1
|
Wu CK, Shiu JL, Wu CL, Hung CF, Ho YC, Chen YT, Tung SY, Yeh CF, Shen CH, Liaw H, Su WP. APLF facilitates interstrand DNA crosslink repair and replication fork protection to confer cisplatin resistance. Nucleic Acids Res 2024; 52:5676-5697. [PMID: 38520407 PMCID: PMC11162786 DOI: 10.1093/nar/gkae211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
Replication stress converts the stalled forks into reversed forks, which is an important protection mechanism to prevent fork degradation and collapse into poisonous DNA double-strand breaks (DSBs). Paradoxically, the mechanism also acts in cancer cells to contribute to chemoresistance against various DNA-damaging agents. PARP1 binds to and is activated by stalled forks to facilitate fork reversal. Aprataxin and polynucleotide kinase/phosphatase-like factor (APLF) binds to PARP1 through the poly(ADP-ribose) zinc finger (PBZ) domain and is known to be involved in non-homologous end joining (NHEJ). Here, we identify a novel function of APLF involved in interstrand DNA crosslink (ICL) repair and fork protection. We demonstrate that PARP1 activity facilitates the APLF recruitment to stalled forks, enabling the FANCD2 recruitment to stalled forks. The depletion of APLF sensitizes cells to cisplatin, impairs ICL repair, reduces the FANCD2 recruitment to stalled forks, and results in nascent DNA degradation by MRE11 nucleases. Additionally, cisplatin-resistant cancer cells show high levels of APLF and homologous recombination-related gene expression. The depletion of APLF sensitizes cells to cisplatin and results in fork instability. Our results reveal the novel function of APLF to facilitate ICL repair and fork protection, thereby contributing to cisplatin-resistant phenotypes of cancer cells.
Collapse
Affiliation(s)
- Cheng-Kuei Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35, Xiao-Tong Road, Tainan 704, Taiwan
| | - Jia-Lin Shiu
- Department of Life Sciences, National Cheng Kung University, No. 1 University Road, Tainan City701, Taiwan
| | - Chao-Liang Wu
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan
| | - Chi-Feng Hung
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan
| | - Yen-Chih Ho
- Department of Life Sciences, National Cheng Kung University, No. 1 University Road, Tainan City701, Taiwan
| | - Yen-Tzu Chen
- Department of Public Health & Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taiwan
| | - Sheng-Yung Tung
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35, Xiao-Tong Road, Tainan 704, Taiwan
- Department of Urology, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Cheng-Fa Yeh
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35, Xiao-Tong Road, Tainan 704, Taiwan
- Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Che-Hung Shen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - Hungjiun Liaw
- Department of Life Sciences, National Cheng Kung University, No. 1 University Road, Tainan City701, Taiwan
| | - Wen-Pin Su
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35, Xiao-Tong Road, Tainan 704, Taiwan
- Departments of Oncology and Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
2
|
Laspata N, Muoio D, Fouquerel E. Multifaceted Role of PARP1 in Maintaining Genome Stability Through Its Binding to Alternative DNA Structures. J Mol Biol 2024; 436:168207. [PMID: 37481154 PMCID: PMC11552663 DOI: 10.1016/j.jmb.2023.168207] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/28/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023]
Abstract
Alternative DNA structures that differ from the canonical B-form of DNA can arise from repetitive sequences and play beneficial roles in many cellular processes such as gene regulation and chromatin organization. However, they also threaten genomic stability in several ways including mutagenesis and collisions with replication and/or transcription machinery, which lead to genomic instability that is associated with human disease. Thus, the careful regulation of non-B-DNA structure formation and resolution is crucial for the maintenance of genome integrity. Several protein factors have been demonstrated to associate with alternative DNA structures to facilitate their removal, one of which is the ADP-ribose transferase (ART) PARP1 (also called ADP-ribosyltransferase diphtheria toxin-like 1 or ARTD1), a multifaceted DNA repair enzyme that recognizes single- and double-stranded DNA breaks and synthesizes chains of poly (ADP-ribose) (PAR) to recruit DNA repair proteins. It is now well appreciated that PARP1 recognizes several nucleic acid structures beyond DNA lesions, including stalled replication forks, DNA hairpins and cruciforms, R-loops, and DNA G-quadruplexes (G4 DNA). In this review, we summarize the current evidence of a direct association of PARP1 with each of these aforementioned alternative DNA structures, as well as discuss the role of PARP1 in the prevention of non-B-DNA structure-induced genetic instability. We will focus on the mechanisms of the recognition and binding by PARP1 to each alternative structure and the structure-based stimulation of PARP1 catalytic activity upon binding. Finally, we will discuss some of the outstanding gaps in the literature and offer speculative insight for questions that remain to be experimentally addressed.
