1
|
van Schaik EJ, Fratzke AP, Gregory AE, Dumaine JE, Samuel JE. Vaccine development: obligate intracellular bacteria new tools, old pathogens: the current state of vaccines against obligate intracellular bacteria. Front Cell Infect Microbiol 2024; 14:1282183. [PMID: 38567021 PMCID: PMC10985213 DOI: 10.3389/fcimb.2024.1282183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
Obligate intracellular bacteria have remained those for which effective vaccines are unavailable, mostly because protection does not solely rely on an antibody response. Effective antibody-based vaccines, however, have been developed against extracellular bacteria pathogens or toxins. Additionally, obligate intracellular bacteria have evolved many mechanisms to subvert the immune response, making vaccine development complex. Much of what we know about protective immunity for these pathogens has been determined using infection-resolved cases and animal models that mimic disease. These studies have laid the groundwork for antigen discovery, which, combined with recent advances in vaccinology, should allow for the development of safe and efficacious vaccines. Successful vaccines against obligate intracellular bacteria should elicit potent T cell memory responses, in addition to humoral responses. Furthermore, they ought to be designed to specifically induce strong cytotoxic CD8+ T cell responses for protective immunity. This review will describe what we know about the potentially protective immune responses to this group of bacteria. Additionally, we will argue that the novel delivery platforms used during the Sars-CoV-2 pandemic should be excellent candidates to produce protective immunity once antigens are discovered. We will then look more specifically into the vaccine development for Rickettsiaceae, Coxiella burnetti, and Anaplasmataceae from infancy until today. We have not included Chlamydia trachomatis in this review because of the many vaccine related reviews that have been written in recent years.
Collapse
Affiliation(s)
- E J van Schaik
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Medical Research and Education Building, Bryan, TX, United States
| | - A P Fratzke
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Medical Research and Education Building, Bryan, TX, United States
- Charles River Laboratories, Reno, NV, United States
| | - A E Gregory
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Medical Research and Education Building, Bryan, TX, United States
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Jennifer E Dumaine
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Medical Research and Education Building, Bryan, TX, United States
| | - J E Samuel
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Medical Research and Education Building, Bryan, TX, United States
- Department of Veterinary Pathobiology, School of Veterinary Medicine, Texas A&M University (TAMU), College Station, TX, United States
| |
Collapse
|
2
|
Arroyave E, Hyseni I, Burkhardt N, Kuo YF, Wang T, Munderloh U, Fang R. Rickettsia parkeri with a Genetically Disrupted Phage Integrase Gene Exhibits Attenuated Virulence and Induces Protective Immunity against Fatal Rickettsioses in Mice. Pathogens 2021; 10:pathogens10070819. [PMID: 34208806 PMCID: PMC8308654 DOI: 10.3390/pathogens10070819] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 01/03/2023] Open
Abstract
Although rickettsiae can cause life-threatening infections in humans worldwide, no licensed vaccine is currently available. To evaluate the suitability of live-attenuated vaccine candidates against rickettsioses, we generated a Rickettsia parkeri mutant RPATATE_0245::pLoxHimar (named 3A2) by insertion of a modified pLoxHimar transposon into the gene encoding a phage integrase protein. For visualization and selection, R. parkeri 3A2 expressed mCherry fluorescence and resistance to spectinomycin. Compared to the parent wild type (WT) R. parkeri, the virulence of R. parkeri 3A2 was significantly attenuated as demonstrated by significantly smaller size of plaque, failure to grow in human macrophage-like cells, rapid elimination of Rickettsia and ameliorated histopathological changes in tissues in intravenously infected mice. A single dose intradermal (i.d.) immunization of R. parkeri 3A2 conferred complete protection against both fatal R. parkeri and R. conorii rickettsioses in mice, in association with a robust and durable rickettsiae-specific IgG antibody response. In summary, the disruption of RPATATE_0245 in R. parkeri resulted in a mutant with a significantly attenuated phenotype, potent immunogenicity and protective efficacy against two spotted fever group rickettsioses. Overall, this proof-of-concept study highlights the potential of R. parkeri mutants as a live-attenuated and multivalent vaccine platform in response to emergence of life-threatening spotted fever rickettsioses.
