1
|
Brouwer MAE, Karami Z, Keating ST, Vrijmoeth H, Lemmers HLM, Dijkstra H, van de Veerdonk FL, Lupse M, Ter Hofstede HJM, Netea MG, Joosten LAB. Borrelia burgdorferi sensu lato inhibits CIITA transcription through pSTAT3 activation and enhanced SOCS1 and SOCS3 expression leading to limited IFN-γ production. Ticks Tick Borne Dis 2025; 16:102442. [PMID: 39879745 DOI: 10.1016/j.ttbdis.2025.102442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/30/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
Interferons (IFNs) are important signaling molecules in the human immune response against micro-organisms. Throughout initial Borrelia burgdorferi sensu lato (B. burgdorferi s.l.) infection in vitro, inadequate IFN-γ production results in the absence of a strong T-helper 1 cell response, potentially hampering the development of an effective antibody responses in Lyme borreliosis (LB) patients. The aim of this study is to help understand the immunomodulatory mechanisms why IFN-γ production is absent in the early onset of LB. Therefore, cytokine production and STAT activation signature, following exposure of human immune cells to B. burgdorferi s.l., was investigated in vivo and in vitro. While STAT3 phosphorylation was highly induced in T cells, B cells and NK-(T) cells, STAT1 expression and IL-12p70 production were not or only slightly increased upon B. burgdorferi s.l. exposure. In response to B. burgdorferi s.l., STAT2 phosphorylation and IFNα production remained stable. STAT2 activation only increased in NK-(T) cells. In contrast, STAT4 signaling was reduced in all B. burgdorferi s.l. exposed immune cells. Moreover, B. burgdorferi s.l. significantly increased suppressor of cytokine signaling (SOCS)1 and SOCS3 gene expression in LB patients. Absence of IFN-γ production and STAT4 activation, in combination with STAT3 phosphorylation and upregulated SOCS1 and SOCS3 gene expression, suggests the formation of a more tolerant and anti-inflammatory response to B. burgdorferi s.l., specifically in T- and B-cells. In primary human PBMCs and monocyte populations, B. burgdorferi s.l. also specifically interfered with CIITA isoforms normally expressed in antigen presenting dendritic cells. In contrast, it enhanced CIITA isoforms typically present in adaptive immune cell subsets. Restoring antigen presentation capacity of innate immune cells and early production of IFN-γ in LB patients may help re-establish immune functions during initial LB. These new insights will help to understand the immunomodulatory mechanisms of B. burgdorferi s.l. during the onset of LB.
Collapse
Affiliation(s)
- Michelle A E Brouwer
- Department of Internal Medicine and Radboud Community for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Zara Karami
- Department of Internal Medicine and Radboud Community for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Samuel T Keating
- Department of Internal Medicine and Radboud Community for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Biology, University of Copenhagen, Copenhagen DK 2200, Denmark
| | - Hedwig Vrijmoeth
- Department of Internal Medicine and Radboud Community for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Heidi L M Lemmers
- Department of Internal Medicine and Radboud Community for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Helga Dijkstra
- Department of Internal Medicine and Radboud Community for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Frank L van de Veerdonk
- Department of Internal Medicine and Radboud Community for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihaela Lupse
- Department of Infectious Diseases, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca 400349, Romania
| | - Hadewych J M Ter Hofstede
- Department of Internal Medicine and Radboud Community for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Community for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Community for Infectious diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| |
Collapse
|
2
|
Vaccines for Lyme Borreliosis: Facts and Challenges. FOLIA VETERINARIA 2022. [DOI: 10.2478/fv-2022-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Lyme borreliosis (LB) is a multisystem infectious disease abundant in the northern countries of the world and is caused by Borrelia species. Vaccination against LB is an effective way to prevent and reduce the number of diseases in endemic areas. Several vaccines have been developed and tested in the past, but no human LB vaccine is currently available on the market. This review aims to uncover and delineate various strategies and diverse technological approaches related to vaccine production. Furthermore, we characterize already tested vaccines, possibilities for their future development, and reasons for their failure.
