PAPPA in mice leads to lifespan extension. Since immune function is an important determinant of individual fitness, we examined the natural immune ecology of PAPPA(-/-) mice and their wild-type littermates reared under specific pathogen-free condition with aging. Whereas wild-type mice exhibit classic age-dependent thymic atrophy, 18-month-old PAPPA(-/-) mice maintain discrete thymic cortex and medulla densely populated by CD4(+)CD8(+) thymocytes that are capable of differentiating into single-positive CD4 and CD8 T cells. Old PAPPA(-/-) mice have high levels of T cell receptor excision circles, and have bone marrows enriched for subsets of thymus-seeding progenitors. PAPPA(-/-) mice have an overall larger pool of naive T cells, and also exhibit an age-dependent accumulation of CD44(+)CD43(+) memory T cells similar to wild-type mice. However, CD43(+) T cell subsets of old PAPPA(-/-) mice have significantly lower prevalence of 1B11 and S7, glycosylation isoforms known to inhibit T cell activation with normal aging. In bioassays of cell activation, splenic T cells of old PAPPA(-/-) mice have high levels of activation antigens and cytokine production, and also elicit Ig production by autologous B cells at levels equivalent to young wild-type mice. These data suggest an IGF-immune axis of healthy longevity. Controlling the availability of IGF in the thymus by targeted manipulation of PAPPA could be a way to maintain immune homeostasis during postnatal development and aging.
Collapse
|
31
|
Kane BP, Jester JV, Huang J, Wahlert A, Hassell JR. IGF-II and collagen expression by keratocytes during postnatal development. Exp Eye Res 2009; 89:218-23. [PMID: 19328782 DOI: 10.1016/j.exer.2009.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 03/16/2009] [Accepted: 03/18/2009] [Indexed: 10/21/2022]
Abstract
Keratocytes produce the extensive stromal matrix of the cornea during the late embryonic and neonatal time periods. We propose to test the hypothesis that their biosynthetic activity declines during this process. Keratocytes were isolated from corneas of 6-8-week-old rabbits and corneas of 1-2-year-old cows and their ability to proliferate and synthesize collagen in serum-free media was determined. Rabbit keratocyte cultures increased 38% in DNA content after one week and deposited collagen type I and IGF-II in the media. Bovine keratocyte cultures, in contrast, did not increase in DNA or produce detectable collagen and IGF-II. Bovine keratocytes cultured in media previously conditioned by rabbit keratocytes, however, increased 56% in DNA content, and deposited collagen type I into the media. Microarray analysis of mRNA from neonatal and adult mouse keratocytes was used to confirm these differences. Compared to adult mouse keratocytes, neonatal keratocytes showed high expression levels of IGF-I, IGF-II and collagen types III and V. Since previous studies showed that IGFs stimulate bovine keratocytes to proliferate and to synthesize procollagen type I, we therefore propose that the results of this study suggests that the IGFs may play an important role in regulating early corneal growth in vivo.
Collapse
Affiliation(s)
- Bradley P Kane
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL 33612-4799, USA
| | | | | | | | | |
Collapse
|
32
|
El‐Shewy HM, Luttrell LM. Chapter 24 Insulin‐Like Growth Factor‐2/Mannose‐6 Phosphate Receptors. VITAMINS & HORMONES 2009; 80:667-97. [DOI: 10.1016/s0083-6729(08)00624-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Hassell JR, Kane BP, Etheredge LT, Valkov N, Birk DE. Increased stromal extracellular matrix synthesis and assembly by insulin activated bovine keratocytes cultured under agarose. Exp Eye Res 2008; 87:604-11. [PMID: 18938157 DOI: 10.1016/j.exer.2008.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 08/22/2008] [Accepted: 09/20/2008] [Indexed: 11/25/2022]
Abstract
Previously, pharmacological levels of insulin have been shown to stimulate the synthesis of normal corneal stromal collagen and proteoglycans by bovine keratocytes in culture. Here we compared insulin to physiological levels of IGF-I and found that IGF-I also stimulated the synthesis of these extracellular matrix components, but less than that of insulin. Keratocytes in monolayer culture secreted most of the collagen synthesized into the media in the form of procollagen, a precursor of collagen. We found that an overlay of 3% agarose on the keratocytes in culture enhanced the conversion of procollagen to collagen and increased the deposition of collagen and proteoglycans into the cell layer. The extracellular matrix associated with the keratocytes cultured under agarose exhibited a corneal stromal-like architecture. These results suggest that enhancing the conversion of procollagen to collagen is a key step in the formation of extracellular matrix by keratocytes in vitro. Agarose overlay of insulin activated keratocytes in culture is a useful model for studying corneal stromal extracellular matrix assembly in vitro.