Collapse
Affiliation(s)
- Natalie Laspata
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Department of Pharmacology and Chemical Biology, Pittsburgh, PA 15232, USA; Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Daniela Muoio
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Department of Pharmacology and Chemical Biology, Pittsburgh, PA 15232, USA
| | - Elise Fouquerel
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Department of Pharmacology and Chemical Biology, Pittsburgh, PA 15232, USA.
| |
Collapse
|
3
|
Datta A, Biswas K, Sommers JA, Thompson H, Awate S, Nicolae CM, Thakar T, Moldovan GL, Shoemaker RH, Sharan SK, Brosh RM. WRN helicase safeguards deprotected replication forks in BRCA2-mutated cancer cells. Nat Commun 2021; 12:6561. [PMID: 34772932 PMCID: PMC8590011 DOI: 10.1038/s41467-021-26811-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 10/20/2021] [Indexed: 11/08/2022] Open
Abstract
The tumor suppressor BRCA2 protects stalled forks from degradation to maintain genome stability. However, the molecular mechanism(s) whereby unprotected forks are stabilized remains to be fully characterized. Here, we demonstrate that WRN helicase ensures efficient restart and limits excessive degradation of stalled forks in BRCA2-deficient cancer cells. In vitro, WRN ATPase/helicase catalyzes fork restoration and curtails MRE11 nuclease activity on regressed forks. We show that WRN helicase inhibitor traps WRN on chromatin leading to rapid fork stalling and nucleolytic degradation of unprotected forks by MRE11, resulting in MUS81-dependent double-strand breaks, elevated non-homologous end-joining and chromosomal instability. WRN helicase inhibition reduces viability of BRCA2-deficient cells and potentiates cytotoxicity of a poly (ADP)ribose polymerase (PARP) inhibitor. Furthermore, BRCA2-deficient xenograft tumors in mice exhibited increased DNA damage and growth inhibition when treated with WRN helicase inhibitor. This work provides mechanistic insight into stalled fork stabilization by WRN helicase when BRCA2 is deficient.
Collapse
Affiliation(s)
- Arindam Datta
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, 21224, USA
| | - Kajal Biswas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, 21702, USA
| | - Joshua A Sommers
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, 21224, USA
| | - Haley Thompson
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, 21224, USA
| | - Sanket Awate
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, 21224, USA
| | - Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Tanay Thakar
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Robert H Shoemaker
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, NIH, Rockville, MD, 20850, USA
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, 21702, USA
| | - Robert M Brosh
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, 21224, USA.
| |
Collapse
|
4
|
Abstract
Unlike bacteria, mammalian cells need to complete DNA replication before segregating their chromosomes for the maintenance of genome integrity. Thus, cells have evolved efficient pathways to restore stalled and/or collapsed replication forks during S-phase, and when necessary, also to delay cell cycle progression to ensure replication completion. However, strong evidence shows that cells can proceed to mitosis with incompletely replicated DNA when under mild replication stress (RS) conditions. Consequently, the incompletely replicated genomic gaps form, predominantly at common fragile site regions, where the converging fork-like DNA structures accumulate. These branched structures pose a severe threat to the faithful disjunction of chromosomes as they physically interlink the partially duplicated sister chromatids. In this review, we provide an overview discussing how cells respond and deal with the under-replicated DNA structures that escape from the S/G2 surveillance system. We also focus on recent research of a mitotic break-induced replication pathway (also known as mitotic DNA repair synthesis), which has been proposed to operate during prophase in an attempt to finish DNA synthesis at the under-replicated genomic regions. Finally, we discuss recent data on how mild RS may cause chromosome instability and mutations that accelerate cancer genome evolution.
