1
|
Ma H, Wang T, Wang J, Wang P, Shu Q, Qin R, Li S, Xu H. Formaldehyde exacerbates inflammation and biases T helper cell lineage commitment through IFN-γ/STAT1/T-bet pathway in asthma. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116534. [PMID: 38823345 DOI: 10.1016/j.ecoenv.2024.116534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
The correlation between formaldehyde (FA) exposure and prevalence of asthma has been widely reported. However, the underlying mechanism is still not fully understood. FA exposure at 2.0 mg/m3 was found to exacerbate asthma in OVA-induced murine models. IFN-γ, the cytokine produced by T helper 1 (Th1) cells, was significantly induced by FA in serum and bronchoalveolar lavage fluid (BALF) of asthmatic mice, which was different from cytokines secreted by other Th cells. The observation was also confirmed by mRNA levels of Th marker genes in CD4+ T cells isolated from BALF. In addition, increased production of IFN-γ and expression of T-bet in Jurkat T cells primed with phorbol ester and phytohaemagglutinin were also observed with 100 μM FA treatment in vitro. Upregulated STAT1 phosphorylation, T-bet expression and IFN-γ production induced by FA was found to be restrained by STAT1 inhibitor fludarabine, indicating that FA promoted Th1 commitment through the autocrine IFN-γ/STAT1/T-bet pathway in asthma. This work not only revealed that FA could bias Th lineage commitment to exacerbate allergic asthma, but also identified the signaling mechanism of FA-induced Th1 differentiation, which may be utilized as the target for development of interfering strategies against FA-induced immune disorders.
Collapse
Affiliation(s)
- Huijuan Ma
- School of Public Health, Anhui University of Science and Technology, Hefei, Anhui Province 231131, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Tingqian Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Junfeng Wang
- School of Public Health, Anhui University of Science and Technology, Hefei, Anhui Province 231131, China
| | - Peiyao Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Qi Shu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Ruilin Qin
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Sijia Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Huan Xu
- School of Public Health, Anhui University of Science and Technology, Hefei, Anhui Province 231131, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
2
|
Mundo-Franco Z, Luna-Herrera J, Castañeda-Sánchez JI, Serrano-Contreras JI, Rojas-Franco P, Blas-Valdivia V, Franco-Colín M, Cano-Europa E. C-Phycocyanin Prevents Oxidative Stress, Inflammation, and Lung Remodeling in an Ovalbumin-Induced Rat Asthma Model. Int J Mol Sci 2024; 25:7031. [PMID: 39000141 PMCID: PMC11241026 DOI: 10.3390/ijms25137031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Asthma is a chronic immunological disease related to oxidative stress and chronic inflammation; both processes promote airway remodeling with collagen deposition and matrix thickening, causing pulmonary damage and lost function. This study investigates the immunomodulation of C-phycocyanin (CPC), a natural blue pigment purified from cyanobacteria, as a potential alternative treatment to prevent the remodeling process against asthma. We conducted experiments using ovalbumin (OVA) to induce asthma in Sprague Dawley rats. Animals were divided into five groups: (1) sham + vehicle, (2) sham + CPC, (3) asthma + vehicle, (4) asthma + CPC, and (5) asthma + methylprednisolone (MP). Our findings reveal that asthma promotes hypoxemia, leukocytosis, and pulmonary myeloperoxidase (MPO) activity by increasing lipid peroxidation, reactive oxygen and nitrogen species, inflammation associated with Th2 response, and airway remodeling in the lungs. CPC and MP treatment partially prevented these physiological processes with similar action on the biomarkers evaluated. In conclusion, CPC treatment enhanced the antioxidant defense system, thereby preventing oxidative stress and reducing airway inflammation by regulating pro-inflammatory and anti-inflammatory cytokines, consequently avoiding asthma-induced airway remodeling.