Collapse
Affiliation(s)
- John R Hassell
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL 33612-4799, USA.
| | | | | | | | | |
Collapse
|
34
|
Musselmann K, Kane BP, Alexandrou B, Hassell JR. IGF-II is present in bovine corneal stroma and activates keratocytes to proliferate in vitro. Exp Eye Res 2007; 86:506-11. [PMID: 18237730 DOI: 10.1016/j.exer.2007.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 12/07/2007] [Accepted: 12/11/2007] [Indexed: 10/22/2022]
Abstract
Extracts of bovine corneal stroma have been shown to activate keratocytes in culture to proliferate. We fractionated stromal extract on a column of Sephacryl S-300 and tested the fractions for mitogenic activity using cell culture and for the presence of IGF-II and its binding protein IGFBP-2 by Western blot. We found that the mitogenic activity in the extract separated into major and minor peaks and that immunologically detectable IGF-II and IGFBP-2 co-eluted with the minor peak. We also compared the effects of 10 ng IGF-II/ml on keratocytes in culture to that of 2 ng TGF-beta/ml over a 7-day culture period. We found that IGF-II and TGF-beta, alone or combined, increased both (3)H-thymidine incorporation and DNA content of the cultures. The phenotype of the cells was determined by using antibodies to alpha-SM (smooth muscle) actin, fibronectin, SPARC, lumican and keratocan in Western blots of cell layers of media. Keratocytes cultured in IGF-II expressed no alpha-SM actin or fibronectin, low levels of SPARC and high levels of lumican and keratocan, indicating a native phenotype. Keratocytes in TGF-beta expressed alpha-SM actin, fibronectin, SPARC and lumican, and expressed no or low levels of keratocan, indicating a myofibroblast phenotype. Keratocytes cultured in IGF-II plus TGF-beta, however, expressed alpha-SM actin, fibronectin, SPARC, lumican, and keratocan by day 7 of culture. The results of this study show that IGF-II to be present in the corneal stroma, to stimulate keratocyte proliferation while maintaining native phenotype and to override the TGF-beta mediated down regulation of keratocan production. The IGF-II in the stroma may serve as a mechanism to immediately activate keratocytes upon wounding and to ameliorate the scarring effects of TGF-beta.
Collapse
Affiliation(s)
- Kurt Musselmann
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL 33612-4799, USA
| | | | | | | |
Collapse
|
35
|
Williams C, Rezgui D, Prince SN, Zaccheo OJ, Foulstone EJ, Forbes BE, Norton RS, Crosby J, Hassan AB, Crump MP. Structural insights into the interaction of insulin-like growth factor 2 with IGF2R domain 11. Structure 2007; 15:1065-78. [PMID: 17850746 DOI: 10.1016/j.str.2007.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 06/18/2007] [Accepted: 07/06/2007] [Indexed: 11/25/2022]
Abstract
The insulin-like growth factor II/mannose-6-phosphate receptor (IGF2R) mediates trafficking of mannose-6-phosphate (M6P)-containing proteins and the mitogenic hormone IGF2. IGF2R also plays an important role as a tumor suppressor, as mutation is frequently associated with human carcinogenesis. IGF2 binds to domain 11, one of 15 extracellular domains on IGF2R. The crystal structure of domain 11 and the solution structure of IGF2 have been reported, but, to date, there has been limited success when using crystallography to study the interaction of IGFs with their binding partners. As an approach to investigate the interaction between IGF2 and IGF2R, we have used heteronuclear NMR in combination with existing mutagenesis data to derive models of the domain 11-IGF2 complex by using the program HADDOCK. The models reveal that the molecular interaction is driven by critical hydrophobic residues on IGF2 and IGF2R, while a ring of flexible, charged residues on IGF2R may modulate binding.
