1
|
Finn A, Guiso N, Wirsing von König CH, Martinón-Torres F, Palmu AA, Bonanni P, Bakhache P, Maltezou HC, Van Damme P. How to improve pertussis vaccination in pregnancy: a European expert review. Expert Rev Vaccines 2025; 24:175-182. [PMID: 40042539 DOI: 10.1080/14760584.2025.2473328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/27/2025] [Indexed: 03/15/2025]
Abstract
INTRODUCTION Pertussis vaccination in pregnancy is a safe and highly effective strategy to protect young infants against severe pertussis, but cases continue to occur. In November 2023, the authors of this paper met to discuss difficulties faced by pertussis vaccination programs in pregnant women in Europe, and the need and potential for new vaccines. AREAS COVERED We summarize current pertussis epidemiology, the status of pertussis vaccination in pregnancy in Europe, followed by a summary of the meeting on benefits of pertussis-only vaccines and pertussis vaccines with improved immunogenicity, including a review of available vaccines. EXPERT OPINION Ongoing surveillance and registers documenting vaccine uptake in pregnant women are important to monitor changes in pertussis epidemiology and estimated effectiveness of maternal pertussis vaccination programs in individual countries. While current programs have been effective, Tdap or Tdap-IPV combined vaccines are not the ideal choice but are the only vaccines available for pertussis immunization in pregnancy in Europe. Pertussis-only vaccine would avoid exposing women to unnecessary tetanus and diphtheria boosters in every pregnancy. Recombinant pertussis vaccines with higher immunogenicity could prolong passive immune protection against pertussis in young infants.
Collapse
Affiliation(s)
- Adam Finn
- Bristol Vaccine Centre, Schools of Population Health Science and of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | | | | | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago (SERGAS) and University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- Genetics, Vaccines and Pediatric Infectious Diseases Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Arto A Palmu
- FVR - Finnish Vaccine Research, Tampere, Finland
| | - Paolo Bonanni
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Pierre Bakhache
- INFOVAC, French Association of Ambulatory Pediatrics, Toulon, France
| | - Helena C Maltezou
- Directorate of Research, Studies and Documentation, National Public Health Organization, Athens, Greece
| | - Pierre Van Damme
- Centre for the Evaluation of Vaccination, Vaccinopolis, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
2
|
Waters EV, Cameron SK, Langridge GC, Preston A. Bacterial genome structural variation: prevalence, mechanisms, and consequences. Trends Microbiol 2025:S0966-842X(25)00115-5. [PMID: 40300989 DOI: 10.1016/j.tim.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 05/01/2025]
Abstract
A vast number of bacterial genome sequences are publicly available. However, the majority were generated using short-read sequencing, producing fragmented assemblies. Long-read sequencing can generate closed assemblies, and they reveal that bacterial genome structure, the order and orientation of genes on the chromosome, is highly variable for many species. Growing evidence suggests that genome structure is a determinant of genome-wide gene expression levels and thus phenotype. We review this developing picture of genome structure variation among bacteria, the challenges for the study of this phenomenon, and its impact on adaptation and evolution, including virulence and infection.
Collapse
Affiliation(s)
- Emma V Waters
- Microbes and Food Safety, Quadram Institute Bioscience, Norwich, UK; Centre for Microbial Interactions, Norwich Research Park, Norwich, UK
| | - Sarah K Cameron
- The Milner Centre for Evolution and Department of Life Sciences, University of Bath, Bath, UK
| | - Gemma C Langridge
- Microbes and Food Safety, Quadram Institute Bioscience, Norwich, UK; Centre for Microbial Interactions, Norwich Research Park, Norwich, UK
| | - Andrew Preston
- The Milner Centre for Evolution and Department of Life Sciences, University of Bath, Bath, UK.