Collapse
Affiliation(s)
- Esteban Arroyave
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (E.A.); (I.H.); (T.W.)
| | - Ilirjana Hyseni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (E.A.); (I.H.); (T.W.)
| | - Nicole Burkhardt
- Department of Entomology, University of Minnesota, St. Paul, MN 55108, USA;
| | - Yong-Fang Kuo
- Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Tian Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (E.A.); (I.H.); (T.W.)
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ulrike Munderloh
- Department of Entomology, University of Minnesota, St. Paul, MN 55108, USA;
- Correspondence: (U.M.); (R.F.); Tel.: +612-626-1564 (U.M.); +409-747-0789 (R.F.)
| | - Rong Fang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (E.A.); (I.H.); (T.W.)
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
- Correspondence: (U.M.); (R.F.); Tel.: +612-626-1564 (U.M.); +409-747-0789 (R.F.)
| |
Collapse
|
3
|
Munderloh UG. The beginning of an era of functional genomics in Rickettsiology is steeped in history. Proc Natl Acad Sci U S A 2019; 116:20252-20253. [PMID: 31530726 PMCID: PMC6789924 DOI: 10.1073/pnas.1913411116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
|
4
|
Rego ROM, Trentelman JJA, Anguita J, Nijhof AM, Sprong H, Klempa B, Hajdusek O, Tomás-Cortázar J, Azagi T, Strnad M, Knorr S, Sima R, Jalovecka M, Fumačová Havlíková S, Ličková M, Sláviková M, Kopacek P, Grubhoffer L, Hovius JW. Counterattacking the tick bite: towards a rational design of anti-tick vaccines targeting pathogen transmission. Parasit Vectors 2019; 12:229. [PMID: 31088506 PMCID: PMC6518728 DOI: 10.1186/s13071-019-3468-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
Hematophagous arthropods are responsible for the transmission of a variety of pathogens that cause disease in humans and animals. Ticks of the Ixodes ricinus complex are vectors for some of the most frequently occurring human tick-borne diseases, particularly Lyme borreliosis and tick-borne encephalitis virus (TBEV). The search for vaccines against these diseases is ongoing. Efforts during the last few decades have primarily focused on understanding the biology of the transmitted viruses, bacteria and protozoans, with the goal of identifying targets for intervention. Successful vaccines have been developed against TBEV and Lyme borreliosis, although the latter is no longer available for humans. More recently, the focus of intervention has shifted back to where it was initially being studied which is the vector. State of the art technologies are being used for the identification of potential vaccine candidates for anti-tick vaccines that could be used either in humans or animals. The study of the interrelationship between ticks and the pathogens they transmit, including mechanisms of acquisition, persistence and transmission have come to the fore, as this knowledge may lead to the identification of critical elements of the pathogens' life-cycle that could be targeted by vaccines. Here, we review the status of our current knowledge on the triangular relationships between ticks, the pathogens they carry and the mammalian hosts, as well as methods that are being used to identify anti-tick vaccine candidates that can prevent the transmission of tick-borne pathogens.
Collapse
Affiliation(s)
- Ryan O. M. Rego
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Jos J. A. Trentelman
- Amsterdam UMC, Location AMC, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands
| | - Juan Anguita
- CIC bioGUNE, 48160 Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48012 Bilbao, Spain
| | - Ard M. Nijhof
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Hein Sprong
- Centre for Zoonoses and Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Boris Klempa
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ondrej Hajdusek
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | | | - Tal Azagi
- Centre for Zoonoses and Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Martin Strnad
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Sarah Knorr
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Radek Sima
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Marie Jalovecka
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Sabína Fumačová Havlíková
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martina Ličková
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Monika Sláviková
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Petr Kopacek
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Libor Grubhoffer
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Joppe W. Hovius
- Amsterdam UMC, Location AMC, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Jánová E. Emerging and threatening vector-borne zoonoses in the world and in Europe: a brief update. Pathog Glob Health 2019; 113:49-57. [PMID: 30916639 PMCID: PMC6493274 DOI: 10.1080/20477724.2019.1598127] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Climatic changes, landscape management, massive human, animal and commodity transportation represent important factors which are contributing to the spread of zoonotic diseases. The environmental and socioeconomic factors affecting the incidence of vector-borne zoonoses and possibilities for the reduction of disease impacts are discussed in the article. The most important zoonoses with expanding area of incidence and/or increasing occurrence are summarized, with special emphasis on the European region. While some diseases and their respective pathogens are indigenous to Europe (e.g. Lyme disease), others have been introduced to Europe from tropical areas (e.g. chikungunya or dengue fever). These emerging diseases may represent a serious threat in near future and better understanding of their spreading mechanisms, pathogenesis and consequent treatment is very important.