Collapse
Affiliation(s)
- Christopher Williams
- Department of Organic and Biological Chemistry, School of Chemistry, Cantock's Close, University of Bristol, Bristol, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Degraff DJ, Malik M, Chen Q, Miyako K, Rejto L, Aguiar AA, Bancroft DRE, Cohen P, Sikes RA. Hormonal regulation of IGFBP-2 proteolysis is attenuated with progression to androgen insensitivity in the LNCaP progression model. J Cell Physiol 2007; 213:261-8. [PMID: 17492783 DOI: 10.1002/jcp.21123] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The identification of molecular determinants involved in the promotion of metastasis and development of androgen insensitive prostate cancer (AI-PCa) is necessary to discriminate aggressive from indolent disease and to identify therapeutic targets for advanced disease. Overexpression of one particular member of the insulin like growth factor (IGF) axis, IGFBP-2, is implicated in the development of AI-PCa and other cancers. Using the LNCaP human PCa progression model, we show that the AI and metastatic prostate cancer cell line C4-2B4 expresses greater amounts of secreted IGFBP-2 than the androgen sensitive (AS), non-metastatic LNCaP progenitor cell line. Further, the ability of androgens to decrease extracellular IGFBP-2 levels is attenuated in the AI and metastatic C4-2 cell line. The ability of androgen to negatively regulate extracellular IGFBP-2 levels was blocked by Casodex in a dose-dependent manner. The mechanism underlying the androgen-induced downregulation of secreted IGFBP-2 appears to involve extracellular proteolysis, resulting in the production of IGFBP-2 fragments lacking the ability to bind IGF-I and IGF-II. As C4-2 cells have an attenuated ability to proteolyze IGFBP-2 in response to androgen and C4-2B4 cells express greater amounts of IGFBP-2, our data implies that the diminished regulation of IGFBP-2 and loss of associated proteolytic fragments play a role in the increased metastatic behavior of these cells in vivo. Furthermore, our results suggest that either increased levels of intact IGFBP-2 or decreased levels of IGFBP-2 proteolytic fragments could serve as a biomarker to monitor for progression to AI-PCa.
Collapse
Affiliation(s)
- David J Degraff
- Laboratory for Cancer Ontogeny and Therapeutics, Department of Biological Sciences, University of Delaware, Newark, Deleware 19716, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Steroid-induced posterior subcapsular cataracts (PSCs) exhibit three main distinctive characteristics: (i) association only with steroids possessing glucocorticoid activity, (ii) involvement of aberrant migrating lens epithelial cells, and (iii) a central posterior location. The first characteristic suggests a key role for glucocorticoid receptor activation and subsequent changes to the transcription of specific genes. Glucocorticoid receptor activation is associated in many cell types with proliferation, suppressed differentiation, a reduced susceptibility to apoptosis, altered transmembrane transport, and enhancement of reactive oxygen species activity. Glucocorticoids may be capable of inducing changes to the transcription of genes in lens epithelial cells that are related to many of these cellular processes. This review examines the various mechanisms that have been proposed to account for the development of PSC in the context of recent DNA array studies. Additionally, given that the glucocorticoid receptor can also engender wide-ranging indirect activities, glucocorticoids could also indirectly affect the lens through the responses of other cells within the ocular compartment and/or through effects on cells at more remote locations. These indirect mechanisms, which, for example, could be mediated through alterations to the intraocular levels of growth factors that normally orchestrate lens development and maintain lens homeostasis, are also discussed. Although the mechanism of steroid cataract induction remains unknown, glucocorticoid-induced gene transcription events in lens epithelial cells, and also other intraocular or systemic cells, likely interact to generate steroid cataracts. Finally, although evidence for glucocorticoid-protein adduct formation in the lens is inconclusive, the generation of such adducts cannot yet be discounted as a contributing factor and must necessarily be retained in discussions of the etiology of steroid cataract.