Collapse
Affiliation(s)
- Zayra Mundo-Franco
- Laboratorio de Metabolismo I, Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico; (Z.M.-F.); (P.R.-F.); (M.F.-C.)
| | - Julieta Luna-Herrera
- Laboratorio de Inmunoquímica II, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | | | - José Iván Serrano-Contreras
- Section of Nutrition, Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Hammersmith Campus, Imperial College London, Du Cane Road, London W12 0NN, UK;
| | - Plácido Rojas-Franco
- Laboratorio de Metabolismo I, Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico; (Z.M.-F.); (P.R.-F.); (M.F.-C.)
| | - Vanessa Blas-Valdivia
- Laboratorio de Neurobiología, Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico;
| | - Margarita Franco-Colín
- Laboratorio de Metabolismo I, Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico; (Z.M.-F.); (P.R.-F.); (M.F.-C.)
| | - Edgar Cano-Europa
- Laboratorio de Metabolismo I, Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico; (Z.M.-F.); (P.R.-F.); (M.F.-C.)
| |
Collapse
|
3
|
Mousavi Khaneghah A, Mostashari P. Decoding food reactions: a detailed exploration of food allergies vs. intolerances and sensitivities. Crit Rev Food Sci Nutr 2024; 65:2669-2713. [PMID: 38747015 DOI: 10.1080/10408398.2024.2349740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The food matrix is a complex system encompassing all constituent elements in food production. It influences the digestibility of these elements through direct interactions and affects the digestive environment. Furthermore, the gastrointestinal system possesses precise mechanisms that efficiently process dietary components into essential nutrients, effectively preventing the onset of abnormal immune responses or dysfunctional host reactions in most instances. However, the incidence of adverse food reactions is constantly increasing, and evidence indicates that this process is environmental. Adverse reactions can be categorized as toxic or nontoxic. Toxic reactions are dose-dependent and can result from natural compounds, processing-induced substances, or contaminants. Nontoxic reactions like food intolerance and hypersensitivity depend on individual susceptibility and evoke specific pathological and physiological responses. This review aims to elucidate the mechanisms underlying the occurrence of immune- (food allergies and sensitivities) and non-immune-mediated (food intolerance) reactions, emphasizing the fundamental distinctions between these two categories. Enhanced comprehension and distinction of these mechanisms will significantly contribute to advancing preventive and therapeutic approaches and establishing guidelines for food labeling concerning immune-mediated reactions.
Collapse
Affiliation(s)
| | - Parisa Mostashari
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Yuan L, Sun C. The protective effects of Arctiin in asthma by attenuating airway inflammation and inhibiting p38/NF-κB signaling. Aging (Albany NY) 2024; 16:5038-5049. [PMID: 38546350 PMCID: PMC11006498 DOI: 10.18632/aging.205584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/27/2023] [Indexed: 04/06/2024]
Abstract
Asthma is a common chronic inflammatory disease of the airways, which affects millions of people worldwide. Arctiin, a bioactive molecule derived from the traditional Chinese Burdock, has not been previously reported for its effects on asthma in infants. In this study, an asthma model was established in mice by stimulation with ovalbumin (OVA). Bronchoalveolar lavage (BALF) was collected from OVA-challenged mice and the cells were counted. Lung tissue was harvested for hematoxylin-eosin (HE) staining and measurement of Wet/Dry weight ratios. The expressions of proteins were detected using enzyme-linked immunosorbent assay (ELISA) and Western blots. The superoxide dismutase (SOD) activity in lung tissue was measured using a commercial kit. We found that Arctiin had beneficial effects on asthma treatment. Firstly, it attenuated OVA-challenged lung pathological alterations. Secondly, it ameliorated pro-inflammatory response by reducing the number of inflammatory cells and mitigating the imbalance of Th1/Th2 factors in the bronchoalveolar lavage (BALF) of OVA-challenged mice. Importantly, Arctiin ameliorated OVA-induced lung tissue impairment and improved lung function. Additionally, we observed that oxidative stress (OS) in the pulmonary tissue of OVA-challenged mice was ameliorated by Arctiin. Mechanistically, Arctiin prevented OVA-induced activation of p38 and nuclear factor-κB (NF-κB). Based on these findings, we conclude that Arctiin might serve as a promising agent for the treatment of asthma.