| |
Collapse
|
3
|
ElSherif M, Halperin SA. Benefits of Combining Molecular Biology and Controlled Human Infection Model Methodologies in Advancing Vaccine Development. J Mol Biol 2023; 435:168322. [PMID: 37866477 DOI: 10.1016/j.jmb.2023.168322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Infectious diseases continue to account for a significant portion of global deaths despite the use of vaccines for several centuries. Immunization programs around the world are a testament to the great success of multiple vaccines, yet there are still diseases without vaccines and others that require safer more effective ones. Addressing uncontrolled and emerging disease threats is restrained by the limitations and bottlenecks encountered with traditional vaccine development paradigms. Recent advances in modern molecular biology technologies have enhanced the interrogation of host pathogen interaction and deciphered complex pathways, thereby uncovering the myriad interplay of biological events that generate immune protection against foreign agents. Consequent to insights into the immune system, modern biology has been instrumental in the development and production of next generation 21st century vaccines. As these biological tools, commonly and collectively referred to as 'omics, became readily available, there has been a renewed consideration of Controlled Human Infection Models (CHIMs). Successful and reproducible CHIMs can complement modern molecular biology for the study of infectious diseases and development of effective vaccines in a regulated process that mitigates risk, cost, and time, with capacity to discern immune correlates of protection.
Collapse
Affiliation(s)
- May ElSherif
- Canadian Center for Vaccinology, IWK Health, Nova Scotia Health, and Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Scott A Halperin
- Canadian Center for Vaccinology, IWK Health, Nova Scotia Health, and Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
4
|
Golshani M, Rahman WU, Osickova A, Holubova J, Lora J, Balashova N, Sebo P, Osicka R. Filamentous Hemagglutinin of Bordetella pertussis Does Not Interact with the β 2 Integrin CD11b/CD18. Int J Mol Sci 2022; 23:12598. [PMID: 36293453 PMCID: PMC9604300 DOI: 10.3390/ijms232012598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 01/04/2024] Open
Abstract
The pertussis agent Bordetella pertussis produces a number of virulence factors, of which the filamentous hemagglutinin (FhaB) plays a role in B. pertussis adhesion to epithelial and phagocytic cells. Moreover, FhaB was recently found to play a crucial role in nasal cavity infection and B. pertussis transmission to new hosts. The 367 kDa FhaB protein translocates through an FhaC pore to the outer bacterial surface and is eventually processed to a ~220 kDa N-terminal FHA fragment by the SphB1 protease. A fraction of the mature FHA then remains associated with bacterial cell surface, while most of FHA is shed into the bacterial environment. Previously reported indirect evidence suggested that FHA, or its precursor FhaB, may bind the β2 integrin CD11b/CD18 of human macrophages. Therefore, we assessed FHA binding to various cells producing or lacking the integrin and show that purified mature FHA does not bind CD11b/CD18. Further results then revealed that the adhesion of B. pertussis to cells does not involve an interaction between the bacterial surface-associated FhaB and/or mature FHA and the β2 integrin CD11b/CD18. In contrast, FHA binding was strongly inhibited at micromolar concentrations of heparin, corroborating that the cell binding of FHA is ruled by the interaction of its heparin-binding domain with sulfated glycosaminoglycans on the cell surface.
Collapse
Affiliation(s)
- Maryam Golshani
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Waheed Ur Rahman
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Adriana Osickova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Jana Holubova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Jinery Lora
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St., Philadelphia, PA 19104, USA
| | - Nataliya Balashova
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St., Philadelphia, PA 19104, USA
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
5
|
Dowling DJ, Barman S, Smith AJ, Borriello F, Chaney D, Brightman SE, Melhem G, Brook B, Menon M, Soni D, Schüller S, Siram K, Nanishi E, Bazin HG, Burkhart DJ, Levy O, Evans JT. Development of a TLR7/8 agonist adjuvant formulation to overcome early life hyporesponsiveness to DTaP vaccination. Sci Rep 2022; 12:16860. [PMID: 36258023 PMCID: PMC9579132 DOI: 10.1038/s41598-022-20346-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
Infection is the most common cause of mortality early in life, yet the broad potential of immunization is not fully realized in this vulnerable population. Most vaccines are administered during infancy and childhood, but in some cases the full benefit of vaccination is not realized in-part. New adjuvants are cardinal to further optimize current immunization approaches for early life. However, only a few classes of adjuvants are presently incorporated in vaccines approved for human use. Recent advances in the discovery and delivery of Toll-like receptor (TLR) agonist adjuvants have provided a new toolbox for vaccinologists. Prominent among these candidate adjuvants are synthetic small molecule TLR7/8 agonists. The development of an effective infant Bordetella pertussis vaccine is urgently required because of the resurgence of pertussis in many countries, contemporaneous to the switch from whole cell to acellular vaccines. In this context, TLR7/8 adjuvant based vaccine formulation strategies may be a promising tool to enhance and accelerate early life immunity by acellular B. pertussis vaccines. In the present study, we optimized (a) the formulation delivery system, (b) structure, and (c) immunologic activity of novel small molecule imidazoquinoline TLR7/8 adjuvants towards human infant leukocytes, including dendritic cells. Upon immunization of neonatal mice, this TLR7/8 adjuvant overcame neonatal hyporesponsiveness to acellular pertussis vaccination by driving a T helper (Th)1/Th17 biased T cell- and IgG2c-skewed humoral response to a licensed acellular vaccine (DTaP). This potent immunization strategy may represent a new paradigm for effective immunization against pertussis and other pathogens in early life.
