1
|
Kopczyńska J, Kowalczyk M. The potential of short-chain fatty acid epigenetic regulation in chronic low-grade inflammation and obesity. Front Immunol 2024; 15:1380476. [PMID: 38605957 PMCID: PMC11008232 DOI: 10.3389/fimmu.2024.1380476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Obesity and chronic low-grade inflammation, often occurring together, significantly contribute to severe metabolic and inflammatory conditions like type 2 diabetes (T2D), cardiovascular disease (CVD), and cancer. A key player is elevated levels of gut dysbiosis-associated lipopolysaccharide (LPS), which disrupts metabolic and immune signaling leading to metabolic endotoxemia, while short-chain fatty acids (SCFAs) beneficially regulate these processes during homeostasis. SCFAs not only safeguard the gut barrier but also exert metabolic and immunomodulatory effects via G protein-coupled receptor binding and epigenetic regulation. SCFAs are emerging as potential agents to counteract dysbiosis-induced epigenetic changes, specifically targeting metabolic and inflammatory genes through DNA methylation, histone acetylation, microRNAs (miRNAs), and long non-coding RNAs (lncRNAs). To assess whether SCFAs can effectively interrupt the detrimental cascade of obesity and inflammation, this review aims to provide a comprehensive overview of the current evidence for their clinical application. The review emphasizes factors influencing SCFA production, the intricate connections between metabolism, the immune system, and the gut microbiome, and the epigenetic mechanisms regulated by SCFAs that impact metabolism and the immune system.
Collapse
Affiliation(s)
- Julia Kopczyńska
- Laboratory of Lactic Acid Bacteria Biotechnology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
2
|
Tayanloo-Beik A, Hamidpour SK, Nikkhah A, Arjmand R, Mafi AR, Rezaei-Tavirani M, Larijani B, Gilany K, Arjmand B. DNA Damage Responses, the Trump Card of Stem Cells in the Survival Game. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1470:165-188. [PMID: 37923882 DOI: 10.1007/5584_2023_791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Stem cells, as a group of undifferentiated cells, are enriched with self-renewal and high proliferative capacity, which have attracted the attention of many researchers as a promising approach in the treatment of many diseases over the past years. However, from the cellular and molecular point of view, the DNA repair system is one of the biggest challenges in achieving therapeutic goals through stem cell technology. DNA repair mechanisms are an advantage for stem cells that are constantly multiplying to deal with various types of DNA damage. However, this mechanism can be considered a trump card in the game of cell survival and treatment resistance in cancer stem cells, which can hinder the curability of various types of cancer. Therefore, getting a deep insight into the DNA repair system can bring researchers one step closer to achieving major therapeutic goals. The remarkable thing about the DNA repair system is that this system is not only under the control of genetic factors, but also under the control of epigenetic factors. Therefore, it is necessary to investigate the role of the DNA repair system in maintaining the survival of cancer stem cells from both aspects.
Collapse
Affiliation(s)
- Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amirabbas Nikkhah
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasta Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Rezazadeh Mafi
- Department of Radiation Oncology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| | - Kambiz Gilany
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Marçal R, Pacheco M, Guilherme S. Unveiling the nexus between parental exposure to toxicants and heritable spermiotoxicity - Is life history a shield or a shadow? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103955. [PMID: 35970510 DOI: 10.1016/j.etap.2022.103955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The knowledge on parental experiences is critical to predict how organisms react to environmental challenges. So, the DNA integrity of Procambarus clarkii spermatozoa exposed ex vivo to the herbicide penoxsulam (Px) or ethyl methanesulfonate (EMS; model genotoxicant) was assessed with and without the influence of in vivo parental exposure to the same agents. The parental exposure alone did not affect the DNA of unexposed spermatozoa. However, the history of Px exposure increased the vulnerability to oxidative lesions in Px-exposed offspring. Otherwise, parental exposure to EMS allowed the development of protection mechanisms expressed when F1 was also exposed to EMS, unveiling life history as a shield. The parental exposure to a different agent adverse and decisively affected Px spermiotoxic potential, pointing out life history as a shadow to progeny. Given the complexity of the aquatic contamination scenarios, involving mixtures, the spermiotoxicity of Px to wild P. clarkii populations emerged as probable.