Collapse
Affiliation(s)
- Camelia Mocanu
- Chromosome Dynamics and Stability Group, Genome Damage and Stability Centre, University of Sussex, Brighton BN1 7BG, UK
| | - Kok-Lung Chan
- Chromosome Dynamics and Stability Group, Genome Damage and Stability Centre, University of Sussex, Brighton BN1 7BG, UK
| |
Collapse
|
5
|
Hou L, Li H, Wang H, Ma D, Liu J, Ma L, Wang Z, Yang Z, Wang F, Xia H. The circadian clock gene PER2 enhances chemotherapeutic efficacy in nasopharyngeal carcinoma when combined with a targeted nanosystem. J Mater Chem B 2021; 8:5336-5350. [PMID: 32458942 DOI: 10.1039/d0tb00595a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Treatment failure occurs in more than 40% of advanced nasopharyngeal carcinoma (NPC) patients including local recurrence and distant metastasis due to chemoradioresistance. Circadian clock genes were identified as regulating cancer progression and chemoradiosensitivity in a time-dependent manner. A novel nanosystem can ensure the accumulation and controllable release of chemotherapeutic agents at the tumour site at a set time. In this study, we investigated the expression of circadian clock genes and identified that period circadian regulator 2 (PER2) as a tumour suppressor plays a key role in NPC progression. A label-free proteomic approach showed that PER2 overexpression can inhibit the ERK/MAPK pathway. The chemotherapeutic effect of PER2 overexpression was assessed in NPC together with the nanosystem comprising folic acid (FA), upconverting nanoparticles covalently coupled with Rose Bengal (UCNPs-RB), 10-hydroxycamptothecin (HCPT) and lipid-perfluorohexane (PFH) (FURH-PFH-NPs). PER2 overexpression combined with the targeted and controlled release of nanoagents elevated chemotherapeutic efficacy in NPC, which has potential application value for the chronotherapy of tumours.
Collapse
Affiliation(s)
- Li Hou
- Department of Otolaryngology, Head and Neck Surgery, General Hospital of Ningxia Medical University, Yin Chuan, 750004, Ningxia, P. R. China and Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yin Chuan, 750004, Ningxia, P. R. China.
| | - Hailiang Li
- Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yin Chuan, 750004, Ningxia, P. R. China. and Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yin Chuan, 750004, Ningxia, P. R. China
| | - Haiyan Wang
- Department of Gynaecology, General Hospital of Ningxia Medical University, Yin Chuan, 750004, Ningxia, P. R. China
| | - Dede Ma
- Ningxia Medical University, Yin Chuan, 750004, Ningxia, P. R. China
| | - Jing Liu
- Department of Otolaryngology, Head and Neck Surgery, General Hospital of Ningxia Medical University, Yin Chuan, 750004, Ningxia, P. R. China
| | - Liqiong Ma
- Department of Pathology, General Hospital of Ningxia Medical University, Yin Chuan, 750004, Ningxia, P. R. China
| | - Zhihua Wang
- Department of Anesthesiology, General Hospital of Ningxia Medical University, Yin Chuan, 750004, Ningxia, P. R. China
| | - Zhihua Yang
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yin Chuan, 750004, Ningxia, P. R. China
| | - Faxuan Wang
- School of Public Health, Ningxia Medical University, Yin Chuan, 750004 Ningxia, P. R. China
| | - Hechun Xia
- Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yin Chuan, 750004, Ningxia, P. R. China. and Department of Neurosurgery, General Hospital of Ningxia Medical University, Yin Chuan, 750004, Ningxia, P. R. China
| |
Collapse
|
6
|
Duan H, Mansour S, Reed R, Gillis MK, Parent B, Liu B, Sztupinszki Z, Birkbak N, Szallasi Z, Elia AEH, Garber JE, Pathania S. E3 ligase RFWD3 is a novel modulator of stalled fork stability in BRCA2-deficient cells. J Cell Biol 2021; 219:151752. [PMID: 32391871 PMCID: PMC7265328 DOI: 10.1083/jcb.201908192] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/15/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023] Open
Abstract
BRCA1/2 help maintain genomic integrity by stabilizing stalled forks. Here, we identify the E3 ligase RFWD3 as an essential modulator of stalled fork stability in BRCA2-deficient cells and show that codepletion of RFWD3 rescues fork degradation, collapse, and cell sensitivity upon replication stress. Stalled forks in BRCA2-deficient cells accumulate phosphorylated and ubiquitinated replication protein A (ubq-pRPA), the latter of which is mediated by RFWD3. Generation of this intermediate requires SMARCAL1, suggesting that it depends on stalled fork reversal. We show that in BRCA2-deficient cells, rescuing fork degradation might not be sufficient to ensure fork repair. Depleting MRE11 in BRCA2-deficient cells does block fork degradation, but it does not prevent fork collapse and cell sensitivity in the presence of replication stress. No such ubq-pRPA intermediate is formed in BRCA1-deficient cells, and our results suggest that BRCA1 may function upstream of BRCA2 in the stalled fork repair pathway. Collectively, our data uncover a novel mechanism by which RFWD3 destabilizes forks in BRCA2-deficient cells.