Collapse
Affiliation(s)
- David J Dowling
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Soumik Barman
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Alyson J Smith
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT, 59802, USA
- Seagen, Bothell, WA, USA
| | - Francesco Borriello
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, 80131, Italy
- WAO Center of Excellence, Naples, 80131, Italy
- Generate Biomedicines, Cambridge, MA, USA
| | - Danielle Chaney
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Spencer E Brightman
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
| | - Gandolina Melhem
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
| | - Byron Brook
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Manisha Menon
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
| | - Dheeraj Soni
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Simone Schüller
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Karthik Siram
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA
| | - Etsuro Nanishi
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, USA
| | - Hélène G Bazin
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT, 59802, USA
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA
| | - David J Burkhart
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT, 59802, USA
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Harvard Institutes of Medicine, Room 842, 4 Blackfan Circle, Boston, MA, 02115, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT & Harvard, Cambridge, MA, USA.
| | - Jay T Evans
- Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT, 59802, USA.
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, USA.
| |
Collapse
|
6
|
Huoi C, Vargas-Zambrano J, Macina D, Vidor E. A combined DTaP-IPV vaccine (Tetraxim®/Tetravac®) used as school-entry booster: a review of more than 20 years of clinical and post-marketing experience. Expert Rev Vaccines 2022; 21:1215-1231. [PMID: 35983656 DOI: 10.1080/14760584.2022.2084076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Routine infant primary series and toddler booster vaccination are associated with waning of antibody levels over time, which can lead to an increased incidence of vaccine-preventable diseases. A diphtheria-tetanus-pertussis (DTP) booster vaccination at school-entry (aged 4-7 years) allows continued protection against these diseases and is included in many national immunization programs. AREAS COVERED The available immunogenicity and safety data from 6 clinical studies of a diphtheria-tetanus-acellular pertussis-inactivated poliovirus vaccine (DTaP-IPV [Tetraxim®]) used as a school-entry booster vaccination were identified using a PubMed search or on file at Sanofi. The studies spanned a 15-year period (1995-2010) and were performed in different populations using different study designs, so all data were reviewed descriptively (no meta-analyses were conducted). Additionally, post-marketing experience was reviewed. EXPERT OPINION Each vaccine antigen is highly immunogenic, and the safety profile of the vaccine is satisfactory. Post-marketing evaluations have shown the effectiveness of a school-age booster, particularly against increased pertussis disease incidence around the time of school entry and the associated risk of spreading the disease through contact with younger vulnerable infants. School-entry provides an ideal opportunity to implement DTaP-IPV vaccination to close the gap between waning immunity from the previous infant/toddler vaccination and future adolescent vaccination.
