1
|
Immunologic and Protective Properties of Subunit- vs. Whole Toxoid-Derived Anti-Botulinum Equine Antitoxin. Vaccines (Basel) 2022; 10:vaccines10091522. [PMID: 36146601 PMCID: PMC9506527 DOI: 10.3390/vaccines10091522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022] Open
Abstract
Botulism is a paralytic disease caused by botulinum neurotoxins (BoNTs). Equine antitoxin is currently the standard therapy for botulism in human. The preparation of equine antitoxin relies on the immunization of horses with botulinum toxoid, which suffers from low yield and safety limitations. The Hc fragment of BoNTs was suggested to be a potent antibotulinum subunit vaccine. The current study presents a comparative evaluation of equine-based toxoid-derived antitoxin (TDA) and subunit-derived antitoxin (SDA). The potency of recombinant Hc/A, Hc/B, and Hc/E in mice was similar to that of toxoids of the corresponding serotypes. A single boost with Hc/E administered to a toxoid E-hyperimmune horse increased the neutralizing antibody concentration (NAC) from 250 to 850 IU/mL. Immunization of naïve horses with the recombinant subunits induced a NAC comparable to that of horses immunized with the toxoid. SDA and TDA bound common epitopes on BoNTs, as demonstrated by an in vitro competition binding assay. In vivo, SDA and TDA showed similar efficacy when administered to guinea pigs postexposure to a lethal dose of botulinum toxins. Collectively, the results of the current study suggest that recombinant BoNT subunits may replace botulinum toxoids as efficient and safe antigens for the preparation of pharmaceutical anti-botulinum equine antitoxins.
Collapse
|
2
|
IŞIK M, BİLİCİ Z, ÇİNE N, ÖZTÜRK S. Usage of Peptide Antigens for Antibody-Based BoNT Detection System. KOCAELI ÜNIVERSITESI SAĞLIK BILIMLERI DERGISI 2021. [DOI: 10.30934/kusbed.935903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
3
|
Sadeghpour SD, Karimi F, Alizadeh H. Predictive and fluorescent nanosensing experimental methods for evaluating anthrax protective antigen and lethal factor interactions for therapeutic applications. Int J Biol Macromol 2020; 160:1158-1167. [DOI: 10.1016/j.ijbiomac.2020.05.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 10/24/2022]
|
4
|
Skoura N, Wang-Jairaj J, Della Pasqua O, Chandrasekaran V, Billiard J, Yeakey A, Smith W, Steel H, Tan LK. Effect of raxibacumab on immunogenicity of Anthrax Vaccine Adsorbed: a phase 4, open-label, parallel-group, randomised non-inferiority study. THE LANCET. INFECTIOUS DISEASES 2020; 20:983-991. [PMID: 32333847 DOI: 10.1016/s1473-3099(20)30069-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/24/2020] [Accepted: 02/06/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Raxibacumab is a monoclonal antibody against protective antigen, which is the cell-binding part of Bacillus anthracis toxin, and is approved for treatment and postexposure prophylaxis of inhalational anthrax. Anthrax Vaccine Adsorbed (AVA), for anthrax prophylaxis, consists primarily of adsorbed protective antigen. We did a postapproval study to assess the effect of raxibacumab on immunogenicity of AVA. METHODS We did an open-label, parallel-group, randomised non-inferiority study at three centres in the USA. We enrolled healthy volunteers (aged 18-65 years) with no evidence of exposure to protective antigen. Participants were randomly allocated (1:1) according to a pregenerated balanced independent randomisation schedule to either subcutaneous 0·5 mL AVA on days 1, 15, and 29 or raxibacumab intravenous infusion (40 mg/kg) immediately before AVA on day 1, followed by AVA only on days 15 and 29. It was an open-label study to investigators and participants; however, the sponsor remained blinded during the study. The primary outcome was the ratio of geometric mean concentrations (GMCs) of anti-protective antigen antibodies (attributable to the immune response to AVA) between AVA and AVA plus raxibacumab 4 weeks after the first AVA dose in the per-protocol population. The per-protocol population comprised all individuals who received the allocated treatment within the protocol-specified visit window and completed the primary study outcome assessment, without a protocol deviation requiring exclusion. The non-inferiority margin for the ratio of GMCs was predefined (upper limit of 90% CI <1·5). This trial is registered with ClinicalTrials.gov, NCT02339155. FINDINGS Between Feb 24, 2015, and June 6, 2017, 873 participants were screened for eligibility, of whom 300 were excluded. 573 were randomly allocated either AVA (n=287) or AVA plus raxibacumab (n=286). The per-protocol population comprised 276 individuals assigned AVA and 269 allocated AVA plus raxibacumab. At week 4, the GMC of anti-protective antigen antibodies in participants allocated AVA was 26·5 μg/mL (95% CI 23·6-29·8) compared with 22·5 μg/mL (20·1-25·1) among individuals allocated AVA plus raxibacumab. The ratio between groups was 1·18 (90% CI 1·03-1·35; p=0·0019), which met the predefined non-inferiority margin. Adverse events in the safety population were similar across groups (87 [30%] of 286 in the AVA group vs 80 [29%] of 280 in the AVA plus raxibacumab group) and no treatment-related serious adverse events were reported. INTERPRETATION Co-administration of raxibacumab with AVA does not negatively affect AVA immunogenicity. This finding suggests that combining raxibacumab with AVA might provide added benefit in postexposure prophylaxis against inhalational anthrax. FUNDING US Biomedical Advanced Research and Development Authority, and GlaxoSmithKline.