Collapse
|
38
|
Miyatake T, Ueda Y, Nakashima R, Yoshino K, Kimura T, Murata T, Nomura T, Fujita M, Buzard GS, Enomoto T. Down-regulation of insulin-like growth factor binding protein-5 (IGFBP-5): novel marker for cervical carcinogenesis. Int J Cancer 2007; 120:2068-77. [PMID: 17290407 DOI: 10.1002/ijc.22264] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To better understand the underlying pathways of cervical carcinogenesis, cDNA microarray analysis was performed on 2 sets of squamous cell carcinomas (SCCs) and their adjacent normal squamous epithelia. Consistently altered expression was detected for 32 genes. Real-time RT-PCR analysis was conducted on a selected subset of these genes (S100A2, GPC4, p72, IGFBP-5, TRIM2 and NAB2) for 14 additional SCCs and 10 normal epithelia. This found that, of the 6 candidate genes, only the insulin-like growth factor binding protein-5 (IGFBP-5) mRNA was generally and significantly under-expressed in SCCs (p < 0.001). All normal cervical epithelia (30 of 30) stained positively for IGFBP-5 protein, with 70% showing strong staining, whereas 65% (17/26) of SCC had complete loss of IGFBP-5, and only 8% (2/26) SCC retained strong expression (p < 0.001). Immunohistochemistry of premalignant cervical intraepithelial neoplasia (CIN) lesions shows a significantly weaker or negative staining in advanced CIN3 lesions compared with normal squamous epithelia (p = 0.001). This is the first study to show that down-regulation of IGFBP-5 protein correlates with cervical carcinogenesis and does so at a preneoplastic stage.
Collapse
MESH Headings
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/genetics
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/virology
- DNA, Viral/analysis
- Down-Regulation
- Female
- Gene Expression Regulation, Neoplastic
- Human papillomavirus 16/classification
- Human papillomavirus 16/genetics
- Humans
- Immunohistochemistry
- Insulin-Like Growth Factor Binding Protein 5/biosynthesis
- Insulin-Like Growth Factor Binding Protein 5/deficiency
- Insulin-Like Growth Factor Binding Protein 5/genetics
- Neoplasm Staging
- Oligonucleotide Array Sequence Analysis/methods
- Papillomavirus Infections/genetics
- Papillomavirus Infections/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Uterine Cervical Neoplasms/genetics
- Uterine Cervical Neoplasms/metabolism
- Uterine Cervical Neoplasms/pathology
- Uterine Cervical Neoplasms/virology
Collapse
Affiliation(s)
- Takashi Miyatake
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 1-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ning Y, Hoang B, Schuller AGP, Cominski TP, Hsu MS, Wood TL, Pintar JE. Delayed mammary gland involution in mice with mutation of the insulin-like growth factor binding protein 5 gene. Endocrinology 2007; 148:2138-47. [PMID: 17255210 DOI: 10.1210/en.2006-0041] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
IGFs (IGF-I and IGF-II) are essential for development, and their bioactivities are tightly regulated by six related IGF-binding proteins (IGFBPs). IGFBP-5 is the most highly conserved binding protein and is expressed in several key developmental lineages as well as in multiple adult tissues including the mammary gland. To explore IGFBP-5 actions in vivo, we produced IGFBP-5 knockout (KO) mice. Whole-body growth, selected organ weights, and body composition were essentially normal in IGFBP-5 KO mice, presumably because of substantial compensation by remaining IGFBP family members. The IGFBP-5 KO mice also exhibited normal mammary gland development and were capable of nursing their pups. We then directly evaluated the proposed role of IGFBP-5 in apoptosis and remodeling of mammary gland during involution. We found that the process of involution after forced weaning was delayed in IGFBP-5 KO mice, with both the appearance of apoptotic cells and the reappearance of adipocytes retarded in mutant mice, compared with controls. We also determined the effects of IGFBP-5 deletion on mammary gland development in pubertal females after ovariectomy and stimulation with estradiol/progesterone. In this paradigm, IGFBP-5 KO mammary glands exhibited enhanced alveolar bud formation consistent with enhanced IGF-I action. These results demonstrate that IGFBP-5, although not essential for normal growth, is required for normal mammary gland involution and can regulate mammary gland morphogenesis in response to hormone stimulation.