Collapse
|
7
|
Kotraiah V, Phares TW, Browne CD, Pannucci J, Mansour M, Noe AR, Tucker KD, Christen JM, Reed C, MacKay A, Weir GM, Rajagopalan R, Stanford MM, Chung CS, Ayala A, Huang J, Tsuji M, Gutierrez GM. Novel Peptide-Based PD1 Immunomodulators Demonstrate Efficacy in Infectious Disease Vaccines and Therapeutics. Front Immunol 2020; 11:264. [PMID: 32210956 PMCID: PMC7068811 DOI: 10.3389/fimmu.2020.00264] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/31/2020] [Indexed: 12/31/2022] Open
Abstract
Many pathogens use the same immune evasion mechanisms as cancer cells. Patients with chronic infections have elevated levels of checkpoint receptors (e.g., programed cell death 1, PD1) on T cells. Monoclonal antibody (mAb)-based inhibitors to checkpoint receptors have also been shown to enhance T-cell responses in models of chronic infection. Therefore, inhibitors have the potential to act as a vaccine “adjuvant” by facilitating the expansion of vaccine antigen-specific T-cell repertoires. Here, we report the discovery and characterization of a peptide-based class of PD1 checkpoint inhibitors, which have a potent adaptive immunity adjuvant capability for vaccines against infectious diseases. Briefly, after identifying peptides that bind to the recombinant human PD1, we screened for in vitro efficacy in reporter assays and human peripheral blood mononuclear cells (PBMC) readouts. We first found the baseline in vivo performance of the peptides in a standard mouse oncology model that demonstrated equivalent efficacy compared to mAbs against the PD1 checkpoint. Subsequently, two strategies were used to demonstrate the utility of our peptides in infectious disease indications: (1) as a therapeutic in a bacteria-induced lethal sepsis model in which our peptides were found to increase survival with enhanced bacterial clearance and increased macrophage function; and (2) as an adjuvant in combination with a prophylactic malaria vaccine in which our peptides increased T-cell immunogenicity and the protective efficacy of the vaccine. Therefore, our peptides are promising as both a therapeutic agent and a vaccine adjuvant for infectious disease with a potentially safer and more cost-effective target product profile compared to mAbs. These findings are essential for deploying a new immunomodulatory regimen in infectious disease primary and clinical care settings.
Collapse
Affiliation(s)
- Vinayaka Kotraiah
- Explorations in Global Health (ExGloH), Leidos Inc., Frederick, MD, United States
| | - Timothy W Phares
- Explorations in Global Health (ExGloH), Leidos Inc., Frederick, MD, United States
| | | | - James Pannucci
- Explorations in Global Health (ExGloH), Leidos Inc., Frederick, MD, United States
| | - Marc Mansour
- MM Scientific Consultants, Inc., Halifax, NS, Canada
| | - Amy R Noe
- Leidos Life Sciences, Leidos Inc., Frederick, MD, United States
| | | | | | - Charles Reed
- Inovio Pharmaceuticals, Plymouth Meeting, PA, United States
| | | | | | | | | | | | - Alfred Ayala
- Lifespan-Rhode Island Hospital, Providence, RI, United States
| | - Jing Huang
- The Aaron Diamond AIDS Research Center, New York, NY, United States
| | - Moriya Tsuji
- The Aaron Diamond AIDS Research Center, New York, NY, United States
| | - Gabriel M Gutierrez
- Explorations in Global Health (ExGloH), Leidos Inc., Frederick, MD, United States
| |
Collapse
|
8
|
D'Heilly C, Switzer C, Macina D. Safety of Maternal Immunization Against Pertussis: A Systematic Review. Infect Dis Ther 2019; 8:543-568. [PMID: 31531826 PMCID: PMC6856234 DOI: 10.1007/s40121-019-00265-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Indexed: 01/02/2023] Open
Abstract
The WHO recommends vaccination of all children against pertussis. However, newborn infants remain vulnerable to infection. Pertussis vaccination during pregnancy has been introduced in several countries to protect newborns via transplacental transfer of maternal pertussis antibodies to the infant. We reviewed the impact of maternal pertussis vaccination on the health of pregnant women, the developing fetus, and health of the newborn. We searched PubMed/MEDLINE, EMBASE, Scopus (Elsevier), Cochrane Database of Systematic Reviews, ProQuest, and Science Direct to identify studies that assessed the safety of maternal pertussis vaccination. Twenty-seven English language publications published between January 1995 and December 2018 were included in this review. Pregnant women receiving pertussis vaccines did not have increased rates of systemic or local reactions. There were no safety concerns with repeat vaccination with other tetanus-containing vaccines or their concomitant administration with influenza vaccines. Maternal pertussis vaccination did not adversely affect pregnancy, birth or neonatal outcomes. This review confirms the safety of maternal pertussis vaccination during pregnancy. FUNDING: Sanofi Pasteur. Plain language summary available for this article.