Collapse
|
3
|
Szamosvári D, Bae M, Bang S, Tusi BK, Cassilly CD, Park SM, Graham DB, Xavier RJ, Clardy J. Lyme Disease, Borrelia burgdorferi, and Lipid Immunogens. J Am Chem Soc 2022; 144:2474-2478. [PMID: 35129341 DOI: 10.1021/jacs.1c12202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The human immune system detects potentially pathogenic microbes with receptors that respond to microbial metabolites. While the overall immune signaling pathway is known in considerable detail, the initial molecular signals, the microbially produced immunogens, for important diseases like Lyme disease (LD) are often not well-defined. The immunogens for LD are produced by the spirochete Borrelia burgdorferi, and a galactoglycerolipid (1) has been identified as a key trigger for the inflammatory immune response that characterizes LD. This report corrects the original structural assignment of 1 to 3, a change of an α-galactopyranose to an α-galactofuranose headgroup. The seemingly small change has important implications for the diagnosis, prevention, and treatment of LD.
Collapse
Affiliation(s)
- Dávid Szamosvári
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Blavatnik Institute, Boston, Massachusetts 02115, United States
| | - Munhyung Bae
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Blavatnik Institute, Boston, Massachusetts 02115, United States
| | - Sunghee Bang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Blavatnik Institute, Boston, Massachusetts 02115, United States
| | - Betsabeh Khoramian Tusi
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States.,Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Chelsi D Cassilly
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Blavatnik Institute, Boston, Massachusetts 02115, United States
| | - Sung-Moo Park
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States.,Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States.,Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States.,Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Blavatnik Institute, Boston, Massachusetts 02115, United States
| |
Collapse
|
4
|
Brouwer MAE, Jones-Warner W, Rahman S, Kerstholt M, Ferreira AV, Oosting M, Hooiveld GJ, Netea MG, Joosten LAB. B. burgdorferi sensu lato-induced inhibition of antigen presentation is mediated by RIP1 signaling resulting in impaired functional T cell responses towards Candida albicans. Ticks Tick Borne Dis 2020; 12:101611. [PMID: 33360386 DOI: 10.1016/j.ttbdis.2020.101611] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/22/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023]
Abstract
Antigen presentation is a crucial innate immune cell function that instructs adaptive immune cells. Loss of this pathway severely impairs the development of adaptive immune responses. To investigate whether B. burgdorferi sensu lato. spirochetes modulate the induction of an effective immune response, primary human PBMCs were isolated from healthy volunteers and stimulated with B. burgdorferi s.l. Through cell entry, TNF receptor I, and RIP1 signaling cascades, B. burgdorferi s.l. strongly downregulated genes and proteins involved in antigen presentation, specifically HLA-DM, MHC class II and CD74. Antigen presentation proteins were distinctively inhibited in monocyte subsets, monocyte-derived macrophages, and dendritic cells. When compared to a range of other pathogens, B. burgdorferi s.l.-induced suppression of antigen presentation appears to be specific. Inhibition of antigen presentation interfered with T-cell recognition of B. burgdorferi s.l., and memory T-cell responses against Candidaalbicans. Re-stimulation of PBMCs with the commensal microbe C.albicans following B. burgdorferi s.l. exposure resulted in significantly reduced IFN-γ, IL-17 and IL-22 production. These findings may explain why patients with Lyme borreliosis develop delayed adaptive immune responses. Unravelling the mechanism of B. burgdorferi s.l.-induced inhibition of antigen presentation, via cell entry, TNF receptor I, and RIP1 signaling cascades, explains the difficulty to diagnose the disease based on serology and to obtain an effective vaccine against Lyme borreliosis.
Collapse
Affiliation(s)
- Michelle A E Brouwer
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - William Jones-Warner
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Shafaque Rahman
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Mariska Kerstholt
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Anaísa V Ferreira
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Marije Oosting
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Guido J Hooiveld
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands.
| |
Collapse
|
5
|
Mattingly TJ, Shere-Wolfe K. Clinical and economic outcomes evaluated in Lyme disease: a systematic review. Parasit Vectors 2020; 13:341. [PMID: 32646476 PMCID: PMC7346351 DOI: 10.1186/s13071-020-04214-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/02/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The financial implications of Lyme disease (LD) can vary widely for both the health system and the individual patients experiencing the disease. The aim of this review was to summarize published data on clinical and economic outcomes associated with LD. METHODS A literature review was conducted to identify all studies of LD that incorporate both clinical outcomes and costs. Included studies were described and categorized based on costs consistent with best practices used in economic evaluation. RESULTS The most frequent costs identified focused on formal health costs and productivity losses were the most common costs identified outside of the health system. Travel and informal care costs were less frequently reported. Clinical and economic outcomes of LD are primarily studied through economic models or observational analyses and focus on formal health care. CONCLUSIONS This review provides and overview of existing evidence and recommendations for future economic analyses in LD.