Collapse
Affiliation(s)
- Eva Jánová
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
- Ceitec VFU, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| |
Collapse
|
6
|
Torpiano P, Pace D. Clinically-diagnosed Mediterranean Spotted Fever in Malta. Travel Med Infect Dis 2018; 26:16-24. [PMID: 29462726 DOI: 10.1016/j.tmaid.2018.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/13/2018] [Accepted: 02/16/2018] [Indexed: 10/18/2022]
Abstract
BACKGROUND Mediterranean Spotted Fever (MSF) is a tick-borne zoonosis caused by Rickettsia conorii which is endemic in Malta, an island in the South Mediterranean that is a popular tourist destination. Diagnosis is frequently based on clinical manifestations as laboratory results are often limited to a retrospective diagnosis. We describe the clinical presentation, diagnosis and treatment of children <16 years who presented with MSF from 2011 to 2016. METHOD The demographics, clinical findings, laboratory results, management and outcome of all children hospitalised with suspected MSF based on the presence of fever and an eschar, were retrieved from their case notes. RESULTS Over the five-year study period six children, aged between 17 months and 15 years, were diagnosed with MSF. All children had contact with ticks and the majority presented in summer. Laboratory results were non-specific and included elevated inflammatory markers, lymphocytosis/lymphopenia and hyponatraemia. Serological and molecular techniques were used for diagnosis. Response to clarithromycin or doxycycline was immediate. CONCLUSION MSF should be included in the differential diagnosis of fever, rash and an eschar in children who travel to Malta. Despite advances in molecular diagnostics, clinical diagnosis remains important in the management of children with suspected MSF.
Collapse
Affiliation(s)
- Paul Torpiano
- Department of Paediatrics, Mater Dei Hospital, Tal-Qroqq, Msida, MSD 2090, Malta.
| | - David Pace
- Department of Paediatrics, Mater Dei Hospital, Tal-Qroqq, Msida, MSD 2090, Malta
| |
Collapse
|
7
|
Watson AK, Ellington S, Nelson C, Treadwell T, Jamieson DJ, Meaney-Delman DM. Preparing for biological threats: Addressing the needs of pregnant women. Birth Defects Res 2017; 109:391-398. [PMID: 28398677 PMCID: PMC11323306 DOI: 10.1002/bdr2.1016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 12/18/2022]
Abstract
Intentional release of infectious agents and biological weapons to cause illness and death has the potential to greatly impact pregnant women and their fetuses. We review what is known about the maternal and fetal effects of seven biological threats: Bacillus anthracis (anthrax); variola virus (smallpox); Clostridium botulinum toxin (botulism); Burkholderia mallei (glanders) and Burkholderia pseudomallei (melioidosis); Yersinia pestis (plague); Francisella tularensis (tularemia); and Rickettsia prowazekii (typhus). Evaluating the potential maternal, fetal, and infant consequences of an intentional release of an infectious agent requires an assessment of several key issues: (1) are pregnant women more susceptible to infection or illness compared to the general population?; (2) are pregnant women at increased risk for severe illness, morbidity, and mortality compared to the general population?; (3) does infection or illness during pregnancy place women, the fetus, or the infant at increased risk for adverse outcomes and how does this affect clinical management?; and (4) are the medical countermeasures recommended for the general population safe and effective during pregnancy? These issues help frame national guidance for the care of pregnant women during an intentional release of a biological threat. Birth Defects Research 109:391-398, 2017.© 2017 Wiley Periodicals, Inc.