Collapse
Affiliation(s)
| | | | - Denis Macina
- Sanofi Pasteur, Vaccines Epidemiology and Modeling, Lyon, France.
| |
Collapse
|
9
|
Masignani V, Pizza M, Moxon ER. The Development of a Vaccine Against Meningococcus B Using Reverse Vaccinology. Front Immunol 2019; 10:751. [PMID: 31040844 PMCID: PMC6477034 DOI: 10.3389/fimmu.2019.00751] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/20/2019] [Indexed: 12/04/2022] Open
Abstract
The discovery of vaccine antigens through whole genome sequencing (WGS) contrasts with the classical hypothesis-driven laboratory-based analysis of microbes to identify components to elicit protective immunity. This radical change in scientific direction and action in vaccine research is captured in the term reverse vaccinology. The complete genome sequence of an isolate of Neisseria meningitidis serogroup B (MenB) was systematically analyzed to identify proteins predicted to be secreted or exported to the outer membrane. This identified hundreds of genes coding for potential surface-exposed antigens. These were amplified, cloned in expression vectors and used to immunize mice. Antisera against 350 recombinant antigens were obtained and analyzed in a panel of immunological assays from which 28 were selected as potentially protective based on the -antibody dependent, complement mediated- serum bactericidal activity assay. Testing of these candidate vaccine antigens, using a large globally representative strain collection of Neisseria species isolated from cases of disease and carriage, indicated that no single component would be sufficient to induce broad coverage and that a “universal” vaccine should contain multiple antigens. The final choice of antigens to be included was based on cross-protective ability, assayed by serum bactericidal activity and maximum coverage of the extensive antigenic variability of MenB strains. The resulting multivalent vaccine formulation selected consisted of three recombinant antigens (Neisserial Heparin Binding Antigen or NHBA, Factor H binding protein or fHbp and Neisseria Adhesin A or NadA). To improve immunogenicity and potential strain coverage, an outer membrane vesicle component obtained from the epidemic New Zealand strain (OMVNz) was added to the formulation to create a four component vaccine, called 4CMenB. A series of phase 2 and 3 clinical trials were conducted to evaluate safety and tolerability and to estimate the vaccine effectiveness of human immune responses at different ages and how these were affected by various factors including concomitant vaccine use and lot-to-lot consistency. 4CMenB was approved in Europe in 2013 and introduced in the National Immunization Program in the UK starting from September 2015 when the vaccine was offered to all newborns using a 2, 4, and 12 months schedule., The effectiveness against invasive MenB disease measured at 11 months after the study start and 5 months after the second vaccination was 83% and there have been no safety concerns.
Collapse
Affiliation(s)
| | | | - E Richard Moxon
- Department of Pediatrics, Oxford University, Oxford, United Kingdom
| |
Collapse
|
10
|
Masson JD, Thibaudon M, Bélec L, Crépeaux G. Calcium phosphate: a substitute for aluminum adjuvants? Expert Rev Vaccines 2016; 16:289-299. [DOI: 10.1080/14760584.2017.1244484] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jean-Daniel Masson
- Association E3M (Entraide aux Malades de Myofasciite à Macrophages), Monprimblanc, France
| | - Michel Thibaudon
- Pharmacien « Service des Allergènes », de l’Institut Pasteur, Paris, France
| | - Laurent Bélec
- Laboratoire de Microbiologie, hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, & Faculté de Médecine Paris Descartes, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Guillemette Crépeaux
- École nationale vétérinaire d’Alfort, Maisons-Alfort, France
- Inserm U955 E10, Université Paris Est Créteil, Créteil, France
| |
Collapse
|
11
|
Affiliation(s)
- Teresa L Chin
- Teresa L. Chin is a health and science journalist based in Oakland, California
| |
Collapse
|
12
|
Oh DY, Dowling DJ, Ahmed S, Choi H, Brightman S, Bergelson I, Berger ST, Sauld JF, Pettengill M, Kho AT, Pollack HJ, Steen H, Levy O. Adjuvant-induced Human Monocyte Secretome Profiles Reveal Adjuvant- and Age-specific Protein Signatures. Mol Cell Proteomics 2016; 15:1877-94. [PMID: 26933193 PMCID: PMC5083103 DOI: 10.1074/mcp.m115.055541] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Indexed: 12/16/2022] Open
Abstract