Collapse
Affiliation(s)
| | - Kalpana Shere-Wolfe
- University of Maryland Institute of Human Virology, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Brouwer MAE, van de Schoor FR, Vrijmoeth HD, Netea MG, Joosten LAB. A joint effort: The interplay between the innate and the adaptive immune system in Lyme arthritis. Immunol Rev 2020; 294:63-79. [PMID: 31930745 PMCID: PMC7065069 DOI: 10.1111/imr.12837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022]
Abstract
Articular joints are a major target of Borrelia burgdorferi, the causative agent of Lyme arthritis. Despite antibiotic treatment, recurrent or persistent Lyme arthritis is observed in a significant number of patients. The host immune response plays a crucial role in this chronic arthritic joint complication of Borrelia infections. During the early stages of B. burgdorferi infection, a major hinder in generating a proper host immune response is the lack of induction of a strong adaptive immune response. This may lead to a delayed hyperinflammatory reaction later in the disease. Several mechanisms have been suggested that might be pivotal for the development of Lyme arthritis and will be highlighted in this review, from molecular mimicry of matrix metallopeptidases and glycosaminoglycans, to autoimmune responses to live bacteria, or remnants of Borrelia spirochetes in joints. Murine studies have suggested that the inflammatory responses are initiated by innate immune cells, but this does not exclude the involvement of the adaptive immune system in this dysregulated immune profile. Genetic predisposition, via human leukocyte antigen-DR isotype and microRNA expression, has been associated with the development of antibiotic-refractory Lyme arthritis. Yet the ultimate cause for (antibiotic-refractory) Lyme arthritis remains unknown. Complex processes of different immune cells and signaling cascades are involved in the development of Lyme arthritis. When these various mechanisms are fully been unraveled, new treatment strategies can be developed to target (antibiotic-refractory) Lyme arthritis more effectively.
Collapse
Affiliation(s)
- Michelle A. E. Brouwer
- Department of Internal MedicineRadboud Center for Infectious Diseases (RCI)Radboud Institute of Molecular Life Sciences (RIMLS)Radboud Institute of Health Sciences (RIHS)Radboud University Medical CenterNijmegenThe Netherlands
| | - Freek R. van de Schoor
- Department of Internal MedicineRadboud Center for Infectious Diseases (RCI)Radboud Institute of Molecular Life Sciences (RIMLS)Radboud Institute of Health Sciences (RIHS)Radboud University Medical CenterNijmegenThe Netherlands
| | - Hedwig D. Vrijmoeth
- Department of Internal MedicineRadboud Center for Infectious Diseases (RCI)Radboud Institute of Molecular Life Sciences (RIMLS)Radboud Institute of Health Sciences (RIHS)Radboud University Medical CenterNijmegenThe Netherlands
| | - Mihai G. Netea
- Department of Internal MedicineRadboud Center for Infectious Diseases (RCI)Radboud Institute of Molecular Life Sciences (RIMLS)Radboud Institute of Health Sciences (RIHS)Radboud University Medical CenterNijmegenThe Netherlands
- Department for Genomics & ImmunoregulationLife and Medical Sciences Institute (LIMES)University of BonnBonnGermany
| | - Leo A. B. Joosten
- Department of Internal MedicineRadboud Center for Infectious Diseases (RCI)Radboud Institute of Molecular Life Sciences (RIMLS)Radboud Institute of Health Sciences (RIHS)Radboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
7
|
Affiliation(s)
- Stewart Sell
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY, USA
| |
Collapse
|
8
|
Artigas-Jerónimo S, De La Fuente J, Villar M. Interactomics and tick vaccine development: new directions for the control of tick-borne diseases. Expert Rev Proteomics 2018; 15:627-635. [PMID: 30067120 DOI: 10.1080/14789450.2018.1506701] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Ticks are obligate hematophagous arthropod ectoparasites that transmit pathogens responsible for a growing number of tick-borne diseases (TBDs) throughout the world. Vaccines have been shown to be the most efficient, cost-effective, and environmentally friendly approach for the control of ticks and the prevention of TBDs. Although at its infancy, interactomics has shown the possibilities that the knowledge of the interactome offers in understanding tick biology and the molecular mechanisms involved in pathogen infection and transmission. Furthermore, interactomics has provided information for the identification of candidate vaccine protective antigens. Areas covered: In this special report, we review the different approaches used for the study of protein-protein physical and functional interactions, and summarize the application of interactomics to the characterization of tick biology and tick-host-pathogen interactions, and the possibilities that offers to vaccine development for the control of ticks and TBDs. Expert commentary: The combination of interacting proteins in antigen formulations may increase vaccine efficacy. In the near future, the combination of interactomics with other omics approaches such as transcriptomics, proteomics, metabolomics, and regulomics together with intelligent Big Data analytic techniques will improve the high throughput discovery and characterization of vaccine protective antigens for the prevention and control of TBDs.