Collapse
Affiliation(s)
- R Marçal
- Centre for Environmental and Marine Studies (CESAM), Department of Biology University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - M Pacheco
- Centre for Environmental and Marine Studies (CESAM), Department of Biology University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - S Guilherme
- Centre for Environmental and Marine Studies (CESAM), Department of Biology University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
4
|
Tchurikov NA, Alembekov IR, Klushevskaya ES, Kretova AN, Keremet AM, Sidorova AE, Meilakh PB, Chechetkin VR, Kravatskaya GI, Kravatsky YV. Genes Possessing the Most Frequent DNA DSBs Are Highly Associated with Development and Cancers, and Essentially Overlap with the rDNA-Contacting Genes. Int J Mol Sci 2022; 23:ijms23137201. [PMID: 35806206 PMCID: PMC9266645 DOI: 10.3390/ijms23137201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022] Open
Abstract
Double-strand DNA breakes (DSBs) are the most deleterious and widespread examples of DNA damage. They inevitably originate from endogenous mechanisms in the course of transcription, replication, and recombination, as well as from different exogenous factors. If not properly repaired, DSBs result in cell death or diseases. Genome-wide analysis of DSBs has revealed the numerous endogenous DSBs in human chromosomes. However, until now, it has not been clear what kind of genes are preferentially subjected to breakage. We performed a genetic and epigenetic analysis of the most frequent DSBs in HEK293T cells. Here, we show that they predominantly occur in the active genes controlling differentiation, development, and morphogenesis. These genes are highly associated with cancers and other diseases. About one-third of the genes possessing frequent DSBs correspond to rDNA-contacting genes. Our data suggest that a specific set of active genes controlling morphogenesis are the main targets of DNA breakage in human cells, although there is a specific set of silent genes controlling metabolism that also are enriched in DSBs. We detected this enrichment by different activators and repressors of transcription at DSB target sites, as well breakage at promoters. We propose that both active transcription and silencing of genes give a propensity for DNA breakage. These results have implications for medicine and gene therapy.
Collapse
Affiliation(s)
- Nickolai A. Tchurikov
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia; (I.R.A.); (E.S.K.); (A.N.K.); (A.M.K.); (A.E.S.); (P.B.M.); (V.R.C.); (G.I.K.); (Y.V.K.)
- Correspondence:
| | - Ildar R. Alembekov
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia; (I.R.A.); (E.S.K.); (A.N.K.); (A.M.K.); (A.E.S.); (P.B.M.); (V.R.C.); (G.I.K.); (Y.V.K.)
| | - Elena S. Klushevskaya
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia; (I.R.A.); (E.S.K.); (A.N.K.); (A.M.K.); (A.E.S.); (P.B.M.); (V.R.C.); (G.I.K.); (Y.V.K.)
| | - Antonina N. Kretova
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia; (I.R.A.); (E.S.K.); (A.N.K.); (A.M.K.); (A.E.S.); (P.B.M.); (V.R.C.); (G.I.K.); (Y.V.K.)
| | - Ann M. Keremet
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia; (I.R.A.); (E.S.K.); (A.N.K.); (A.M.K.); (A.E.S.); (P.B.M.); (V.R.C.); (G.I.K.); (Y.V.K.)
| | - Anastasia E. Sidorova
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia; (I.R.A.); (E.S.K.); (A.N.K.); (A.M.K.); (A.E.S.); (P.B.M.); (V.R.C.); (G.I.K.); (Y.V.K.)
| | - Polina B. Meilakh
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia; (I.R.A.); (E.S.K.); (A.N.K.); (A.M.K.); (A.E.S.); (P.B.M.); (V.R.C.); (G.I.K.); (Y.V.K.)
| | - Vladimir R. Chechetkin
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia; (I.R.A.); (E.S.K.); (A.N.K.); (A.M.K.); (A.E.S.); (P.B.M.); (V.R.C.); (G.I.K.); (Y.V.K.)