Collapse
|
8
|
Cho BA, Ko Y, Kim YS, Kim S, Choi MS, Kim IS, Kim HR, Cho NH. Phenotypic characterization of peripheral T cells and their dynamics in scrub typhus patients. PLoS Negl Trop Dis 2012; 6:e1789. [PMID: 22905277 PMCID: PMC3419201 DOI: 10.1371/journal.pntd.0001789] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 07/10/2012] [Indexed: 11/26/2022] Open
Abstract
Background Scrub typhus, caused by Orientia tsutsugamushi infection, is one of the main causes of febrile illness in the Asia-Pacific region. Although cell-mediated immunity plays an important role in protection, little is known about the phenotypic changes and dynamics of leukocytes in scrub typhus patients. Methodology/Principal Findings To reveal the underlying mechanisms of immunological pathogenesis, we extensively analyzed peripheral blood leukocytes, especially T cells, during acute and convalescent phases of infection in human patients and compared with healthy volunteers. We observed neutrophilia and CD4+ T lymphopenia in the acute phase of infection, followed by proliferation of CD8+ T cells during the convalescent phase. Massive T cell apoptosis was detected in the acute phase and preferential increase of CD8+ T cells with activated phenotypes was observed in both acute and convalescent phases, which might be associated or correlated with elevated serum IL-7 and IL-15. Interestingly, peripheral Treg cells were significantly down-regulated throughout the disease course. Conclusions/Significance The remarkable decrease of CD4+ T cells, including Treg cells, during the acute phase of infection may contribute to the loss of immunological memory that are often observed in vaccine studies and recurrent human infection. Scrub typhus is an acute febrile illness caused by Orientia tsutsugamushi infection. It has been estimated that one billion people are at risk and one million new cases arise each year in Asian-pacific region. Despite of aggressive attempts to develop a prophylactic vaccine against scrub typhus during the last several decades, all approaches have failed to generate long lasting immunity. In addition, little is known about the immunological pathogenesis of scrub typhus. To understand the pathogenic mechanisms of this infectious disease, we extensively analyzed peripheral leukocytes, especially T cells, in Korean scrub typhus patients and compared with healthy volunteers. We observed neutrophilia and CD4+/T lymphopenia in the acute phase of infection, followed by proliferation of CD8+ T cells during the convalescent phase. Massive T cell apoptosis was detected in the acute phase and a preferential increase of CD8+ T cells with activated phenotypes was observed in both acute and convalescent phases. The remarkable decrease of CD4+ T cells, including Treg cells, during the acute phase of infection may contribute to the loss of immunological memory and generate helpless but unregulated cytotoxic T cell responses observed in vaccine studies and recurrent human infection.