Collapse
Affiliation(s)
- Lang Yuan
- Department of Respiratory Medicine, Children's Hospital of Shanghai, Shanghai Jiaotong University, Shanghai 200062, China
| | - Chao Sun
- Department of Respiratory Medicine, Children's Hospital of Shanghai, Shanghai Jiaotong University, Shanghai 200062, China
| |
Collapse
|
5
|
Chen Y, Yuan Y, Peng L, Dong X, Xu Y, Wang Y, Yang Y. Effects of increasing sensitizing doses of ovalbumin on airway hyperresponsiveness in asthmatic mice. Immun Inflamm Dis 2024; 12:e1225. [PMID: 38533918 PMCID: PMC10966913 DOI: 10.1002/iid3.1225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/08/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND The dosage of ovalbumin (OVA) during the sensitization stage is considered a crucial factor in the development of airway hyperresponsiveness (AHR). However, the inconsistent dosages of sensitizing OVA used in current studies and the lack of research on their impact on AHR are notable limitations. METHODS We examined the impact of increasing sensitizing doses of OVA in a murine asthma model, which entailed initial sensitization with OVA followed by repeated exposure to OVA aerosols. BALB/c mice were primed with doses of OVA (0, 10, 20, 50, and 100 μg) plus 1 mg Alum on Days 0 and 7, and were challenged with OVA aerosols (10 mg/mL for 30 min) between Days 14 and 17. Antigen-induced AHR to methacholine (MCh), as well as histological changes, eosinophilic infiltration, and epithelial injury were assessed. RESULTS The result indicated that there are striking OVA dose-related differences in antigen-induced AHR to MCh. The most intense antigen-induced AHR to MCh was observed with sensitization at 50 μg, while weaker responses were seen at 10, 20, and 100 μg. Meanwhile, there was a significant increase in eosinophil count with sensitization at 50 μg. The changes of AHR were correlated with total cells count, lymphocytes count, eosinophils count, and basophils count in bronchoalveolar lavage fluid; however, it did not correlate with histological changes such as cellular infiltration into bronchovascular bundles and goblet cell hyperplasia of the bronchial epithelium. CONCLUSION Overall, this study demonstrated that sensitization with 50 μg of OVA resulted in the most significant AHR compared to other dosages. These findings may offer valuable insights for future research on mouse asthma modeling protocols.
Collapse
Affiliation(s)
- Yan‐Jiao Chen
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and MeridianYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghaiP.R. China
| | - Yu Yuan
- Deparment of Acupuncture and MoxibustionGuanghua Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiP.R. China
| | - Lu Peng
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and MeridianYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghaiP.R. China
| | - Xin‐Yi Dong
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and MeridianYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghaiP.R. China
| | - Yu‐Dong Xu
- Laboratory of Molecular Biology, Shanghai Research Institute of Acupuncture and MeridianYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghaiP.R. China
| | - Yu Wang
- Shanghai University of Traditional Chinese MedicineShanghaiP.R. China
| | - Yong‐Qing Yang
- Shanghai University of Traditional Chinese MedicineShanghaiP.R. China
| |
Collapse
|
6
|
Chen L, Yang A, Li Y, Liu X, Jiang W, Hu K. Molecular mechanism of oroxyli semen against triple-negative breast cancer verified by bioinformatics and in vitro experiments. Medicine (Baltimore) 2023; 102:e34835. [PMID: 37713894 PMCID: PMC10508518 DOI: 10.1097/md.0000000000034835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/28/2023] [Indexed: 09/17/2023] Open
Abstract
OBJECTIVE This study aimed to use network pharmacology to predict the therapeutic mechanism of oroxyli semen (OS) on triple-negative breast cancer (TNBC) and validate it through in vitro experiments. METHODS The active ingredients and target proteins of OS were retrieved from the Traditional Chinese Medicine Systems Pharmacology database, and the TNBC-related target genes were obtained from the GeneCards database. The overlapping genes were used to construct a protein-protein interaction (PPI) network via the String database. Furthermore, we employed an online bioinformatics analysis platform (https://www.bioinformatics.com.cn/) to perform gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses to evaluate biological processes, molecular functions, and cellular components and generate simulated signal pathways. Additionally, molecular docking was used to evaluate the binding ability of small molecule drugs and signaling pathway targets. CCK8 assay was conducted to detect the effect of small molecule drugs on TNBC cell viability, and Western Blot was utilized to verify the expression of AKT, VEGF, and hypoxia-inducible factor 1-alpha (HIF-1α) proteins. RESULTS Fifteen active ingredients and 166 therapeutic targets of OS were obtained from the Traditional Chinese Medicine Systems Pharmacology database. The Venn diagram revealed that 163 targets were related to TNBC. The protein-protein interaction network analysis identified AKT1, IL-6, JUN, vascular endothelial growth factor A (VEGFA), CASP3, and HIF-1α as potential core targets through which OS may treat TNBC. Furthermore, the molecular docking results indicated that the active ingredient chryseriol in OS had good binding ability with VEGFA, and HIF-1α. CCK8 assay results indicated that chryseriol inhibited the viability of MDA-MB-231 and BT-20 cells. Western Blot demonstrated that chryseriol intervention led to a decrease in VEGFA, and HIF-1α protein expression compared with the control group (P < .05), increased the cleaved PARP. CONCLUSION OS may exert its therapeutic effects on TNBC through multiple cellular signaling pathways. Chryseriol, the active component of OS, can enhance the apoptosis of TNBC cells by targeting VEGFA/HIF-1α pathway. This study provided new insights into the potential therapeutic mechanism of OS for TNBC and may aid in the development of novel therapeutic approaches for TNBC.