| | - Galina I. Kravatskaya
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia; (I.R.A.); (E.S.K.); (A.N.K.); (A.M.K.); (A.E.S.); (P.B.M.); (V.R.C.); (G.I.K.); (Y.V.K.)
| | - Yuri V. Kravatsky
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia; (I.R.A.); (E.S.K.); (A.N.K.); (A.M.K.); (A.E.S.); (P.B.M.); (V.R.C.); (G.I.K.); (Y.V.K.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
5
|
Wuschel2 enables highly efficient CRISPR/Cas-targeted genome editing during rapid de novo shoot regeneration in sorghum. Commun Biol 2022; 5:344. [PMID: 35410430 PMCID: PMC9001672 DOI: 10.1038/s42003-022-03308-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/23/2022] [Indexed: 12/04/2022] Open
Abstract
For many important crops including sorghum, use of CRISPR/Cas technology is limited not only by the delivery of the gene-modification components into a plant cell, but also by the ability to regenerate a fertile plant from the engineered cell through tissue culture. Here, we report that Wuschel2 (Wus2)-enabled transformation increases not only the transformation efficiency, but also the CRISPR/Cas-targeted genome editing frequency in sorghum (Sorghum bicolor L.). Using Agrobacterium-mediated transformation, we have demonstrated Wus2-induced direct somatic embryo formation and regeneration, bypassing genotype-dependent callus formation and significantly shortening the tissue culture cycle time. This method also increased the regeneration capacity that resulted in higher transformation efficiency across different sorghum varieties. Subsequently, advanced excision systems and “altruistic” transformation technology have been developed to generate high-quality morphogenic gene-free and/or selectable marker-free sorghum events. Finally, we demonstrate up to 6.8-fold increase in CRISPR/Cas9-mediated gene dropout frequency using Wus2-enabled transformation, compared to without Wus2, across various targeted loci in different sorghum genotypes. Che et al. use Wuschel2-enabled genome transformation to induce somatic embryo formation in sorghum, a grain used in human food. Their approach not only overcomes the genotype-dependent barrier for genetic transformation without the introduction of morphogenic genes, but also increases the frequency of CRISPR/Castargeted genome editing.
Collapse
|
6
|
Che P, Wu E, Simon MK, Anand A, Lowe K, Gao H, Sigmund AL, Yang M, Albertsen MC, Gordon-Kamm W, Jones TJ. Wuschel2 enables highly efficient CRISPR/Cas-targeted genome editing during rapid de novo shoot regeneration in sorghum. Commun Biol 2022; 5:344. [PMID: 35410430 DOI: 10.1101/2021.06.21.449302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/23/2022] [Indexed: 05/26/2023] Open
Abstract
For many important crops including sorghum, use of CRISPR/Cas technology is limited not only by the delivery of the gene-modification components into a plant cell, but also by the ability to regenerate a fertile plant from the engineered cell through tissue culture. Here, we report that Wuschel2 (Wus2)-enabled transformation increases not only the transformation efficiency, but also the CRISPR/Cas-targeted genome editing frequency in sorghum (Sorghum bicolor L.). Using Agrobacterium-mediated transformation, we have demonstrated Wus2-induced direct somatic embryo formation and regeneration, bypassing genotype-dependent callus formation and significantly shortening the tissue culture cycle time. This method also increased the regeneration capacity that resulted in higher transformation efficiency across different sorghum varieties. Subsequently, advanced excision systems and "altruistic" transformation technology have been developed to generate high-quality morphogenic gene-free and/or selectable marker-free sorghum events. Finally, we demonstrate up to 6.8-fold increase in CRISPR/Cas9-mediated gene dropout frequency using Wus2-enabled transformation, compared to without Wus2, across various targeted loci in different sorghum genotypes.