Adjuvants boost vaccine responses, enhancing protective immunity against infections that are most common among the very young. Many adjuvants activate innate immunity, some via Toll-Like Receptors (TLRs), whose activities varies with age. Accordingly, characterization of age-specific adjuvant-induced immune responses may inform rational adjuvant design targeting vulnerable populations. In this study, we employed proteomics to characterize the adjuvant-induced changes of secretomes from human newborn and adult monocytes in response to Alum, the most commonly used adjuvant in licensed vaccines; Monophosphoryl Lipid A (MPLA), a TLR4-activating adjuvant component of a licensed Human Papilloma Virus vaccine; and R848 an imidazoquinoline TLR7/8 agonist that is a candidate adjuvant for early life vaccines. Monocytes were incubated in vitro for 24 h with vehicle, Alum, MPLA, or R848 and supernatants collected for proteomic analysis employing liquid chromatography-mass spectrometry (LC-MS) (data available via ProteomeXchange, ID PXD003534). 1894 non-redundant proteins were identified, of which ∼30 - 40% were common to all treatment conditions and ∼5% were treatment-specific. Adjuvant-stimulated secretome profiles, as identified by cluster analyses of over-represented proteins, varied with age and adjuvant type. Adjuvants, especially Alum, activated multiple innate immune pathways as assessed by functional enrichment analyses. Release of lactoferrin, pentraxin 3, and matrix metalloproteinase-9 was confirmed in newborn and adult whole blood and blood monocytes stimulated with adjuvants alone or adjuvanted licensed vaccines with distinct clinical reactogenicity profiles. MPLA-induced adult monocyte secretome profiles correlated in silico with transcriptome profiles induced in adults immunized with the MPLA-adjuvanted RTS,S malaria vaccine (Mosquirix™). Overall, adjuvants such as Alum, MPLA and R848 give rise to distinct and age-specific monocyte secretome profiles, paralleling responses to adjuvant-containing vaccines in vivo. Age-specific in vitro modeling coupled with proteomics may provide fresh insight into the ontogeny of adjuvant action thereby informing targeted adjuvanted vaccine development for distinct age groups.
Collapse
Affiliation(s)
- Djin-Ye Oh
- From the ‡Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital and §Harvard Medical School, Boston, Massachusetts; ¶Division of Pediatric Infectious Diseases, New York University Medical School, New York; Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts
| | - David J Dowling
- From the ‡Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital and §Harvard Medical School, Boston, Massachusetts
| | - Saima Ahmed
- ‖Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hyungwon Choi
- **Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Spencer Brightman
- From the ‡Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital and
| | - Ilana Bergelson
- From the ‡Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital and
| | - Sebastian T Berger
- ‖Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - John F Sauld
- ‖Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Matthew Pettengill
- From the ‡Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital and §Harvard Medical School, Boston, Massachusetts; Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts
| | - Alvin T Kho
- ‡‡Children's Hospital Informatics Program, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Henry J Pollack
- ¶Division of Pediatric Infectious Diseases, New York University Medical School, New York
| | - Hanno Steen
- ‖Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts
| | - Ofer Levy
- From the ‡Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital and §Harvard Medical School, Boston, Massachusetts; Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
13
|
Preston A. The role of B. pertussis vaccine antigen gene variants in pertussis resurgence and possible consequences for vaccine development. Hum Vaccin Immunother 2016; 12:1274-6. [PMID: 26889694 DOI: 10.1080/21645515.2015.1137402] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Whooping cough, or pertussis, caused by Bordetella pertussis is considered resurgent in a number of countries world-wide, despite continued high level vaccine coverage. Among a number of causes for this that have been proposed, is the emergence of B. pertussis strains expressing variants of the antigens contained in acellular pertussis vaccines; i.e. the evolution of B. pertussis toward vaccine escape. This commentary highlights the contradictory nature of evidence for this but also discusses the importance of understanding the role of B. pertussis adaptation to vaccine-mediated immune selection pressures for vaccine-mediated pertussis control strategies.