Collapse
Affiliation(s)
- Haohui Duan
- Center for Personalized Cancer Therapy, University of Massachusetts, Boston, MA.,Department of Biology, University of Massachusetts, Boston, MA
| | - Sarah Mansour
- Department of Biology, University of Massachusetts, Boston, MA
| | | | | | | | - Ben Liu
- Dana-Farber Cancer Institute, Boston, MA
| | | | - Nicolai Birkbak
- Department of Molecular Medicine, Aarhus University, Aarhus, Denmark.,Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Zoltan Szallasi
- Danish Cancer Society Research Center, Copenhagen, Denmark.,Boston Children's Hospital, Computational Health Informatics Program, Boston, MA
| | - Andrew E H Elia
- Massachusetts General Hospital, Department of Radiation Oncology, Center for Cancer Research, Boston, MA
| | | | - Shailja Pathania
- Center for Personalized Cancer Therapy, University of Massachusetts, Boston, MA.,Department of Biology, University of Massachusetts, Boston, MA
| |
Collapse
|
7
|
DCAF14 promotes stalled fork stability to maintain genome integrity. Cell Rep 2021; 34:108669. [PMID: 33503431 PMCID: PMC7941590 DOI: 10.1016/j.celrep.2020.108669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/24/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
Replication stress response ensures impediments to DNA replication do not compromise replication fork stability and genome integrity. In a process termed replication fork protection, newly synthesized DNA at stalled replication forks is stabilized and protected from nuclease-mediated degradation. We report the identification of DDB1- and CUL4-associated factor 14 (DCAF14), a substrate receptor for Cullin4-RING E3 ligase (CRL4) complex, integral in stabilizing stalled replication forks. DCAF14 localizes rapidly to stalled forks and promotes genome integrity by preventing fork collapse into double-strand breaks (DSBs). Importantly, CRL4DCAF14 mediates stalled fork protection in a RAD51-dependent manner to protect nascent DNA from MRE11 and DNA2 nucleases. Thus, our study shows replication stress response functions of DCAF14 in genome maintenance. Townsend et al. find that DDB1- and CUL4-associated factor DCAF14 is recruited to stalled replication forks. DCAF14 prevents replication fork collapse in a CRL4-dependent manner to promote genome stability and cell survival. DCAF14 depletion triggers nascent strand degradation that is reversible by enhancing RAD51 levels at forks.
Collapse
|
8
|
Zhao F, Kim W, Kloeber JA, Lou Z. DNA end resection and its role in DNA replication and DSB repair choice in mammalian cells. Exp Mol Med 2020; 52:1705-1714. [PMID: 33122806 PMCID: PMC8080561 DOI: 10.1038/s12276-020-00519-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/29/2020] [Accepted: 09/09/2020] [Indexed: 12/19/2022] Open
Abstract
DNA end resection has a key role in double-strand break repair and DNA replication. Defective DNA end resection can cause malfunctions in DNA repair and replication, leading to greater genomic instability. DNA end resection is initiated by MRN-CtIP generating short, 3′-single-stranded DNA (ssDNA). This newly generated ssDNA is further elongated by multiple nucleases and DNA helicases, such as EXO1, DNA2, and BLM. Effective DNA end resection is essential for error-free homologous recombination DNA repair, the degradation of incorrectly replicated DNA and double-strand break repair choice. Because of its importance in DNA repair, DNA end resection is strictly regulated. Numerous mechanisms have been reported to regulate the initiation, extension, and termination of DNA end resection. Here, we review the general process of DNA end resection and its role in DNA replication and repair pathway choice. Carefully regulated enzymatic processing of the ends of DNA strands is essential for efficient replication and damage repair while also minimizing the risk of genomic instability. Replication and repair depend on a mechanism known as DNA resection, in which enzymes trim back double-stranded DNA ends to leave single-stranded overhangs. Zhenkun Lou and colleagues at the Mayo Clinic in Rochester, USA, have reviewed the various steps involved in the initiation and control of DNA resection. There are multiple different DNA repair processes, and the manner in which resection occurs can determine which of these processes subsequently takes place. The authors note that cancer cells rely heavily on these repair pathways to survive radiotherapy and chemotherapy, and highlight research opportunities that might reveal therapeutically useful vulnerabilities in the resection mechanism.