Collapse
Affiliation(s)
- Ping Che
- Corteva Agriscience, Johnston, IA, 50131, USA.
| | - Emily Wu
- Corteva Agriscience, Johnston, IA, 50131, USA
| | | | - Ajith Anand
- Corteva Agriscience, Johnston, IA, 50131, USA
| | - Keith Lowe
- Corteva Agriscience, Johnston, IA, 50131, USA
| | - Huirong Gao
- Corteva Agriscience, Johnston, IA, 50131, USA
| | | | - Meizhu Yang
- Corteva Agriscience, Johnston, IA, 50131, USA
| | | | | | | |
Collapse
|
7
|
Genome-wide DNA methylation patterns reveal clinically relevant predictive and prognostic subtypes in human osteosarcoma. Commun Biol 2022; 5:213. [PMID: 35260776 PMCID: PMC8904843 DOI: 10.1038/s42003-022-03117-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Aberrant methylation of genomic DNA has been reported in many cancers. Specific DNA methylation patterns have been shown to provide clinically useful prognostic information and define molecular disease subtypes with different response to therapy and long-term outcome. Osteosarcoma is an aggressive malignancy for which approximately half of tumors recur following standard combined surgical resection and chemotherapy. No accepted prognostic factor save tumor necrosis in response to adjuvant therapy currently exists, and traditional genomic studies have thus far failed to identify meaningful clinical associations. We studied the genome-wide methylation state of primary tumors and tested how they predict patient outcomes. We discovered relative genomic hypomethylation to be strongly predictive of response to standard chemotherapy. Recurrence and survival were also associated with genomic methylation, but through more site-specific patterns. Furthermore, the methylation patterns were reproducible in three small independent clinical datasets. Downstream transcriptional, in vitro, and pharmacogenomic analysis provides insight into the clinical translation of the methylation patterns. Our findings suggest the assessment of genomic methylation may represent a strategy for stratifying patients for the application of alternative therapies.
Collapse
|
8
|
Komůrková D, Svobodová Kovaříková A, Bártová E. G-Quadruplex Structures Colocalize with Transcription Factories and Nuclear Speckles Surrounded by Acetylated and Dimethylated Histones H3. Int J Mol Sci 2021; 22:1995. [PMID: 33671470 PMCID: PMC7922289 DOI: 10.3390/ijms22041995] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/26/2022] Open
Abstract
G-quadruplexes (G4s) are four-stranded helical structures that regulate several nuclear processes, including gene expression and telomere maintenance. We observed that G4s are located in GC-rich (euchromatin) regions and outside the fibrillarin-positive compartment of nucleoli. Genomic regions around G4s were preferentially H3K9 acetylated and H3K9 dimethylated, but H3K9me3 rarely decorated G4 structures. We additionally observed the variability in the number of G4s in selected human and mouse cell lines. We found the highest number of G4s in human embryonic stem cells. We observed the highest degree of colocalization between G4s and transcription factories, positive on the phosphorylated form of RNA polymerase II (RNAP II). Similarly, a high colocalization rate was between G4s and nuclear speckles, enriched in pre-mRNA splicing factor SC-35. PML bodies, the replication protein SMD1, and Cajal bodies colocalized with G4s to a lesser extent. Thus, G4 structures seem to appear mainly in nuclear compartments transcribed via RNAP II, and pre-mRNA is spliced via the SC-35 protein. However, α-amanitin, an inhibitor of RNAP II, did not affect colocalization between G4s and transcription factories as well as G4s and SC-35-positive domains. In addition, irradiation by γ-rays did not change a mutual link between G4s and DNA repair proteins (G4s/γH2AX, G4s/53BP1, and G4s/MDC1), accumulated into DNA damage foci. Described characteristics of G4s seem to be the manifestation of pronounced G4s stability that is likely maintained not only via a high-order organization of these structures but also by a specific histone signature, including H3K9me2, responsible for chromatin compaction.