Collapse
Affiliation(s)
| | | | | | | | | | | | - William Smith
- Alliance for Multispecialty Research at University of Tennessee Medical Center, Knoxville, TN, USA; New Orleans Center for Clinical Research, New Orleans, LA, USA
| | | | | |
Collapse
|
5
|
de Oliveira FFM, Mamillapalli S, Gonti S, Brey RN, Li H, Schiffer J, Casadevall A, Bann JG. Binding of the von Willebrand Factor A Domain of Capillary Morphogenesis Protein 2 to Anthrax Protective Antigen Vaccine Reduces Immunogenicity in Mice. mSphere 2020; 5:e00556-19. [PMID: 31941807 PMCID: PMC6968648 DOI: 10.1128/msphere.00556-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/09/2019] [Indexed: 11/24/2022] Open
Abstract
Protective antigen (PA) is a component of anthrax toxin that can elicit toxin-neutralizing antibody responses. PA is also the major antigen in the current vaccine to prevent anthrax, but stability problems with recombinant proteins have complicated the development of new vaccines containing recombinant PA. The relationship between antigen physical stability and immunogenicity is poorly understood, but there are theoretical reasons to think that this parameter can affect immune responses. We investigated the immunogenicity of anthrax PA, in the presence and absence of the soluble von Willebrand factor A domain of the human form of receptor capillary morphogenesis protein 2 (sCMG2), to elicit antibodies to PA in BALB/c mice. Prior studies showed that sCMG2 stabilizes the 83-kDa PA structure to pH, chemical denaturants, temperature, and proteolysis and slows the hydrogen-deuterium exchange rate of histidine residues far from the binding interface. In contrast to a vaccine containing PA without adjuvant, we found that mice immunized with PA in stable complex with sCMG2 showed markedly reduced antibody responses to PA, including toxin-neutralizing antibodies and antibodies to domain 4, which correlated with fewer toxin-neutralizing antibodies. In contrast, mice immunized with PA in concert with a nonbinding mutant of sCMG2 (D50A) showed anti-PA antibody responses similar to those observed with PA alone. Our results suggest that addition of sCMG2 to a PA vaccine formulation is likely to result in a significantly diminished immune response, but we discuss the multitude of factors that could contribute to reduced immunogenicity.IMPORTANCE The anthrax toxin PA is the major immunogen in the current anthrax vaccine (anthrax vaccine adsorbed). Improving the anthrax vaccine for avoidance of a cold chain necessitates improvements in the thermodynamic stability of PA. We address how stabilizing PA using sCMG2 affects PA immunogenicity in BALB/c mice. Although the stability of PA is increased by binding to sCMG2, PA immunogenicity is decreased. This study emphasizes that, while binding of a ligand retains or improves conformational stability without affecting the native sequence, epitope recognition or processing may be affected, abrogating an effective immune response.
Collapse
Affiliation(s)
- Fabiana Freire Mendes de Oliveira
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Srinivas Gonti
- Department of Chemistry, Wichita State University, Wichita, Kansas, USA
| | | | - Han Li
- Division of Bacterial Disease, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jarad Schiffer
- Division of Bacterial Disease, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - James G Bann
- Department of Chemistry, Wichita State University, Wichita, Kansas, USA
| |
Collapse
|
6
|
Characterization and immunological activity of different forms of recombinant secreted Hc of botulinum neurotoxin serotype B products expressed in yeast. Sci Rep 2015; 5:7678. [PMID: 25567004 PMCID: PMC4286741 DOI: 10.1038/srep07678] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 12/05/2014] [Indexed: 01/28/2023] Open
Abstract
The recombinant Hc proteins of botulinum neurotoxins and tetanus toxin are exclusively produced by intracellular heterologous expression in Pichia pastoris for use in subunit vaccines; the same Hc proteins produced by secreted heterologous expression are hyper-glycosylated and immunologically inert. Here, several different recombinant secreted Hc proteins of botulinum neurotoxin serotype B (BHc) were expressed in yeast and we characterized and assessed their immunological activity in detail. Recombinant low-glycosylated secreted BHc products (BSK) were also immunologically inert, similar to hyper-glycosylated BHc products (BSG), although deglycosylation restored their immunological activities. Unexpectedly, deglycosylated proBHc contained an unexpected pro-peptide of an α-factor signal and fortuitous N-linked glycosylation sites in the non-cleaved pro-peptide sequences, but not in the BHc sequences. Notably, a non-glycosylated secreted homogeneous BHc isoform (mBHc), which we successfully prepared after deleting the pro-peptide and removing its single potential glycosylation site, was immunologically active and could confer effective protective immunity, similarly to non-glycosylated rBHc. In summary, we conclude that a non-glycosylated secreted BHc isoform can be prepared in yeast by deleting the pro-peptide of the α-factor signal and mutating its single potential glycosylation site. This approach provides a rational and feasible strategy for the secretory expression of botulism or other toxin antigens.