Collapse
Affiliation(s)
- Bon-A Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Anatomy, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Endemic Disease, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Youngho Ko
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yeon-Sook Kim
- Divisions of Infectious Diseases, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Sanguk Kim
- Department of Life Science and School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
| | - Myung-Sik Choi
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ik-Sang Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hang-Rae Kim
- Department of Anatomy, Seoul National University College of Medicine, Seoul, Republic of Korea
- * E-mail: (NHC); (HRK)
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Endemic Disease, Seoul National University Medical Research Center, Seoul, Republic of Korea
- Bundang Hospital, Seoul, Republic of Korea
- * E-mail: (NHC); (HRK)
| |
Collapse
|
9
|
Detection of antibodies against Orientia tsutsugamushi Sca proteins in scrub typhus patients and genetic variation of sca genes of different strains. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1442-51. [PMID: 22787193 DOI: 10.1128/cvi.00285-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Scrub typhus, caused by Orientia tsutsugamushi infection, is one of the main causes of acute febrile illness in the Asian-Pacific region. Although early diagnosis and immediate antibiotic treatment are critical for reducing disease severity and mortality, current diagnostic methods using serological and molecular approaches have some limitations in sensitivity and applicability in clinical laboratories. In this study, we identified and characterized O. tsutsugamushi surface cell antigen (sca) family genes encoding autotransporter proteins in order to test them as novel diagnostic targets. We evaluated antibody responses against the Sca proteins in scrub typhus patient sera and examined the genetic diversity of these genes in different strains after PCR amplification. Specific antibody responses against ScaA and ScaC were observed in patients with high indirect immunofluorescence assay titers (≥1:640), whereas specific responses against ScaB and ScaE were relatively low. Genetic analysis using genomic DNAs revealed the sca genes to be quite variable among the different strains. In contrast to scaA, scaC, and scaD, which were detected in all of the tested strains, scaB and scaE were amplified differentially from the different strains, suggesting a differential presence of the genes in the genomes. Among the members of the gene family, the sequence of scaC is the most highly conserved between the different strains, and the size of scaD is the most variable due to the presence of different numbers of internal repeat sequences. These results suggest that the sca genes of O. tsutsugamushi may be valuable targets for use in combination with classical assay methods for scrub typhus diagnosis.
Collapse
|
10
|
Lu S, Wang S. Technical transformation of biodefense vaccines. Vaccine 2009; 27 Suppl 4:D8-D15. [PMID: 19837293 DOI: 10.1016/j.vaccine.2009.08.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 08/14/2009] [Accepted: 08/17/2009] [Indexed: 01/08/2023]
Abstract
Biodefense vaccines are developed against a diverse group of pathogens. Vaccines were developed for some of these pathogens a long time ago but they are facing new challenges to move beyond the old manufacturing technologies. New vaccines to be developed against other pathogens have to determine whether to follow traditional vaccination strategies or to seek new approaches. Advances in basic immunology and recombinant DNA technology have fundamentally transformed the process of formulating a vaccine concept, optimizing protective antigens, and selecting the most effective vaccine delivery approach for candidate biodefense vaccines.
Collapse
Affiliation(s)
- Shan Lu
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | |
Collapse
|
11
|
Kaufmann SHE, Meinke AL, von Gabain A. [Novel vaccination concepts on the basis of modern insights into immunology]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2009; 52:1069-82. [PMID: 19838650 DOI: 10.1007/s00103-009-0951-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Since their introduction more than 200 years ago, vaccines have prevented millions of deaths caused by infectious diseases. This progress was possible because these vaccines protect through antibodies, which are relatively easily stimulated. In the meantime, we understand that diseases such as AIDS, tuberculosis, malaria and hepatitis C cannot be tackled by these conventional approaches. Recent insights into immunology provide the basis for the development of custom-tailored vaccines to successfully combat these threatening infections. These new generation vaccines comprise components that modulate the mediators of immunity (B cells, T cells, antigen-presenting cells and cytokines) in such a way that the best possible immune response develops. Alternative application methods offer the possibility to further improve the immune response. Thus, hope remains that the remarkable increase in knowledge in the areas of immunology and infectious disease research will help to successfully control infectious diseases.
Collapse
Affiliation(s)
- S H E Kaufmann
- Max-Planck-Institut für Infektionsbiologie, Charitéplatz 1, 10117, Berlin.
| | | | | |
Collapse
|
12
|
Abstract
Rocky Mountain spotted fever (RMSF) is a life-threatening disease caused by Rickettsia rickettsii, an obligately intracellular bacterium that is spread to human beings by ticks. More than a century after its first clinical description, this disease is still among the most virulent human infections identified, being potentially fatal even in previously healthy young people. The diagnosis of RMSF is based on the patient's history and a physical examination, and often presents a dilemma for clinicians because of the non-specific presentation of the disease in its early course. Early empirical treatment is essential to prevent severe complications or a fatal outcome, and treatment should be initiated even in unconfirmed cases. Because there is no vaccine available against RMSF, avoidance of tick-infested areas is still the best way to prevent the infection.