Collapse
Affiliation(s)
- Andrew Preston
- a Milner Center for Evolution and Department of Biology and Biochemistry, University of Bath , Bath , UK
| |
Collapse
|
14
|
Villarino Romero R, Hasan S, Faé K, Holubova J, Geurtsen J, Schwarzer M, Wiertsema S, Osicka R, Poolman J, Sebo P. Bordetella pertussis filamentous hemagglutinin itself does not trigger anti-inflammatory interleukin-10 production by human dendritic cells. Int J Med Microbiol 2015; 306:38-47. [PMID: 26699834 DOI: 10.1016/j.ijmm.2015.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/30/2015] [Accepted: 11/24/2015] [Indexed: 01/12/2023] Open
Abstract
Filamentous hemagglutinin (FHA) is an important adhesin of the whooping cough agent Bordetella pertussis and is contained in most acellular pertussis vaccines. Recently, FHA was proposed to exert an immunomodulatory activity through induction of tolerogenic IL-10 secretion from dendritic cells. We have re-evaluated the cytokine-inducing activity of FHA, placing specific emphasis on the role of the residual endotoxin contamination of FHA preparations. We show that endotoxin depletion did not affect the capacity of FHA to bind primary human monocyte-derived dendritic cells, while it abrogated the capacity of FHA to elicit TNF-α and IL-10 secretion and strongly reduced its capacity to trigger IL-6 production. The levels of cytokines induced by the different FHA preparations correlated with their residual contents of B. pertussis endotoxin. Moreover, FHA failed to trigger cytokine secretion in the presence of antibodies that block TLR2 and/or TLR4 signaling. The TLR2 signaling capacity appeared to be linked to the presence of endotoxin-associated components in FHA preparations and not to the FHA protein itself. These results show that the endotoxin-depleted FHA protein does not induce cytokine release from human dendritic cells.
Collapse
Affiliation(s)
- Rodrigo Villarino Romero
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic
| | - Shakir Hasan
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic
| | - Kellen Faé
- Bacterial Vaccine Discovery & Early Development, Janssen, Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | - Jana Holubova
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic
| | - Jeroen Geurtsen
- Bacterial Vaccine Discovery & Early Development, Janssen, Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | - Martin Schwarzer
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic
| | - Selma Wiertsema
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic
| | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic
| | - Jan Poolman
- Bacterial Vaccine Discovery & Early Development, Janssen, Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Videnska 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
15
|
Abstract
Use of highly pure antigens to improve vaccine safety has led to reduced vaccine immunogenicity and efficacy. This has led to the need to use adjuvants to improve vaccine immunogenicity. The ideal adjuvant should maximize vaccine immunogenicity without compromising tolerability or safety. Unfortunately, adjuvant research has lagged behind other vaccine areas such as antigen discovery, with the consequence that only a very limited number of adjuvants based on aluminium salts, monophosphoryl lipid A and oil emulsions are currently approved for human use. Recent strategic initiatives to support adjuvant development by the National Institutes of Health should translate into greater adjuvant choices in the future. Mechanistic studies have been valuable for better understanding of adjuvant action, but mechanisms of adjuvant toxicity are less well understood. The inflammatory or danger-signal model of adjuvant action implies that increased vaccine reactogenicity is the inevitable price for improved immunogenicity. Hence, adjuvant reactogenicity may be avoidable only if it is possible to separate inflammation from adjuvant action. The biggest remaining challenge in the adjuvant field is to decipher the potential relationship between adjuvants and rare vaccine adverse reactions, such as narcolepsy, macrophagic myofasciitis or Alzheimer's disease. While existing adjuvants based on aluminium salts have a strong safety record, there are ongoing needs for new adjuvants and more intensive research into adjuvants and their effects.
Collapse
Affiliation(s)
- Nikolai Petrovsky
- Department of Endocrinology and Diabetes, Flinders University, Adelaide, SA, 5042, Australia.