Collapse
|
7
|
Yu Y, Shi D, Liu S, Gong ZW, Wang S, Sun Z. Production and evaluation of a recombinant subunit vaccine against botulinum neurotoxin serotype B using a 293E expression system. Hum Vaccin Immunother 2014; 11:468-73. [PMID: 25483668 DOI: 10.4161/hv.29714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Although Escherichia coli and yeast were commonly used to express recombinant Hc of botulinum neurotoxins, as an alternative, in current study, a 293E expression system was used to express the Hc of botulinum neurotoxin serotype B (BHc) as soluble recombinant protein for experimental vaccine evaluation. Our results demonstrated that the 293E expression system could produce high level of recombinant secreted BHc protein, which was immunorecognized specifically by anti-botulinum neurotoxin serotype B (BoNT/B) sera and showed ganglioside binding activities. The serological response and efficacy of recombinant BHc formulated with aluminum hydroxide adjuvant were evaluated in mice. Immunization with Alhydrogel-formulated BHc subunit vaccine afforded the effective protection against BoNT/B challenge. A frequency- and dose-dependent effect to immunization with BHc subunit vaccine was observed and the ELISA antibody titers correlated well with neutralizing antibody titers and protection. And a solid-phase assay showed that the neutralizing antibodies from the BHc-immunized mice inhibited the binding of BHc to the ganglioside GT1b. Our results also show that the plasmid pABE293SBHc derived of the 293E expression system as DNA vaccine is capable of inducing stronger humoral response and protective efficacy against BoNT/B than the pVAX1SBHc. In summary, immunization with the 293E-expressed BHc protein generates effective immune protection against BoNT/B as E. coli or yeast-expressed BHc, so the efficient expression of botulinum Hc protein for experimental vaccine can be prepared using the 293E expression system.
Collapse
Affiliation(s)
- YunZhou Yu
- a Beijing Institute of Biotechnology ; Beijing , PR China
| | | | | | | | | | | |
Collapse
|
8
|
Sakib MS, Islam MR, Hasan AKMM, Nabi AHMN. Prediction of epitope-based peptides for the utility of vaccine development from fusion and glycoprotein of nipah virus using in silico approach. Adv Bioinformatics 2014; 2014:402492. [PMID: 25147564 PMCID: PMC4131549 DOI: 10.1155/2014/402492] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/05/2014] [Accepted: 05/11/2014] [Indexed: 01/25/2023] Open
Abstract
This study aims to design epitope-based peptides for the utility of vaccine development by targeting glycoprotein G and envelope protein F of Nipah virus (NiV) that, respectively, facilitate attachment and fusion of NiV with host cells. Using various databases and tools, immune parameters of conserved sequence(s) from G and F proteins of different isolates of NiV were tested to predict probable epitope(s). Binding analyses of the peptides with MHC class-I and class-II molecules, epitope conservancy, population coverage, and linear B cell epitope prediction were analyzed. Predicted peptides interacted with seven or more MHC alleles and illustrated population coverage of more than 99% and 95%, for G and F proteins, respectively. The predicted class-I nonamers, SLIDTSSTI and EWISIVPNF, superimposed on the putative decameric B cell epitopes, were also identified as core sequences of the most probable class-II 15-mer peptides GPKVSLIDTSSTITI and EWISIVPNFILVRNT. These peptides were further validated for their binding to specific HLA alleles using in silico docking technique. Our in silico analysis suggested that the predicted epitopes, either GPKVSLIDTSSTITI or EWISIVPNFILVRNT, could be a better choice as universal vaccine component against NiV irrespective of different isolates which may elicit both humoral and cell-mediated immunity.