Collapse
Affiliation(s)
| | | | - Eva Bártová
- Institute of Biophysics of the Czech Academy of Sciences, Department of Molecular Cytology and Cytometry, Královopolská 135, 612 65 Brno, Czech Republic; (D.K.); (A.S.K.)
| |
Collapse
|
9
|
Li Y, Mi P, Chen X, Wu J, Qin W, Shen Y, Zhang P, Tang Y, Cheng CY, Sun F. Dynamic Profiles and Transcriptional Preferences of Histone Modifications During Spermiogenesis. Endocrinology 2021; 162:5974117. [PMID: 33175103 DOI: 10.1210/endocr/bqaa210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Indexed: 02/07/2023]
Abstract
During spermiogenesis, extensive histone modifications take place in developing haploid spermatids besides morphological alterations of the genetic material to form compact nuclei. Better understanding on the overall transcriptional dynamics and preferences of histones and enzymes involved in histone modifications may provide valuable information to dissect the epigenetic characteristics and unique chromatin status during spermiogenesis. Using single-cell RNA-Sequencing, the expression dynamics of histone variants, writers, erasers, and readers of histone acetylation and methylation, as well as histone phosphorylation, ubiquitination, and chaperones were assessed through transcriptome profiling during spermiogenesis. This approach provided an unprecedented panoramic perspective of the involving genes in epigenetic modifier/histone variant expression during spermiogenesis. Results reported here revealed the transcriptional ranks of histones, histone modifications, and their readers during spermiogenesis, emphasizing the unique preferences of epigenetic regulation in spermatids. These findings also highlighted the impact of spermatid metabolic preferences on epigenetic modifications. Despite the observed rising trend on transcription levels of all encoding genes and histone variants, the transcriptome profile of genes in histone modifications and their readers displayed a downward expression trend, suggesting that spermatid nuclei condensation is a progressive process that occurred in tandem with a gradual decrease in overall epigenetic activity during spermiogenesis.
Collapse
Affiliation(s)
- Yinchuan Li
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Panpan Mi
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xue Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Jiabao Wu
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, China
| | - Weibing Qin
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, China
| | - Yiqi Shen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Pingbao Zhang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yunge Tang
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
10
|
Falk M, Hausmann M. A Paradigm Revolution or Just Better Resolution-Will Newly Emerging Superresolution Techniques Identify Chromatin Architecture as a Key Factor in Radiation-Induced DNA Damage and Repair Regulation? Cancers (Basel) 2020; 13:E18. [PMID: 33374540 PMCID: PMC7793109 DOI: 10.3390/cancers13010018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
DNA double-strand breaks (DSBs) have been recognized as the most serious lesions in irradiated cells. While several biochemical pathways capable of repairing these lesions have been identified, the mechanisms by which cells select a specific pathway for activation at a given DSB site remain poorly understood. Our knowledge of DSB induction and repair has increased dramatically since the discovery of ionizing radiation-induced foci (IRIFs), initiating the possibility of spatiotemporally monitoring the assembly and disassembly of repair complexes in single cells. IRIF exploration revealed that all post-irradiation processes-DSB formation, repair and misrepair-are strongly dependent on the characteristics of DSB damage and the microarchitecture of the whole affected chromatin domain in addition to the cell status. The microscale features of IRIFs, such as their morphology, mobility, spatiotemporal distribution, and persistence kinetics, have been linked to repair mechanisms. However, the influence of various biochemical and structural factors and their specific combinations on IRIF architecture remains unknown, as does the hierarchy of these factors in the decision-making process for a particular repair mechanism at each individual DSB site. New insights into the relationship between the physical properties of the incident radiation, chromatin architecture, IRIF architecture, and DSB repair mechanisms and repair efficiency are expected from recent developments in optical superresolution microscopy (nanoscopy) techniques that have shifted our ability to analyze chromatin and IRIF architectures towards the nanoscale. In the present review, we discuss this relationship, attempt to correlate still rather isolated nanoscale studies with already better-understood aspects of DSB repair at the microscale, and consider whether newly emerging "correlated multiscale structuromics" can revolutionarily enhance our knowledge in this field.