Collapse
Affiliation(s)
- Fei Zhao
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Wootae Kim
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jake A Kloeber
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.,Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN, 55905, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
9
|
Boonen RACM, Vreeswijk MPG, van Attikum H. Functional Characterization of PALB2 Variants of Uncertain Significance: Toward Cancer Risk and Therapy Response Prediction. Front Mol Biosci 2020; 7:169. [PMID: 33195396 PMCID: PMC7525363 DOI: 10.3389/fmolb.2020.00169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years it has become clear that pathogenic variants in PALB2 are associated with a high risk for breast, ovarian and pancreatic cancer. However, the clinical relevance of variants of uncertain significance (VUS) in PALB2, which are increasingly identified through clinical genetic testing, is unclear. Here we review recent advances in the functional characterization of VUS in PALB2. A combination of assays has been used to assess the impact of PALB2 VUS on its function in DNA repair by homologous recombination, cell cycle regulation and the control of cellular levels of reactive oxygen species (ROS). We discuss the outcome of this comprehensive analysis of PALB2 VUS, which showed that VUS in PALB2’s Coiled-Coil (CC) domain can impair the interaction with BRCA1, whereas VUS in its WD40 domain affect PALB2 protein stability. Accordingly, the CC and WD40 domains of PALB2 represent hotspots for variants that impair PALB2 protein function. We also provide a future perspective on the high-throughput analysis of VUS in PALB2, as well as the functional characterization of variants that affect PALB2 RNA splicing. Finally, we discuss how results from these functional assays can be valuable for predicting cancer risk and responsiveness to cancer therapy, such as treatment with PARP inhibitor- or platinum-based chemotherapy.
Collapse
Affiliation(s)
- Rick A C M Boonen
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Maaike P G Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
10
|
Chakraborty J, Stover PJ. Deoxyuracil in DNA in health and disease. Curr Opin Clin Nutr Metab Care 2020; 23:247-252. [PMID: 32398439 PMCID: PMC7347158 DOI: 10.1097/mco.0000000000000660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Genome instability has long been implicated as a primary causal factor in cancer and diseases of aging. The genome is constantly under attack from extrinsic and intrinsic damaging agents. Uracil misincorporation in DNA and its repair is an intrinsic factor resulting in genomic instability and DNA mutations. Additionally, the presence of uracil in DNA can modify gene expression by interfering with promoter binding and transcription inhibition or upregulation of apoptotic proteins. In immune cells, uracil in DNA drives beneficial genomic diversity for antigen-driven immunity. This review addresses diseases that are linked to uracil accumulation in DNA, its causes, consequences, and the associated biomarkers of risk factors. RECENT FINDINGS Elevated genomic uracil is associated with megaloblastic anemia, neural tube defects, and retroviral immunity. Current evidence supporting causal mechanisms and nutritional interventions that rescue impaired pathways associated with uracil accumulation in DNA are summarized in this review. SUMMARY Nutritional deficiencies in B vitamins can cause uracil misincorporation into DNA leading to genome instability and associated diseases. Nutritional approaches to preventing uracil accumulation in DNA show some promise to address its associated diseases, but additional randomized controlled trials are needed.
Collapse
Affiliation(s)
| | - Patrick J. Stover
- All correspondence must be addressed to: Patrick J. Stover: Agriculture and Life Sciences Building, 600 John Kimbrough Blvd, Suite 510, 2142 TAMU, College Station, TX 77843; 979-862-4384
| |
Collapse
|
11
|
Liptay M, Barbosa JS, Rottenberg S. Replication Fork Remodeling and Therapy Escape in DNA Damage Response-Deficient Cancers. Front Oncol 2020; 10:670. [PMID: 32432041 PMCID: PMC7214843 DOI: 10.3389/fonc.2020.00670] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/09/2020] [Indexed: 12/27/2022] Open
Abstract
Most cancers have lost a critical DNA damage response (DDR) pathway during tumor evolution. These alterations provide a useful explanation for the initial sensitivity of tumors to DNA-targeting chemotherapy. A striking example is dysfunctional homology-directed repair (HDR), e.g., due to inactivating mutations in BRCA1 and BRCA2 genes. Extensive efforts are being made to develop novel targeted therapies exploiting such an HDR defect. Inhibitors of poly(ADP-ribose) polymerase (PARP) are an instructive example of this approach. Despite the success of PARP inhibitors, the presence of primary or acquired therapy resistance remains a major challenge in clinical oncology. To move the field of precision medicine forward, we need to understand the precise mechanisms causing therapy resistance. Using preclinical models, various mechanisms underlying chemotherapy resistance have been identified. Restoration of HDR seems to be a prevalent mechanism but this does not explain resistance in all cases. Interestingly, some factors involved in DNA damage response (DDR) have independent functions in replication fork (RF) biology and their loss causes RF instability and therapy sensitivity. However, in BRCA-deficient tumors, loss of these factors leads to restored stability of RFs and acquired drug resistance. In this review we discuss the recent advances in the field of RF biology and its potential implications for chemotherapy response in DDR-defective cancers. Additionally, we review the role of DNA damage tolerance (DDT) pathways in maintenance of genome integrity and their alterations in cancer. Furthermore, we refer to novel tools that, combined with a better understanding of drug resistance mechanisms, may constitute a great advance in personalized diagnosis and therapeutic strategies for patients with HDR-deficient tumors.