Collapse
Affiliation(s)
- M. Sadman Sakib
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md. Rezaul Islam
- International Max Planck Research School for Neurosciences, University of Göttingen, 37077 Göttingen, Germany
| | - A. K. M. Mahbub Hasan
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - A. H. M. Nurun Nabi
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
9
|
Tournier JN, Ulrich RG, Quesnel-Hellmann A, Mohamadzadeh M, Stiles BG. Anthrax, toxins and vaccines: a 125-year journey targetingBacillus anthracis. Expert Rev Anti Infect Ther 2014; 7:219-36. [DOI: 10.1586/14787210.7.2.219] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Vaughan K, Kim Y, Sette A. A comparison of epitope repertoires associated with myasthenia gravis in humans and nonhuman hosts. Autoimmune Dis 2012; 2012:403915. [PMID: 23243503 PMCID: PMC3518085 DOI: 10.1155/2012/403915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/21/2012] [Accepted: 10/15/2012] [Indexed: 11/17/2022] Open
Abstract
Here we analyzed the molecular targets associated with myasthenia gravis (MG) immune responses, enabled by an immune epitope database (IEDB) inventory of approximately 600 MG-related epitopes derived from 175 references. The vast majority of epitopes were derived from the α-subunit of human AChR suggesting that other MG-associated autoantigens should be investigated further. Human α-AChR was mostly characterized in humans, whereas reactivity primarily to T. californica AChR was examined in animal models. While the fine specificity of T-cell response was similar in the two systems, substantial antibody reactivity to the C-terminus was detected in the nonhuman system, but not in humans. Further analysis showed that the reactivity of nonhuman hosts to the C-terminus was eliminated when data were restricted to hosts tested in the context of autoimmune disease (spontaneous or induced), demonstrating that the epitopes recognized in humans and animals were shared when disease was present. Finally, we provided data subsets relevant to particular applications, including those associated with HLA typing or restriction, sets of epitopes recognized by monoclonal antibodies, and epitopes associated with modulation of immunity or disease. In conclusion, this analysis highlights gaps, differences, and similarities in the epitope repertoires of humans and animal models.
Collapse
Affiliation(s)
- Kerrie Vaughan
- Immune Epitope Database (IEDB), La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
11
|
Oseroff C, Sidney J, Vita R, Tripple V, McKinney DM, Southwood S, Brodie TM, Sallusto F, Grey H, Alam R, Broide D, Greenbaum JA, Kolla R, Peters B, Sette A. T cell responses to known allergen proteins are differently polarized and account for a variable fraction of total response to allergen extracts. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:1800-11. [PMID: 22786768 PMCID: PMC3411923 DOI: 10.4049/jimmunol.1200850] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A panel of 133 allergens derived from 28 different sources, including fungi, trees, grasses, weeds, and indoor allergens, was surveyed utilizing prediction of HLA class II-binding peptides and ELISPOT assays with PBMC from allergic donors, resulting in the identification of 257 T cell epitopes. More than 90% of the epitopes were novel, and for 14 allergen sources were the first ever identified to our knowledge. The epitopes identified in the different allergen sources summed up to a variable fraction of the total extract response. In cases of allergens in which the identified T cell epitopes accounted for a minor fraction of the extract response, fewer known protein sequences were available, suggesting that for low epitope coverage allergen sources, additional allergen proteins remain to be identified. IL-5 and IFN-γ responses were measured as prototype Th2 and Th1 responses, respectively. Whereas in some cases (e.g., orchard grass, Alternaria, cypress, and Russian thistle) IL-5 production greatly exceeded IFN-γ, in others (e.g., Aspergillus, Penicillum, and alder) the production of IFN-γ exceeded IL-5. Thus, different allergen sources are associated with variable polarization of the responding T cells. The present study represents the most comprehensive survey to date of human allergen-derived T cell epitopes. These epitopes might be used to characterize T cell phenotype/T cell plasticity as a function of seasonality, or as a result of specific immunotherapy treatment or varying disease severity (asthma or rhinitis).
Collapse
Affiliation(s)
- Carla Oseroff
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Randi Vita
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Victoria Tripple
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | | | - Scott Southwood
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Tess M. Brodie
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | | | - Howard Grey
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | | | - David Broide
- University of California, San Diego, La Jolla, CA, 92037
| | | | - Ravi Kolla
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| |
Collapse
|
12
|
Mechaly A, Levy H, Epstein E, Rosenfeld R, Marcus H, Ben-Arie E, Shafferman A, Ordentlich A, Mazor O. A novel mechanism for antibody-based anthrax toxin neutralization: inhibition of prepore-to-pore conversion. J Biol Chem 2012; 287:32665-73. [PMID: 22869370 DOI: 10.1074/jbc.m112.400473] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Protective antigen (PA), a key component of anthrax toxin, mediates the entry of lethal factor (LF) or edema factor (EF) through a membranal pore into target cells. We have previously reported the isolation and chimerization of cAb29, an anti-PA monoclonal antibody that effectively neutralizes anthrax toxin in an unknown mechanism. The aim of this study was to elucidate the neutralizing mechanism of this antibody in vitro and to test its ability to confer post-exposure protection against anthrax in vivo. By systematic evaluation of the steps taking place during the PA-based intoxication process, we found that cAb29 did not interfere with the initial steps of intoxication, namely its ability to bind to the anthrax receptor, the consecutive proteolytic cleavage to PA(63), oligomerization, prepore formation, or LF binding. However, the binding of cAb29 to the prepore prevented its pH-triggered transition to the transmembranal pore, thus preventing the last step of intoxication, i.e. the translocation of LF/EF into the cell. Epitope mapping, using a phage display peptide library, revealed that cAb29 binds the 2α(1) loop in domain 2 of PA, a loop that undergoes major conformational changes during pore formation. In vivo, we found that 100% of anthrax-infected rabbits survived when treated with cAb29 12 h after exposure. In conclusion, these experiments demonstrate that cAb29 exerts its potent neutralizing activity in a unique manner by blocking the prepore-to-pore conversion process.