Collapse
Affiliation(s)
- Martin Falk
- Institute of Biophysics, The Czech Academy of Sciences, 612 65 Brno, Czech Republic
| | - Michael Hausmann
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany;
| |
Collapse
|
11
|
Gomes TM, Dias da Silva D, Carmo H, Carvalho F, Silva JP. Epigenetics and the endocannabinoid system signaling: An intricate interplay modulating neurodevelopment. Pharmacol Res 2020; 162:105237. [PMID: 33053442 DOI: 10.1016/j.phrs.2020.105237] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/16/2020] [Accepted: 10/02/2020] [Indexed: 01/08/2023]
Abstract
The endocannabinoid (eCB) system is a complex system comprising endogenous cannabinoids (eCBs), their synthesis and degradation enzymes, and cannabinoid receptors. These elements crucially regulate several biological processes during neurodevelopment, such as proliferation, differentiation, and migration. Recently, eCBs were also reported to have an epigenetic action on genes that play key functions in the neurotransmitter signaling, consequently regulating their expression. In turn, epigenetic modifications (e.g. DNA methylation, histone modifications) may also modulate the function of eCB system's elements. For example, the expression of the cnr gene in the central nervous system may be epigenetically regulated (e.g. DNA methylation, histone modifications), thus altering the function of the cannabinoid receptor type-1 (CB1R). Considering the importance of the eCB system during neurodevelopment, it is thus reasonable to expect that alterations in this interaction between the eCB system and epigenetic modifications may give rise to neurodevelopmental disorders. Here, we review key concepts related to the regulation of neuronal function by the eCB system and the different types of epigenetic modifications. In particular, we focus on the mechanisms involved in the intricate interplay between both signaling systems and how they control cell fate during neurodevelopment. Noteworthy, such mechanistic understanding assumes high relevance considering the implications of the dysregulation of key neurogenic processes towards the onset of neurodevelopment-related disorders. Moreover, considering the increasing popularity of cannabis and its synthetic derivatives among young adults, it becomes of utmost importance to understand how exogenous cannabinoids may epigenetically impact neurodevelopment.
Collapse
Affiliation(s)
- Telma Marisa Gomes
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Diana Dias da Silva
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Helena Carmo
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | - João Pedro Silva
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
12
|
Jiang X, Xing L, Chen Y, Qin R, Song S, Lu Y, Xie S, Wang L, Pu H, Gui X, Li T, Xu J, Li J, Jia S, Lu D. CircMEG3 inhibits telomerase activity by reducing Cbf5 in human liver cancer stem cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:310-323. [PMID: 33425489 PMCID: PMC7779543 DOI: 10.1016/j.omtn.2020.11.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022]
Abstract
Circular RNA (CircRNA) is a newly identified special class of non-coding RNA (ncRNA) that plays an important regulatory role in the progression of certain diseases. Herein, our results indicate that CircMEG3 is downregulated expression and negatively correlated with the expression of telomerase-related gene Cbf5 in human liver cancer. Moreover, CircMEG3 inhibits the growth of human liver cancer stem cells in vivo and in vitro. CircMEG3 inhibits the expression of m6A methyltransferase METTL3 dependent on HULC. Moreover, CircMEG3 inhibits the expression of Cbf5, a component of telomere synthetase H/ACA ribonucleoprotein (RNP; catalyst RNA pseudouracil modification) through METTL3 dependent on HULC. Thereby, CircMEG3 inhibits telomerase activity and shortens telomere lifespan dependent on HULC and Cbf5 in human liver cancer stem cell. Strikingly, increased Cbf5 abrogates the ability of CircMEG3 to inhibit malignant differentiation of human liver cancer stem cells. In summary, these observations provide important basic information for finding effective liver cancer therapeutic targets.