Collapse
Affiliation(s)
- Martin Liptay
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Joana S. Barbosa
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Sven Rottenberg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Wasserman MR, Schauer GD, O'Donnell ME, Liu S. Replication Fork Activation Is Enabled by a Single-Stranded DNA Gate in CMG Helicase. Cell 2020; 178:600-611.e16. [PMID: 31348887 DOI: 10.1016/j.cell.2019.06.032] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 04/05/2019] [Accepted: 06/24/2019] [Indexed: 10/26/2022]
Abstract
The eukaryotic replicative helicase CMG is a closed ring around double-stranded (ds)DNA at origins yet must transition to single-stranded (ss)DNA for helicase action. CMG must also handle repair intermediates, such as reversed forks that lack ssDNA. Here, using correlative single-molecule fluorescence and force microscopy, we show that CMG harbors a ssDNA gate that enables transitions between ss and dsDNA. When coupled to DNA polymerase, CMG remains on ssDNA, but when uncoupled, CMG employs this gate to traverse forked junctions onto dsDNA. Surprisingly, CMG undergoes rapid diffusion on dsDNA and can transition back onto ssDNA to nucleate a functional replisome. The gate-distinct from that between Mcm2/5 used for origin loading-is intrinsic to CMG; however, Mcm10 promotes strand passage by enhancing the affinity of CMG to DNA. This gating process may explain the dsDNA-to-ssDNA transition of CMG at origins and help preserve CMG on dsDNA during fork repair.
Collapse
Affiliation(s)
- Michael R Wasserman
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY 10065, USA
| | - Grant D Schauer
- Laboratory of DNA Replication, The Rockefeller University, New York, NY 10065, USA
| | - Michael E O'Donnell
- Laboratory of DNA Replication, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
13
|
Daza-Martin M, Starowicz K, Jamshad M, Tye S, Ronson GE, MacKay HL, Chauhan AS, Walker AK, Stone HR, Beesley JFJ, Coles JL, Garvin AJ, Stewart GS, McCorvie TJ, Zhang X, Densham RM, Morris JR. Isomerization of BRCA1-BARD1 promotes replication fork protection. Nature 2019; 571:521-527. [PMID: 31270457 DOI: 10.1038/s41586-019-1363-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 06/03/2019] [Indexed: 01/01/2023]
Abstract
The integrity of genomes is constantly threatened by problems encountered by the replication fork. BRCA1, BRCA2 and a subset of Fanconi anaemia proteins protect stalled replication forks from degradation by nucleases, through pathways that involve RAD51. The contribution and regulation of BRCA1 in replication fork protection, and how this role relates to its role in homologous recombination, is unclear. Here we show that BRCA1 in complex with BARD1, and not the canonical BRCA1-PALB2 interaction, is required for fork protection. BRCA1-BARD1 is regulated by a conformational change mediated by the phosphorylation-directed prolyl isomerase PIN1. PIN1 activity enhances BRCA1-BARD1 interaction with RAD51, thereby increasing the presence of RAD51 at stalled replication structures. We identify genetic variants of BRCA1-BARD1 in patients with cancer that exhibit poor protection of nascent strands but retain homologous recombination proficiency, thus defining domains of BRCA1-BARD1 that are required for fork protection and associated with cancer development. Together, these findings reveal a BRCA1-mediated pathway that governs replication fork protection.