Collapse
Affiliation(s)
- Adva Mechaly
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona 74100, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Oseroff C, Sidney J, Tripple V, Grey H, Wood R, Broide DH, Greenbaum J, Kolla R, Peters B, Pomés A, Sette A. Analysis of T cell responses to the major allergens from German cockroach: epitope specificity and relationship to IgE production. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:679-88. [PMID: 22706084 PMCID: PMC3392449 DOI: 10.4049/jimmunol.1200694] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Bla g allergens are major targets of IgE responses associated with cockroach allergies. However, little is known about corresponding T cell responses, despite their potential involvement in immunopathology and the clinical efficacy of specific immunotherapy. Bioinformatic predictions of the capacity of Bla g 1, 2, 4, 5, 6, and 7 peptides to bind HLA-DR, -DP, and -DQ molecules, and PBMC responses from 30 allergic donors, identified 25 T cell epitopes. Five immunodominant epitopes accounted for more than half of the response. Bla g 5, the most dominant allergen, accounted for 65% of the response, and Bla g 6 accounted for 20%. Bla g 5 induced both IL-5 and IFN-γ responses, whereas Bla g 6 induced mostly IL-5, and, conversely, Bla g 2 induced only IFN-γ. Thus, responses to allergens within a source are independently regulated, suggesting a critical role for the allergen itself, and not extraneous stimulation from other allergens or copresented immunomodulators. In comparing Ab with T cell responses for several donor/allergen combinations, we detected IgE titers in the absence of detectable T cell responses, suggesting that unlinked T cell-B cell help might support development of IgE responses. Finally, specific immunotherapy resulted in IL-5 down modulation, which was not associated with development of IFN-γ or IL-10 responses to any of the Bla g-derived peptides. In summary, the characteristics of T cell responses to Bla g allergens appear uncorrelated with IgE responses. Monitoring these responses may therefore yield important information relevant to understanding cockroach allergies and their treatment.
Collapse
Affiliation(s)
- Carla Oseroff
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Victoria Tripple
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Howard Grey
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Robert Wood
- The Johns Hopkins University, Baltimore, MD, 21201
| | | | - Jason Greenbaum
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Ravi Kolla
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Anna Pomés
- Indoor Biotechnologies, Inc., Charlottesville, VA, 22903
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| |
Collapse
|
14
|
A meta-analysis of the existing knowledge of immunoreactivity against hepatitis C virus (HCV). PLoS One 2012; 7:e38028. [PMID: 22675428 PMCID: PMC3364976 DOI: 10.1371/journal.pone.0038028] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 04/29/2012] [Indexed: 02/06/2023] Open
Abstract
Approximately 3% of the world population is infected by HCV, which represents a major global health challenge. Almost 400 different scientific reports present immunological data related to T cell and antibody epitopes derived from HCV literature. Analysis of all HCV-related epitope hosted in the Immune Epitope Database (IEDB), a repository of freely accessible immune epitope data, revealed more than 1500 and 1900 distinct T cell and antibody epitopes, respectively. The inventory of all data revealed specific trends in terms of the host and the HCV genotypes from which sequences were derived. Upon further analysis we found that this large number of epitopes reflects overlapping structures, and homologous sequences derived from different HCV isolates. To access and visualize this information we developed a novel strategy that assembles large sets of epitope data, maps them onto reference genomes and displays the frequency of positive responses. Compilation of the HCV immune reactivity from hundreds of different studies, revealed a complex and thorough picture of HCV immune epitope data to date. The results pinpoint areas of more intense reactivity or research activities at the level of antibody, CD4 and CD8 responses for each of the individual HCV proteins. In general, the areas targeted by the different effector immune functions were distinct and antibody reactivity was positively correlated with hydrophilicity, while T cell reactivity correlated with hydrophobicity. At the sequence level, epitopes frequently recognized by both T cell and B cell correlated with low variability, and our analysis thus highlighted areas of potential interest for practical applications. The human reactivity was further analyzed to pinpoint differential patterns of reactivity associated with acute versus chronic infection, to reveal the apparent impact of glycosylation on T cell, but not antibody responses, and to highlight a paucity of studies involved antibody epitopes associated with virus neutralization.