Collapse
Affiliation(s)
- Sara Artigas-Jerónimo
- a SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM , Ciudad Real , Spain
| | - José De La Fuente
- a SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM , Ciudad Real , Spain.,b Department of Veterinary Pathobiology , Center for Veterinary Health Sciences, Oklahoma State University , Stillwater OK , USA
| | - Margarita Villar
- a SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM , Ciudad Real , Spain
| |
Collapse
|
9
|
de la Fuente J. Controlling ticks and tick-borne diseases…looking forward. Ticks Tick Borne Dis 2018; 9:1354-1357. [PMID: 29656834 DOI: 10.1016/j.ttbdis.2018.04.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/02/2018] [Accepted: 04/04/2018] [Indexed: 01/05/2023]
Abstract
Tick-borne diseases (TBDs) represent a growing burden for human and animal health worldwide. Several approaches including the use of chemicals with repellency and parasiticidal activity, habitat management, genetic selection of hosts with higher resistance to ticks, and vaccines have been implemented for reducing the risk of TBDs. However, the application of latest gene editing technologies in combination with vaccines likely combining tick and pathogen derived antigens and other control measures should result in the development of effective, safe, and environmentally sound integrated control programs for the prevention and control of TBDs. This paper is not a review of current approaches for the control of ticks and TBDs, but an opinion about future directions in this area.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA, USA.
| |
Collapse
|
10
|
Casjens SR, Di L, Akther S, Mongodin EF, Luft BJ, Schutzer SE, Fraser CM, Qiu WG. Primordial origin and diversification of plasmids in Lyme disease agent bacteria. BMC Genomics 2018; 19:218. [PMID: 29580205 PMCID: PMC5870499 DOI: 10.1186/s12864-018-4597-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/12/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND With approximately one-third of their genomes consisting of linear and circular plasmids, the Lyme disease agent cluster of species has the most complex genomes among known bacteria. We report here a comparative analysis of plasmids in eleven Borreliella (also known as Borrelia burgdorferi sensu lato) species. RESULTS We sequenced the complete genomes of two B. afzelii, two B. garinii, and individual B. spielmanii, B. bissettiae, B. valaisiana and B. finlandensis isolates. These individual isolates carry between seven and sixteen plasmids, and together harbor 99 plasmids. We report here a comparative analysis of these plasmids, along with 70 additional Borreliella plasmids available in the public sequence databases. We identify only one new putative plasmid compatibility type (the 30th) among these 169 plasmid sequences, suggesting that all or nearly all such types have now been discovered. We find that the linear plasmids in the non-B. burgdorferi species have undergone the same kinds of apparently random, chaotic rearrangements mediated by non-homologous recombination that we previously discovered in B. burgdorferi. These rearrangements occurred independently in the different species lineages, and they, along with an expanded chromosomal phylogeny reported here, allow the identification of several whole plasmid transfer events among these species. Phylogenetic analyses of the plasmid partition genes show that a majority of the plasmid compatibility types arose early, most likely before separation of the Lyme agent Borreliella and relapsing fever Borrelia clades, and this, with occasional cross species plasmid transfers, has resulted in few if any species-specific or geographic region-specific Borreliella plasmid types. CONCLUSIONS The primordial origin and persistent maintenance of the Borreliella plasmid types support their functional indispensability as well as evolutionary roles in facilitating genome diversity. The improved resolution of Borreliella plasmid phylogeny based on conserved partition-gene clusters will lead to better determination of gene orthology which is essential for prediction of biological function, and it will provide a basis for inferring detailed evolutionary mechanisms of Borreliella genomic variability including homologous gene and plasmid exchanges as well as non-homologous rearrangements.