Collapse
Affiliation(s)
- Xiaoxue Jiang
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Libo Xing
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Yingjie Chen
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Rushi Qin
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Shuting Song
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Yanan Lu
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Sijie Xie
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Liyan Wang
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Hu Pu
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xin Gui
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Tianming Li
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Jie Xu
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Jiao Li
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Song Jia
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Dongdong Lu
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
13
|
Kaczmarek Michaels K, Mohd Mostafa S, Ruiz Capella J, Moore CL. Regulation of alternative polyadenylation in the yeast Saccharomyces cerevisiae by histone H3K4 and H3K36 methyltransferases. Nucleic Acids Res 2020; 48:5407-5425. [PMID: 32356874 PMCID: PMC7261179 DOI: 10.1093/nar/gkaa292] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 12/17/2022] Open
Abstract
Adjusting DNA structure via epigenetic modifications, and altering polyadenylation (pA) sites at which precursor mRNA is cleaved and polyadenylated, allows cells to quickly respond to environmental stress. Since polyadenylation occurs co-transcriptionally, and specific patterns of nucleosome positioning and chromatin modifications correlate with pA site usage, epigenetic factors potentially affect alternative polyadenylation (APA). We report that the histone H3K4 methyltransferase Set1, and the histone H3K36 methyltransferase Set2, control choice of pA site in Saccharomyces cerevisiae, a powerful model for studying evolutionarily conserved eukaryotic processes. Deletion of SET1 or SET2 causes an increase in serine-2 phosphorylation within the C-terminal domain of RNA polymerase II (RNAP II) and in the recruitment of the cleavage/polyadenylation complex, both of which could cause the observed switch in pA site usage. Chemical inhibition of TOR signaling, which causes nutritional stress, results in Set1- and Set2-dependent APA. In addition, Set1 and Set2 decrease efficiency of using single pA sites, and control nucleosome occupancy around pA sites. Overall, our study suggests that the methyltransferases Set1 and Set2 regulate APA induced by nutritional stress, affect the RNAP II C-terminal domain phosphorylation at Ser2, and control recruitment of the 3′ end processing machinery to the vicinity of pA sites.
Collapse
Affiliation(s)
- Katarzyna Kaczmarek Michaels
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Salwa Mohd Mostafa
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.,Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Julia Ruiz Capella
- Department of Biotechnology, Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid 28223, Spain
| | - Claire L Moore
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.,Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| |
Collapse
|
14
|
Florentino D, Della Giustina A, de Souza Goldim MP, Danielski LG, de Oliveira Junior AN, Joaquim L, Bonfante S, Biehl E, da Rosa N, Fernandes D, Gava FF, Michels M, Fortunato JJ, Réus GZ, S Valvassori S, Quevedo J, Dal-Pizzol F, Barichello T, Petronilho F. Early life neuroimmune challenge protects the brain after sepsis in adult rats. Neurochem Int 2020; 135:104712. [DOI: 10.1016/j.neuint.2020.104712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/24/2020] [Accepted: 02/27/2020] [Indexed: 12/20/2022]
|
15
|
Fan P, Han B, Hu H, Wei Q, Zhang X, Meng L, Nie J, Tang X, Tian X, Zhang L, Wang L, Li J. Proteome of thymus and spleen reveals that 10-hydroxydec-2-enoic acid could enhance immunity in mice. Expert Opin Ther Targets 2020; 24:267-279. [PMID: 32077781 DOI: 10.1080/14728222.2020.1733529] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objectives: 10-hydroxydec-2-enoic acid (10-HDA), a unique component of royal jelly existing only in nature, has the potential to promote human health. Knowledge of 10-HDA in regulating immuno-activity, however, is lacking. The aim of our work is to gain a novel understanding of 10-HDA in promoting immunity.Methods: Immuno-suppressed mice were generated by cyclophosphamide injection, After 10-HDA supplementation to the mice to rescue their immunity, the proteomes of the thymus and spleen were analyzed.Results: The weight of the body, thymus, and spleen in cyclophosphamide-induced mice recovered by 10-HDA indicate its potential role in immuno-organ protection. In the thymus, the enhanced activity of pathways associated with DNA/RNA/protein activities may be critical for T-lymphocyte proliferation/differentiation, and cytotoxicity. In the spleen, the induced pathways involved in DNA/RNA/protein activities, and cell proliferative stimulation suggest their vital role in B-lymphocyte affinity maturation, antigen presentation, and macrophage activity. The up-regulated proteins highly connected in networks modulated by 10-HDA indicate that the mice may evolve tactics to respond to immuno-organ impairment by activating critical physiological processes.Conclusion: Our data constitute a proof-of-concept that 10-HDA is a potential agent to improve immunity in the thymus and spleen and offer a new venue for applying natural products to the therapy for hypoimmunity.