Collapse
Affiliation(s)
- Manuel Daza-Martin
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- The Institute of Cancer Research, Chester Beatty Laboratories, London, UK
| | - Katarzyna Starowicz
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Mohammed Jamshad
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Stephanie Tye
- Section of Structural Biology, Department of Medicine, Imperial College London, London, UK
| | - George E Ronson
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Hannah L MacKay
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Anoop Singh Chauhan
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Alexandra K Walker
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Helen R Stone
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - James F J Beesley
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Jennifer L Coles
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Warwick Medical School, The University of Warwick, Coventry, UK
| | - Alexander J Garvin
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Grant S Stewart
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Thomas J McCorvie
- Section of Structural Biology, Department of Medicine, Imperial College London, London, UK
| | - Xiaodong Zhang
- Section of Structural Biology, Department of Medicine, Imperial College London, London, UK
| | - Ruth M Densham
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| | - Joanna R Morris
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
14
|
Brosh RM, Trakselis MA. Fine-tuning of the replisome: Mcm10 regulates fork progression and regression. Cell Cycle 2019; 18:1047-1055. [PMID: 31014174 DOI: 10.1080/15384101.2019.1609833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Several decades of research have identified Mcm10 hanging around the replisome making several critical contacts with a number of proteins but with no real disclosed function. Recently, the O'Donnell laboratory has been better able to map the interactions of Mcm10 with a larger Cdc45/GINS/MCM (CMG) unwinding complex placing it at the front of the replication fork. They have shown biochemically that Mcm10 has the impressive ability to strip off single-strand binding protein (RPA) and reanneal complementary DNA strands. This has major implications in controlling DNA unwinding speed as well as responding to various situations where fork reversal is needed. This work opens up a number of additional facets discussed here revolving around accessing the DNA junction for different molecular purposes within a crowded replisome. Abbreviations: alt-NHEJ: Alternative Nonhomologous End-Joining; CC: Coli-Coil motif; CMG: Cdc45/GINS/MCM2-7; CMGM: Cdc45/GINS/Mcm2-7/Mcm10; CPT: Camptothecin; CSB: Cockayne Syndrome Group B protein; CTD: C-Terminal Domain; DSB: Double-Strand Break; DSBR: Double-Strand Break Repair; dsDNA: Double-Stranded DNA; GINS: go-ichi-ni-san, Sld5-Psf1-Psf2-Psf3; HJ Dis: Holliday Junction dissolution; HJ Res: Holliday Junction resolution; HR: Homologous Recombination; ICL: Interstrand Cross-Link; ID: Internal Domain; MCM: Minichromosomal Maintenance; ND: Not Determined; NTD: N-Terminal Domain; PCNA: Proliferating Cell Nuclear Antigen; RPA: Replication Protein A; SA: Strand Annealing; SE: Strand Exchange; SEW: Steric Exclusion and Wrapping; ssDNA: Single-Stranded DNA; TCR: Transcription-Coupled Repair; TOP1: Topoisomerase.
Collapse
Affiliation(s)
- Robert M Brosh
- a Laboratory of Molecular Gerontology , National Institute on Aging, National Institutes of Health , Baltimore , MD USA
| | - Michael A Trakselis
- b Department of Chemistry and Biochemistry , Baylor University , Waco , TX , USA
| |
Collapse
|
15
|
Gogola E, Rottenberg S, Jonkers J. Resistance to PARP Inhibitors: Lessons from Preclinical Models of BRCA-Associated Cancer. ANNUAL REVIEW OF CANCER BIOLOGY 2019; 3:235-254. [DOI: 10.1146/annurev-cancerbio-030617-050232] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Inhibitors of poly(ADP-ribose) polymerase (PARP) have recently entered the clinic for the treatment of homologous recombination–deficient cancers. Despite the success of this approach, resistance to PARP inhibitors (PARPis) is a clinical hurdle, and it is poorly understood how cancer cells escape the deadly effects of PARPis without restoring BRCA1/2 function. By synergizing the advantages of next-generation sequencing with functional genetic screens in tractable model systems, novel mechanisms providing useful insights into DNA damage response (DDR) have been identified. BRCA1/2 models not only are tools to explore therapy escape mechanisms but also yield basic knowledge about DDR pathways and PARPis’ mechanism of action. Moreover, alterations that render cells resistant to targeted therapies may cause new synthetic dependencies that can be exploited to combat resistant disease.
Collapse
Affiliation(s)
- Ewa Gogola
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Cancer Genomics Centre Netherlands, 3584 CG Utrecht, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Sven Rottenberg
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Cancer Genomics Centre Netherlands, 3584 CG Utrecht, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| |
Collapse
|
16
|
Datta A, Brosh RM. Holding All the Cards-How Fanconi Anemia Proteins Deal with Replication Stress and Preserve Genomic Stability. Genes (Basel) 2019; 10:genes10020170. [PMID: 30813363 PMCID: PMC6409899 DOI: 10.3390/genes10020170] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/18/2022] Open
Abstract
Fanconi anemia (FA) is a hereditary chromosomal instability disorder often displaying congenital abnormalities and characterized by a predisposition to progressive bone marrow failure (BMF) and cancer. Over the last 25 years since the discovery of the first linkage of genetic mutations to FA, its molecular genetic landscape has expanded tremendously as it became apparent that FA is a disease characterized by a defect in a specific DNA repair pathway responsible for the correction of covalent cross-links between the two complementary strands of the DNA double helix. This pathway has become increasingly complex, with the discovery of now over 20 FA-linked genes implicated in interstrand cross-link (ICL) repair. Moreover, gene products known to be involved in double-strand break (DSB) repair, mismatch repair (MMR), and nucleotide excision repair (NER) play roles in the ICL response and repair of associated DNA damage. While ICL repair is predominantly coupled with DNA replication, it also can occur in non-replicating cells. DNA damage accumulation and hematopoietic stem cell failure are thought to contribute to the increased inflammation and oxidative stress prevalent in FA. Adding to its confounding nature, certain FA gene products are also engaged in the response to replication stress, caused endogenously or by agents other than ICL-inducing drugs. In this review, we discuss the mechanistic aspects of the FA pathway and the molecular defects leading to elevated replication stress believed to underlie the cellular phenotypes and clinical features of FA.