Collapse
Affiliation(s)
- Lulu Chen
- Clinical Laboratory of Zigong First People’s Hospital, Sichuan, China
| | - Aishen Yang
- Department of Rehabilitation, Chishui People’s Hospital, Zunyi, China
| | - Yangan Li
- Department of Rehabilitation, Suining Central Hospital, Suining, China
| | - Xin Liu
- Daping Hospital, Army Medical University, Chongqing, China
| | - Wei Jiang
- Department of Rehabilitation, Southwest Medical University, Sichuan, China
| | - Kehui Hu
- Department of Rehabilitation, Suining Central Hospital, Suining, China
| |
Collapse
|
7
|
Wan R, Srikaram P, Guntupalli V, Hu C, Chen Q, Gao P. Cellular senescence in asthma: from pathogenesis to therapeutic challenges. EBioMedicine 2023; 94:104717. [PMID: 37442061 PMCID: PMC10362295 DOI: 10.1016/j.ebiom.2023.104717] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Asthma is a heterogeneous chronic respiratory disease that impacts nearly 10% of the population worldwide. While cellular senescence is a normal physiological process, the accumulation of senescent cells is considered a trigger that transforms physiology into the pathophysiology of a tissue/organ. Recent advances have suggested the significance of cellular senescence in asthma. With this review, we focus on the literature regarding the physiology and pathophysiology of cellular senescence and cellular stress responses that link the triggers of asthma to cellular senescence, including telomere shortening, DNA damage, oncogene activation, oxidative-related senescence, and senescence-associated secretory phenotype (SASP). The association of cellular senescence to asthma phenotypes, airway inflammation and remodeling, was also reviewed. Importantly, several approaches targeting cellular senescence, such as senolytics and senomorphics, have emerged as promising strategies for asthma treatment. Therefore, cellular senescence might represent a mechanism in asthma, and the senescence-related molecules and pathways could be targeted for therapeutic benefit.
Collapse
Affiliation(s)
- Rongjun Wan
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Prakhyath Srikaram
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Vineeta Guntupalli
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Chengping Hu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qiong Chen
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Peisong Gao
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
| |
Collapse
|
8
|
The Impact of Processing and Extraction Methods on the Allergenicity of Targeted Protein Quantification as Well as Bioactive Peptides Derived from Egg. Molecules 2023; 28:molecules28062658. [PMID: 36985630 PMCID: PMC10053729 DOI: 10.3390/molecules28062658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
This review article discusses advanced extraction methods to enhance the functionality of egg-derived peptides while reducing their allergenicity. While eggs are considered a nutrient-dense food, some proteins can cause allergic reactions in susceptible individuals. Therefore, various methods have been developed to reduce the allergenicity of egg-derived proteins, such as enzymatic hydrolysis, heat treatment, and glycosylation. In addition to reducing allergenicity, advanced extraction methods can enhance the functionality of egg-derived peptides. Techniques such as membrane separation, chromatography, and electrodialysis can isolate and purify specific egg-derived peptides with desired functional properties, improving their bioactivity. Further, enzymatic hydrolysis can also break down polypeptide sequences and produce bioactive peptides with various health benefits. While liquid chromatography is the most commonly used method to obtain individual proteins for developing novel food products, several challenges are associated with optimizing extraction conditions to maximize functionality and allergenicity reduction. The article also highlights the challenges and future perspectives, including optimizing extraction conditions to maximize functionality and allergenicity reduction. The review concludes by highlighting the potential for future research in this area to improve the safety and efficacy of egg-derived peptides more broadly.
Collapse
|