Collapse
Affiliation(s)
- Sherwood R. Casjens
- Division of Microbiology and Immunology, Pathology Department and Biology Department, University of Utah School of Medicine, Salt Lake City, UT USA
- Biology Department, University of Utah, Salt Lake City, UT USA
- Pathology Department, University of Utah School of Medicine, Room 2200K Emma Eccles Jones Medical Research Building, 15 North Medical Drive East, Salt Lake City, UT 84112 USA
| | - Lia Di
- Department of Biological Sciences and Center for Translational and Basic Research, Hunter College of the City University of New York, New York, NY USA
| | - Saymon Akther
- Department of Biology, The Graduate Center, City University of New York, New York, NY USA
| | - Emmanuel F. Mongodin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
| | - Benjamin J. Luft
- Department of Medicine, Health Science Center, Stony Brook University, Stony Brook, NY USA
| | - Steven E. Schutzer
- Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ USA
| | - Claire M. Fraser
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
| | - Wei-Gang Qiu
- Department of Biology, The Graduate Center, City University of New York, New York, NY USA
- Department of Biological Sciences and Center for Translational and Basic Research, Hunter College of the City University of New York, New York, NY USA
- Department of Physiology and Biophysics & Institute for Computational Biomedicine, Weil Cornell Medical College, New York, USA
| |
Collapse
|
11
|
Divers TJ, Gardner RB, Madigan JE, Witonsky SG, Bertone JJ, Swinebroad EL, Schutzer SE, Johnson AL. Borrelia burgdorferi Infection and Lyme Disease in North American Horses: A Consensus Statement. J Vet Intern Med 2018; 32:617-632. [PMID: 29469222 PMCID: PMC5866975 DOI: 10.1111/jvim.15042] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/14/2017] [Accepted: 12/14/2017] [Indexed: 11/27/2022] Open
Abstract
Borrelia burgdorferi infection is common in horses living in Lyme endemic areas and the geographic range for exposure is increasing. Morbidity after B. burgdorferi infection in horses is unknown. Documented, naturally occurring syndromes attributed to B. burgdorferi infection in horses include neuroborreliosis, uveitis, and cutaneous pseudolymphoma. Although other clinical signs such as lameness and stiffness are reported in horses, these are often not well documented. Diagnosis of Lyme disease is based on exposure to B. burgdorferi, cytology or histopathology of infected fluid or tissue and antigen detection. Treatment of Lyme disease in horses is similar to treatment of humans or small animals but treatment success might not be the same because of species differences in antimicrobial bioavailability and duration of infection before initiation of treatment. There are no approved equine label Lyme vaccines but there is strong evidence that proper vaccination could prevent infection in horses.