Collapse
|
13
|
Abstract
Because of their unique biological characteristics, such as environmental stability, small size, aerosol transmission, persistence in infected hosts, low infectious dose, and high associated morbidity and mortality, Rickettsia prowazekii and Coxiella burnetii have been weaponized. These biological attributes would make the pathogenic rickettsiae desirable bioterrorism agents. However, production of highly purified, virulent, weapon-quality rickettsiae is a daunting task that requires expertise and elaborate, state-of-the art laboratory procedures to retain rickettsial survival and virulence. Another drawback to developing rickettsial pathogens as biological weapons is their lack of direct transmission from host to host and the availability of very effective therapeutic countermeasures against these obligate intracellular bacteria.
Collapse
Affiliation(s)
- Abdu F Azad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
14
|
Rahman MS, Ceraul SM, Dreher-Lesnick SM, Beier MS, Azad AF. The lspA gene, encoding the type II signal peptidase of Rickettsia typhi: transcriptional and functional analysis. J Bacteriol 2006; 189:336-41. [PMID: 17098907 PMCID: PMC1797390 DOI: 10.1128/jb.01397-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipoprotein processing by the type II signal peptidase (SPase II) is known to be critical for intracellular growth and virulence for many bacteria, but its role in rickettsiae is unknown. Here, we describe the analysis of lspA, encoding a putative SPase II, an essential component of lipoprotein processing in gram-negative bacteria, from Rickettsia typhi. Alignment of deduced amino acid sequences shows the presence of highly conserved residues and domains that are essential for SPase II activity in lipoprotein processing. The transcription of lspA, lgt (encoding prolipoprotein transferase), and lepB (encoding type I signal peptidase), monitored by real-time quantitative reverse transcription-PCR, reveals a differential expression pattern during various stages of rickettsial intracellular growth. The higher transcriptional level of all three genes at the preinfection time point indicates that only live and metabolically active rickettsiae are capable of infection and inducing host cell phagocytosis. lspA and lgt, which are involved in lipoprotein processing, show similar levels of expression. However, lepB, which is involved in nonlipoprotein secretion, shows a higher level of expression, suggesting that LepB is the major signal peptidase for protein secretion and supporting our in silico prediction that out of 89 secretory proteins, only 14 are lipoproteins. Overexpression of R. typhi lspA in Escherichia coli confers increased globomycin resistance, indicating its function as SPase II. In genetic complementation, recombinant lspA from R. typhi significantly restores the growth of temperature-sensitive E. coli Y815 at the nonpermissive temperature, supporting its biological activity as SPase II in prolipoprotein processing.
Collapse
Affiliation(s)
- M Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | | |
Collapse
|
15
|
Zhu Y, Fournier PE, Ogata H, Raoult D. Multispacer typing of Rickettsia prowazekii enabling epidemiological studies of epidemic typhus. J Clin Microbiol 2005; 43:4708-12. [PMID: 16145131 PMCID: PMC1234059 DOI: 10.1128/jcm.43.9.4708-4712.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Currently, there is no tool for typing Rickettsia prowazekii, the causative agent of epidemic typhus, currently considered a potential bioterrorism agent, at the strain level. To test if the multispacer typing (MST) method could differentiate strains of R. prowazekii, we amplified and sequenced the 25 most variable intergenic spacers between the R. prowazekii and R. conorii genomes in five strains and 10 body louse amplicons of R. prowazekii from various geographic origins. Two intergenic spacers, i.e., rpmE/tRNA(fMet) and serS/virB4, were variable among tested R. prowazekii isolates and allowed identification of three and two genotypes, respectively. When the genotypes obtained from the two spacers were combined, we identified four different genotypes. MST demonstrated that several R. prowazekii strains circulated in human body lice during an outbreak of epidemic typhus in Burundi. This may help to discriminate between natural and intentional outbreaks. Our study supports the usefulness of MST as a versatile method for rickettsial strain genotyping.
Collapse
Affiliation(s)
- Yong Zhu
- Unité des Rickettsies, CNRS UMR 6020, IFR 48, Faculté de Médecine, Université de la Méditerranée, Marseille, France
| | | | | | | |
Collapse
|