Collapse
|
15
|
Chitlaru T, Altboum Z, Reuveny S, Shafferman A. Progress and novel strategies in vaccine development and treatment of anthrax. Immunol Rev 2011; 239:221-36. [PMID: 21198675 DOI: 10.1111/j.1600-065x.2010.00969.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The lethal anthrax disease is caused by spores of the gram-positive Bacillus anthracis, a member of the cereus group of bacilli. Although the disease is very rare in the Western world, development of anthrax countermeasures gains increasing attention due to the potential use of B. anthracis spores as a bio-terror weapon. Protective antigen (PA), the non-toxic subunit of the bacterial secreted exotoxin, fulfills the role of recognizing a specific receptor and mediating the entry of the toxin into the host target cells. PA elicits a protective immune response and represents the basis for all current anthrax vaccines. Anti-PA neutralizing antibodies are useful correlates for protection and for vaccine efficacy evaluation. Post exposure anti-toxemic and anti-bacteremic prophylactic treatment of anthrax requires prolonged antibiotic administration. Shorter efficient postexposure treatments may require active or passive immunization, in addition to antibiotics. Although anthrax is acknowledged as a toxinogenic disease, additional factors, other than the bacterial toxin, may be involved in the virulence of B. anthracis and may be needed for the long-lasting protection conferred by PA immunization. The search for such novel factors is the focus of several high throughput genomic and proteomic studies that are already leading to identification of novel targets for therapeutics, for vaccine candidates, as well as biomarkers for detection and diagnosis.
Collapse
Affiliation(s)
- Theodor Chitlaru
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | | | | | | |
Collapse
|
16
|
Purification, modeling, and analysis of botulinum neurotoxin subtype A5 (BoNT/A5) from Clostridium botulinum strain A661222. Appl Environ Microbiol 2011; 77:4217-22. [PMID: 21515732 DOI: 10.1128/aem.00201-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
A Clostridium botulinum type A strain (A661222) in our culture collection was found to produce the botulinum neurotoxin subtype A5 (BoNT/A5). Its neurotoxin gene was sequenced to determine its degree of similarity to available sequences of BoNT/A5 and the well-studied BoNT/A1. Thirty-six amino acid differences were observed between BoNT/A5 and BoNT/A1, with the predominant number being located in the heavy chain. The amino acid chain of the BoNT/A from the A661222 strain was superimposed over the crystal structure of the known structure of BoNT/A1 to assess the potential significance of these differences--specifically how they would affect antibody neutralization. The BoNT/A5 neurotoxin was purified to homogeneity and evaluated for certain properties, including specific toxicity and antibody neutralization. This study reports the first purification of BoNTA5 and describes distinct differences in properties between BoNT/A5 and BoNT/A1.
Collapse
|
17
|
Abstract
Identification of epitopes that invoke strong responses from B-cells is one of the key steps in designing effective vaccines against pathogens. Because experimental determination of epitopes is expensive in terms of cost, time, and effort involved, there is an urgent need for computational methods for reliable identification of B-cell epitopes. Although several computational tools for predicting B-cell epitopes have become available in recent years, the predictive performance of existing tools remains far from ideal. We review recent advances in computational methods for B-cell epitope prediction, identify some gaps in the current state of the art, and outline some promising directions for improving the reliability of such methods.
Collapse
|
18
|
Vaughan K, Greenbaum J, Blythe M, Peters B, Sette A. Meta-analysis of all immune epitope data in the Flavivirus genus: inventory of current immune epitope data status in the context of virus immunity and immunopathology. Viral Immunol 2010; 23:259-84. [PMID: 20565291 DOI: 10.1089/vim.2010.0006] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A meta-analysis was performed in order to inventory the immune epitope data related to viruses in the genus Flavivirus. Nearly 2000 epitopes were captured from over 130 individual Flavivirus-related references identified from PubMed and reported as of September 2009. This report includes all epitope structures and associated immune reactivity from the past and current literature, including: the epitope distribution among pathogens and related strains, the epitope distribution among different pathogen antigens, the number of epitopes defined in human and animal models of disease, the relationship between epitopes identified in different disease states following natural (or experimental) infection, and data from studies focused on candidate vaccines. We found that the majority of epitopes were defined for dengue virus (DENV) and West Nile virus (WNV). The prominence of DENV and WNV data in the epitope literature is likely a reflection of their overall worldwide impact on human disease, and the lack of vaccines. Conversely, the relatively smaller number of epitopes defined for the other viruses within the genus (yellow fever and Japanese encephalitis virus) most likely reflects the presence of established prophylaxis and/or their more modest impact on morbidity and mortality globally. Through this work we hope to provide useful data to those working in the area of Flavivirus research.
Collapse
Affiliation(s)
- Kerrie Vaughan
- La Jolla Institute of Allergy and Immunology, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
19
|
Augustine AD, Cassetti MC, Ennis FA, Harris E, Hildebrand WH, Repik PM. NIAID workshop on Flavivirus immunity. Viral Immunol 2010; 23:235-40. [PMID: 20565288 DOI: 10.1089/vim.2009.0114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
On September 16, 2009, the National Institute of Allergy and Infectious Diseases (NIAID), part of the U.S. National Institutes of Health, convened a workshop to discuss current knowledge of T- and B-cell immune epitopes for members of the Flavivirus genus (family Flaviviridae), and how this information could be used to increase our basic understanding of host-pathogen interactions and/or advance the development of new or improved vaccines and diagnostics for these pathogens. B-cell and T-cell responses to flaviviruses are critical components of protective immunity against these pathogens. However, they have also been linked to disease pathogenesis. A detailed understanding of the biological significance of immune epitope information may provide clues regarding the mechanisms governing the induction of protective versus pathogenic adaptive immune responses.