Collapse
Affiliation(s)
- Pei Fan
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, PR China.,College of Biological Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Bin Han
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Han Hu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Qiaohong Wei
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Xufeng Zhang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Lifeng Meng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Jing Nie
- Department of Technology, Hunan SJA Laboratory Animal Co., Ltd, Changsha, PR China
| | - Xiaofeng Tang
- Department of Technology, Hunan SJA Laboratory Animal Co., Ltd, Changsha, PR China
| | - Xinyue Tian
- College of Biological Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Lu Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Liping Wang
- Department of Research & Development, Henan Jianda Bio Sci. & Tech. Co., Ltd, Zhengzhou, PR China
| | - Jianke Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, PR China
| |
Collapse
|
16
|
Auboeuf D. Physicochemical Foundations of Life that Direct Evolution: Chance and Natural Selection are not Evolutionary Driving Forces. Life (Basel) 2020; 10:life10020007. [PMID: 31973071 PMCID: PMC7175370 DOI: 10.3390/life10020007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
The current framework of evolutionary theory postulates that evolution relies on random mutations generating a diversity of phenotypes on which natural selection acts. This framework was established using a top-down approach as it originated from Darwinism, which is based on observations made of complex multicellular organisms and, then, modified to fit a DNA-centric view. In this article, it is argued that based on a bottom-up approach starting from the physicochemical properties of nucleic and amino acid polymers, we should reject the facts that (i) natural selection plays a dominant role in evolution and (ii) the probability of mutations is independent of the generated phenotype. It is shown that the adaptation of a phenotype to an environment does not correspond to organism fitness, but rather corresponds to maintaining the genome stability and integrity. In a stable environment, the phenotype maintains the stability of its originating genome and both (genome and phenotype) are reproduced identically. In an unstable environment (i.e., corresponding to variations in physicochemical parameters above a physiological range), the phenotype no longer maintains the stability of its originating genome, but instead influences its variations. Indeed, environment- and cellular-dependent physicochemical parameters define the probability of mutations in terms of frequency, nature, and location in a genome. Evolution is non-deterministic because it relies on probabilistic physicochemical rules, and evolution is driven by a bidirectional interplay between genome and phenotype in which the phenotype ensures the stability of its originating genome in a cellular and environmental physicochemical parameter-depending manner.
Collapse
Affiliation(s)
- Didier Auboeuf
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie, Site Jacques Monod, F-69007, Lyon, France
| |
Collapse
|
17
|
Ponnusamy L, Mahalingaiah PKS, Singh KP. Epigenetic reprogramming and potential application of epigenetic-modifying drugs in acquired chemotherapeutic resistance. Adv Clin Chem 2019; 94:219-259. [PMID: 31952572 DOI: 10.1016/bs.acc.2019.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chemotherapy is the most common clinical choice of treatment for cancer, however, acquired chemoresistance is a major challenge that limits the successful outcome of this option. Systematic review of in vitro, in vivo, preclinical and clinical studies suggests that acquired chemoresistance is polygenic, progressive, and involve both genetic and epigenetic heterogeneities and perturbations. Various mechanisms that confer resistance to chemotherapy are tightly controlled by epigenetic regulations. Poised epigenetic plasticity and temporal increase in epigenetic alterations upon chemotherapy make chemoresistance likely an epigenetic-driven process. The transient and reversible nature of epigenetic modulations enable ways to intervene the epigenetic re-programing associated with acquired chemoresistance via application of epigenetic modifying drugs. This review discusses recent understandings behind the various mechanisms of acquired chemoresistance that are under the control of epigenetic drivers, potential application of epigenetic-based drugs in resensitizing refractory cancers to chemotherapy, the limitations and future scope for clinical application of epigenetic therapeutics in successfully addressing chemoresistance.
Collapse
Affiliation(s)
- Logeswari Ponnusamy
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, TX, United States
| | - Prathap Kumar S Mahalingaiah
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, TX, United States
| | - Kamaleshwar P Singh
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, TX, United States.
| |
Collapse
|