- Vaxine Pty Ltd, Adelaide, SA, Australia.
| |
Collapse
|
16
|
Belcher T, Preston A. Bordetella pertussis evolution in the (functional) genomics era. Pathog Dis 2015; 73:ftv064. [PMID: 26297914 DOI: 10.1093/femspd/ftv064] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2015] [Indexed: 11/12/2022] Open
Abstract
The incidence of whooping cough caused by Bordetella pertussis in many developed countries has risen dramatically in recent years. This has been linked to the use of an acellular pertussis vaccine. In addition, it is thought that B. pertussis is adapting under acellular vaccine mediated immune selection pressure, towards vaccine escape. Genomics-based approaches have revolutionized the ability to resolve the fine structure of the global B. pertussis population and its evolution during the era of vaccination. Here, we discuss the current picture of B. pertussis evolution and diversity in the light of the current resurgence, highlight import questions raised by recent studies in this area and discuss the role that functional genomics can play in addressing current knowledge gaps.
Collapse
Affiliation(s)
- Thomas Belcher
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Andrew Preston
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
17
|
Gavillet BM, Mondoulet L, Dhelft V, Eberhardt CS, Auderset F, Pham HT, Petre J, Lambert PH, Benhamou PH, Siegrist CA. Needle-free and adjuvant-free epicutaneous boosting of pertussis immunity: Preclinical proof of concept. Vaccine 2015; 33:3450-5. [PMID: 26067183 DOI: 10.1016/j.vaccine.2015.05.089] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/12/2015] [Accepted: 05/28/2015] [Indexed: 11/27/2022]
Abstract
The limited durability of pertussis vaccine-induced protection requires novel approaches to reactivate immunity and limit pertussis resurgence in older children and adults. We propose that periodic boosters could be delivered using a novel epicutaneous delivery system (Viaskin) to deliver optimized pertussis antigens such as genetically-detoxified pertussis toxin (rPT). To best mimic the human situation in which vaccine-induced memory cells persist, whereas antibodies wane, we developed a novel adoptive transfer murine model of pertussis immunity. This allowed demonstrating that a single application of Viaskin delivering rPT and/or pertactin and filamentous hemagglutinin effectively reactivates vaccine-induced pertussis immunity and protects against Bordetella pertussis challenge. Recalling pertussis immunity without needles nor adjuvant may considerably facilitate the acceptance and application of periodic boosters.
Collapse
Affiliation(s)
- Beatris Mastelic Gavillet
- World Health Organization Collaborating Center for Vaccine Immunology, Departments of Pathology-Immunology, University of Geneva, 1211 Geneva, Switzerland.
| | - Lucie Mondoulet
- DBV Technologies, Green Square, 80/84 rue des Meuniers, 92220 Bagneux, France
| | - Véronique Dhelft
- DBV Technologies, Green Square, 80/84 rue des Meuniers, 92220 Bagneux, France
| | - Christiane Sigrid Eberhardt
- World Health Organization Collaborating Center for Vaccine Immunology, Departments of Pathology-Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Floriane Auderset
- World Health Organization Collaborating Center for Vaccine Immunology, Departments of Pathology-Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Hong Thai Pham
- BioNet-Asia Co., Ltd., 19 Udomsuk 37, Sukhumvit 103, Bangjak, Prakanong, Bangkok 10260, Thailand
| | - Jean Petre
- BioNet-Asia Co., Ltd., 19 Udomsuk 37, Sukhumvit 103, Bangjak, Prakanong, Bangkok 10260, Thailand
| | - Paul-Henri Lambert
- World Health Organization Collaborating Center for Vaccine Immunology, Departments of Pathology-Immunology, University of Geneva, 1211 Geneva, Switzerland
| | | | - Claire-Anne Siegrist
- World Health Organization Collaborating Center for Vaccine Immunology, Departments of Pathology-Immunology, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
18
|
Affiliation(s)
- Jan T Poolman
- Crucell Hollland B. V. one of the Janssen Pharmaceutical Companies of Johnson & Johnson - Bacterial Vaccines Research and Development Archimedesweg 4-6, Zernikedreef 9, Leiden 2333 CK, The Netherlands
| |
Collapse
|
19
|
Sealey KL, Harris SR, Fry NK, Hurst LD, Gorringe AR, Parkhill J, Preston A. Genomic Analysis of Isolates From the United Kingdom 2012 Pertussis Outbreak Reveals That Vaccine Antigen Genes Are Unusually Fast Evolving. J Infect Dis 2014; 212:294-301. [DOI: 10.1093/infdis/jiu665] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 11/21/2014] [Indexed: 11/13/2022] Open
|