Collapse
Affiliation(s)
- Alison D Augustine
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-6601, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Moutaftsi M, Tscharke DC, Vaughan K, Koelle DM, Stern L, Calvo-Calle M, Ennis F, Terajima M, Sutter G, Crotty S, Drexler I, Franchini G, Yewdell JW, Head SR, Blum J, Peters B, Sette A. Uncovering the interplay between CD8, CD4 and antibody responses to complex pathogens. Future Microbiol 2010; 5:221-39. [PMID: 20143946 DOI: 10.2217/fmb.09.110] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Vaccinia virus (VACV) was used as the vaccine strain to eradicate smallpox. VACV is still administered to healthcare workers or researchers who are at risk of contracting the virus, and to military personnel. Thus, VACV represents a weapon against outbreaks, both natural (e.g., monkeypox) or man-made (bioterror). This virus is also used as a vector for experimental vaccine development (cancer/infectious disease). As a prototypic poxvirus, VACV is a model system for studying host-pathogen interactions. Until recently, little was known about the targets of host immune responses, which was likely owing to VACVs large genome (>200 open reading frames). However, the last few years have witnessed an explosion of data, and VACV has quickly become a useful model to study adaptive immune responses. This review summarizes and highlights key findings based on identification of VACV antigens targeted by the immune system (CD4, CD8 and antibodies) and the complex interplay between responses.
Collapse
Affiliation(s)
- Magdalini Moutaftsi
- Vaccine Discovery, La Jolla Institute for Allergy & Immunology, La Jolla, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Efficacy of a potential trivalent vaccine based on Hc fragments of botulinum toxins A, B, and E produced in a cell-free expression system. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:784-92. [PMID: 20357058 DOI: 10.1128/cvi.00496-09] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Botulinum toxins produced by the anaerobic bacterium Clostridium botulinum are the most potent biological toxins in nature. Traditionally, people at risk are immunized with a formaldehyde-inactivated toxin complex. Second generation vaccines are based on the recombinant carboxy-terminal heavy-chain (Hc) fragment of the neurotoxin. However, the materialization of this approach is challenging, mainly due to the high AT content of clostridial genes. Herein, we present an alternative strategy in which the native genes encoding Hc proteins of botulinum toxins A, B, and E were used to express the recombinant Hc fragments in a cell-free expression system. We used the unique property of this open system to introduce different combinations of chaperone systems, protein disulfide isomerase (PDI), and reducing/oxidizing environments directly to the expression reaction. Optimized expression conditions led to increased production of soluble Hc protein, which was successfully scaled up using a continuous exchange (CE) cell-free system. Hc proteins were produced at a concentration of more than 1 mg/ml and purified by one-step Ni(+) affinity chromatography. Mice immunized with three injections containing 5 microg of any of the in vitro-expressed, alum-absorbed, Hc vaccines generated a serum enzyme-linked immunosorbent assay (ELISA) titer of 10(5) against the native toxin complex, which enabled protection against a high-dose toxin challenge (10(3) to 10(6) mouse 50% lethal dose [MsLD(50)]). Finally, immunization with a trivalent HcA, HcB, and HcE vaccine protected mice against the corresponding trivalent 10(5) MsLD(50) toxin challenge. Our results together with the latest developments in scalability of the in vitro protein expression systems offer alternative routes for the preparation of botulinum vaccine.
Collapse
|
22
|
Salimi N, Fleri W, Peters B, Sette A. Design and utilization of epitope-based databases and predictive tools. Immunogenetics 2010; 62:185-96. [PMID: 20213141 PMCID: PMC2843836 DOI: 10.1007/s00251-010-0435-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 02/11/2010] [Indexed: 11/30/2022]
Abstract
In the last decade, significant progress has been made in expanding the scope and depth of publicly available immunological databases and online analysis resources, which have become an integral part of the repertoire of tools available to the scientific community for basic and applied research. Herein, we present a general overview of different resources and databases currently available. Because of our association with the Immune Epitope Database and Analysis Resource, this resource is reviewed in more detail. Our review includes aspects such as the development of formal ontologies and the type and breadth of analytical tools available to predict epitopes and analyze immune epitope data. A common feature of immunological databases is the requirement to host large amounts of data extracted from disparate sources. Accordingly, we discuss and review processes to curate the immunological literature, as well as examples of how the curated data can be used to generate a meta-analysis of the epitope knowledge currently available for diseases of worldwide concern, such as influenza and malaria. Finally, we review the impact of immunological databases, by analyzing their usage and citations, and by categorizing the type of citations. Taken together, the results highlight the growing impact and utility of immunological databases for the scientific community.