Collapse
Affiliation(s)
- T J Divers
- Department of Clinical Sciences, Cornell University, Ithaca, NY
| | | | - J E Madigan
- Department of Medicine and Epidemiology, University of California - Davis, CA
| | - S G Witonsky
- Department of Large Animal Clinical Sciences, Virginia-Maryland Region CVM, Blacksburg, VA
| | - J J Bertone
- CVMm Western University of Health Sciences, Pomona, CA
| | | | - S E Schutzer
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - A L Johnson
- Department of Clinical Studies, University of Pennsylvania, School of Veterinary Medicine, Kennett Square, PA
| |
Collapse
|
12
|
de la Fuente J, Contreras M, Estrada-Peña A, Cabezas-Cruz A. Targeting a global health problem: Vaccine design and challenges for the control of tick-borne diseases. Vaccine 2017; 35:5089-5094. [DOI: 10.1016/j.vaccine.2017.07.097] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/22/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022]
|
13
|
Singh P, Verma D, Backstedt BT, Kaur S, Kumar M, Smith AA, Sharma K, Yang X, Azevedo JF, Gomes-Solecki M, Buyuktanir O, Pal U. Borrelia burgdorferi BBI39 Paralogs, Targets of Protective Immunity, Reduce Pathogen Persistence Either in Hosts or in the Vector. J Infect Dis 2017; 215:1000-1009. [PMID: 28453837 DOI: 10.1093/infdis/jix036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/16/2017] [Indexed: 01/01/2023] Open
Abstract
Borrelia burgdorferi genome harbors several paralogous gene families (pgf) that can encode immunogenic proteins of unknown function. Protein-protein interaction assays using a transmission-blocking vaccine candidate, BBA52, as bait identified an interacting partner in spirochetes-a member of pgf 54, annotated as BBI39. We show that BBI39 is a surface-exposed membrane antigen that is immunogenic during spirochete infection, despite the gene being primarily transcribed in the vector with a transient expression in the host only at tick-bite sites. Immunization of rodents with BBI39, or a diverse paralog, BBI36, or their combination impaired pathogen acquisition by the vector, transmission from ticks to hosts, or induction of disease. High-titer BBI39 immunoglobulin G antibodies, which have borreliacidal properties, could be generated through routine subcutaneous or oral immunization, further highlighting use of BBI39 proteins as novel Lyme disease vaccines that can target pathogens in the host or in ticks.
Collapse
Affiliation(s)
- Preeti Singh
- Department of Veterinary Medicine, University of Maryland and Virginia-Maryland, Regional College of Veterinary Medicine, College Park, Maryland, USA
| | - Deepshikha Verma
- Department of Veterinary Medicine, University of Maryland and Virginia-Maryland, Regional College of Veterinary Medicine, College Park, Maryland, USA
| | - Brian T Backstedt
- Department of Veterinary Medicine, University of Maryland and Virginia-Maryland, Regional College of Veterinary Medicine, College Park, Maryland, USA
| | - Simarjot Kaur
- Department of Veterinary Medicine, University of Maryland and Virginia-Maryland, Regional College of Veterinary Medicine, College Park, Maryland, USA
| | - Manish Kumar
- Department of Veterinary Medicine, University of Maryland and Virginia-Maryland, Regional College of Veterinary Medicine, College Park, Maryland, USA
| | - Alexis A Smith
- Department of Veterinary Medicine, University of Maryland and Virginia-Maryland, Regional College of Veterinary Medicine, College Park, Maryland, USA
| | - Kavita Sharma
- Department of Veterinary Medicine, University of Maryland and Virginia-Maryland, Regional College of Veterinary Medicine, College Park, Maryland, USA
| | - Xiuli Yang
- Department of Veterinary Medicine, University of Maryland and Virginia-Maryland, Regional College of Veterinary Medicine, College Park, Maryland, USA
| | | | - Maria Gomes-Solecki
- Immuno Technologies Inc., Memphis, Tennessee, USA.,Department of Microbiology, Immunology and Biochemistry, College of Medicine, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Ozlem Buyuktanir
- Department of Microbiology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland and Virginia-Maryland, Regional College of Veterinary Medicine, College Park, Maryland, USA
| |
Collapse
|
14
|
Eisen L, Gray JS. 29. Lyme borreliosis prevention strategies: United States versus Europe. ECOLOGY AND CONTROL OF VECTOR-BORNE DISEASES 2016. [DOI: 10.3920/978-90-8686-838-4_29] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Lars Eisen
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, USA
| | - Jeremy S. Gray
- UCD School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| |
Collapse
|
15
|
Šmit R, Postma MJ. Vaccines for tick-borne diseases and cost-effectiveness of vaccination: a public health challenge to reduce the diseases’ burden. Expert Rev Vaccines 2015; 15:5-7. [DOI: 10.1586/14760584.2016.1111142] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|