Collapse
Affiliation(s)
- Yun Ning
- Department of Neuroscience, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Manor R, Weil S, Oren S, Glazer L, Aflalo ED, Ventura T, Chalifa-Caspi V, Lapidot M, Sagi A. Insulin and gender: an insulin-like gene expressed exclusively in the androgenic gland of the male crayfish. Gen Comp Endocrinol 2007; 150:326-36. [PMID: 17094989 DOI: 10.1016/j.ygcen.2006.09.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 08/26/2006] [Accepted: 09/07/2006] [Indexed: 10/23/2022]
Abstract
Members of the insulin family of hormones are generally not regarded as gender-specific, although there is sporadic evidence for the possible involvement of insulin pathways in sexual differentiation. In crustaceans, sexual differentiation is controlled by the androgenic gland (AG), an organ unique to males. To date, attempts to identify active AG factors in decapods through either classical purification methods or sequence similarity with isopod AG hormones have proven unsuccessful. In the present study, the first subtractive cDNA library from a decapod AG was constructed from the red-claw crayfish Cherax quadricarinatus. During library screening, an AG-specific gene, expressed exclusively in males even at early stages of maturation and termed Cq-IAG (C. quadricarinatus insulin-like AG factor), was discovered. In situ hybridization of Cq-IAG confirmed the exclusive localization of its expression to the AG. Following cloning and complete sequencing of the gene, its cDNA was found to contain 1445 nucleotides encoding a deduced translation product of 176 amino acids. The proposed protein sequence encompasses Cys residue and putative cleaved peptide patterns whose linear and 3D organization are similar to those of members of the insulin/insulin-like growth factor/relaxin family and their receptor recognition surface. The identification of Cq-IAG is the first report of a pro-insulin-like gene expressed in a decapod crustacean in a gender-specific manner. Its expression in a male-specific endocrine gland controlling sex differentiation supports the notion that insulin may have evolved in the context of regulating sexual differentiation.
Collapse
Affiliation(s)
- Rivka Manor
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Piccard H, Van den Steen PE, Opdenakker G. Hemopexin domains as multifunctional liganding modules in matrix metalloproteinases and other proteins. J Leukoc Biol 2006; 81:870-92. [PMID: 17185359 DOI: 10.1189/jlb.1006629] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The heme-binding hemopexin consists of two, four-bladed propeller domains connected by a linker region. Hemopexin domains are found in different species on the phylogenetic tree and in the human species represented in hemopexin, matrix metalloproteinases (MMPs), vitronectin, and products of the proteoglycan 4 gene. Hemopexin and hemopexin domains of human proteins fulfill functions in activation of MMPs, inhibition of MMPs, dimerization, binding of substrates or ligands, cleavage of substrates, and endocytosis by low-density lipoprotein receptor-related protein-1 (LRP-1; CD91) and LRP-2 (megalin, GP330). Insights into the structures and functions of hemopexin (domains) form the basis for positive or negative interference with the formation of molecular complexes and hence, might be exploited therapeutically in inflammation, cancer, and wound healing.
Collapse
Affiliation(s)
- Helene Piccard
- Rega Institute for Medical Research, Laboratory of Immunobiology, University of Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | | | | |
Collapse
|