Collapse
Affiliation(s)
- Nima Salimi
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
23
|
Neutralizing monoclonal antibodies directed against defined linear epitopes on domain 4 of anthrax protective antigen. Infect Immun 2009; 77:4859-67. [PMID: 19703971 DOI: 10.1128/iai.00117-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The anthrax protective antigen (PA) is the receptor-binding subunit common to lethal toxin (LT) and edema toxin (ET), which are responsible for the high mortality rates associated with inhalational Bacillus anthracis infection. Although recombinant PA (rPA) is likely to be an important constituent of any future anthrax vaccine, evaluation of the efficacies of the various candidate rPA vaccines is currently difficult, because the specific B-cell epitopes involved in toxin neutralization have not been completely defined. In this study, we describe the identification and characterization of two murine monoclonal immunoglobulin G1 antibodies (MAbs), 1-F1 and 2-B12, which recognize distinct linear neutralizing epitopes on domain 4 of PA. 1-F1 recognized a 12-mer peptide corresponding to residues 692 to 703; this epitope maps to a region of domain 4 known to interact with the anthrax toxin receptor CMG-2 and within a conformation-dependent epitope recognized by the well-characterized neutralizing MAb 14B7. As expected, 1-F1 blocked PA's ability to associate with CMG-2 in an in vitro solid-phase binding assay, and it protected murine macrophage cells from intoxication with LT. 2-B12 recognized a 12-mer peptide corresponding to residues 716 to 727, an epitope located immediately adjacent to the core 14B7 binding site and a stretch of amino acids not previously identified as a target of neutralizing antibodies. 2-B12 was as effective as 1-F1 in neutralizing LT in vitro, although it only partially inhibited PA binding to its receptor. Mice passively administered 1-F1 or 2-B12 were partially protected against a lethal challenge with LT. These results advance our fundamental understanding of the mechanisms by which antibodies neutralize anthrax toxin and may have future application in the evaluation of candidate rPA vaccines.
Collapse
|
24
|
Vaughan K, Blythe M, Greenbaum J, Zhang Q, Peters B, Doolan DL, Sette A. Meta-analysis of immune epitope data for all Plasmodia: overview and applications for malarial immunobiology and vaccine-related issues. Parasite Immunol 2009; 31:78-97. [PMID: 19149776 DOI: 10.1111/j.1365-3024.2008.01077.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We present a comprehensive meta-analysis of more than 500 references, describing nearly 5000 unique B cell and T cell epitopes derived from the Plasmodium genus, and detailing thousands of immunological assays. This is the first inventory of epitope data related to malaria-specific immunology, plasmodial pathogenesis, and vaccine performance. The survey included host and pathogen species distribution of epitopes, the number of antibody vs. CD4(+) and CD8(+) T cell epitopes, the genomic distribution of recognized epitopes, variance among epitopes from different parasite strains, and the characterization of protective epitopes and of epitopes associated with parasite evasion of the host immune response. The results identify knowledge gaps and areas for further investigation. This information has relevance to issues, such as the identification of epitopes and antigens associated with protective immunity, the design and development of candidate malaria vaccines, and characterization of immune response to strain polymorphisms.
Collapse
Affiliation(s)
- K Vaughan
- La Jolla Institute of Allergy and Immunology, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Immunogenicity of Bacillus anthracis protective antigen domains and efficacy of elicited antibody responses depend on host genetic background. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:1115-23. [PMID: 18480236 DOI: 10.1128/cvi.00015-08] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Neutralizing antibodies to Bacillus anthracis protective antigen (PA), a component of anthrax toxin, mediate protection against anthrax. PA is antigenically complex and can elicit protective and nonprotective antibodies. Furthermore, vaccinated individuals demonstrate considerable variability in their antibody responses to PA. To explore the relationship between PA structure and antigenicity, we produced Escherichia coli strains expressing full-length PA (PA1-4), domains 2 to 4 (PA2-4), domain 1, (PA1), and domain 4 (PA4) and evaluated the immunogenicities and protective efficacies of the protein fractions in four mouse strains (strains A/J, BALB/c, C57BL/6, and Swiss Webster). Immunization with PA1-4 resulted in significantly higher lethal toxin-neutralizing antibody titers than immunization with any recombinant protein (rPA) fraction of PA. The magnitude and neutralizing capacity of the antibody response to full-length PA and its fragments varied depending on the mouse strain. We found no correlation between the antibody titer and the neutralizing antibody titer for A/J and Swiss Webster mice. In C57BL/6 mice, antibody titers and neutralization capacity correlated for two of four rPA domain proteins tested, while BALB/c mice displayed a similar correlation with only one rPA. By correlating the reactivity of immune sera with solvent-exposed linear peptide segments of PA, we tentatively assign the presence of four new linear B-cell epitopes in PA amino acids 121 to 150, 143 to 158, 339 to 359, and 421 to 440. We conclude that the genetic background of the host determines the relative efficacy of the antitoxin response. The results suggest that the variability observed in vaccination studies with PA-derived vaccines is a result of host heterogeneity and implies a need to develop other antigens as vaccine candidates.
Collapse
|