Collapse
Affiliation(s)
- Arindam Datta
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, Baltimore, MD 21224, USA.
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, Baltimore, MD 21224, USA.
| |
Collapse
|
17
|
Mcm10 has potent strand-annealing activity and limits translocase-mediated fork regression. Proc Natl Acad Sci U S A 2018; 116:798-803. [PMID: 30598452 PMCID: PMC6338834 DOI: 10.1073/pnas.1819107116] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Fork regression is a way of circumventing or dealing with DNA lesions and is important to genome integrity. Fork regression is performed by double-strand DNA ATPases that initially cause newly synthesized strands to unpair from the parental strands, followed by pairing of the new strands and reversal of the fork. This study shows that Mcm10, an essential replication factor, efficiently anneals complementary strands and also inhibits fork regression by SMARCAL1. Moreover, the study localizes the Mcm10 DNA-binding domain to the N-terminal domains of the replicative CMG helicase at the forked nexus. Thus, forks that are unimpeded would contain Mcm10 at a strategic position where its DNA-binding and/or annealing function may block fork regression enzymes and thereby protect active forks from becoming reversed. The 11-subunit eukaryotic replicative helicase CMG (Cdc45, Mcm2-7, GINS) tightly binds Mcm10, an essential replication protein in all eukaryotes. Here we show that Mcm10 has a potent strand-annealing activity both alone and in complex with CMG. CMG-Mcm10 unwinds and then reanneals single strands soon after they have been unwound in vitro. Given the DNA damage and replisome instability associated with loss of Mcm10 function, we examined the effect of Mcm10 on fork regression. Fork regression requires the unwinding and pairing of newly synthesized strands, performed by a specialized class of ATP-dependent DNA translocases. We show here that Mcm10 inhibits fork regression by the well-known fork reversal enzyme SMARCAL1. We propose that Mcm10 inhibits the unwinding of nascent strands to prevent fork regression at normal unperturbed replication forks, either by binding the fork junction to form a block to SMARCAL1 or by reannealing unwound nascent strands to their parental template. Analysis of the CMG-Mcm10 complex by cross-linking mass spectrometry reveals Mcm10 interacts with six CMG subunits, with the DNA-binding region of Mcm10 on the N-face of CMG. This position on CMG places Mcm10 at the fork junction, consistent with a role in regulating fork regression.
Collapse
|
18
|
Sutherland JH, Holloman WK. Loss of Cohesin Subunit Rec8 Switches Rad51 Mediator Dependence in Resistance to Formaldehyde Toxicity in Ustilago maydis. Genetics 2018; 210:559-572. [PMID: 30082279 PMCID: PMC6216591 DOI: 10.1534/genetics.118.301439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/03/2018] [Indexed: 01/08/2023] Open
Abstract
DNA-protein cross-links (DPCs) are frequently occurring lesions that provoke continual threats to the integrity of the genome by interference with replication and transcription. Reactive aldehydes generated from endogenous metabolic processes or produced in the environment are sources that trigger cross-linking of DNA with associated proteins. DNA repair pathways in place for removing DPCs, or for bypassing them to enable completion of replication, include homologous recombination (HR) and replication fork remodeling (FR) systems. Here, we surveyed a set of mutants defective in known HR and FR components to determine their contribution toward maintaining resistance to chronic formaldehyde (FA) exposure in Ustilago maydis, a fungus that relies on the BRCA2-family member Brh2 as the principal Rad51 mediator in repair of DNA strand breaks. We found that, in addition to Brh2, Rad52 was also vital for resistance to FA. Deleting the gene for Rec8, a kleisin subunit of cohesin, eliminated the requirement for Brh2, but not Rad52, in FA resistance. The Rad51K133R mutant variant that is able to bind DNA but unable to dissociate from it was able to support resistance to FA. These findings suggest a model for DPC repair and tolerance that features a specialized role for Rad52, enabling Rad51 to access DNA in its noncanonical capacity of replication fork protection rather than DNA strand transfer.
Collapse
Affiliation(s)
- Jeanette H Sutherland
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065
| | - William K Holloman
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065
| |
Collapse
|