1
|
Clarithromycin Inhibits Pneumolysin Production via Downregulation of ply Gene Transcription despite Autolysis Activation. Microbiol Spectr 2021; 9:e0031821. [PMID: 34468195 PMCID: PMC8557819 DOI: 10.1128/spectrum.00318-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae, the most common cause of community-acquired pneumonia, causes severe invasive infections, including meningitis and bacteremia. The widespread use of macrolides has been reported to increase the prevalence of macrolide-resistant S. pneumoniae (MRSP), thereby leading to treatment failure in patients with pneumococcal pneumonia. However, previous studies have demonstrated that several macrolides and lincosamides have beneficial effects on MRSP infection since they inhibit the production and release of pneumolysin, a pneumococcal pore-forming toxin released during autolysis. In this regard, we previously demonstrated that the mechanisms underlying the inhibition of pneumolysin release by erythromycin involved both the transcriptional downregulation of the gene encoding pneumolysin and the impairment of autolysis in MRSP. Here, using a cell supernatant of the culture, we have shown that clarithromycin inhibits pneumolysin release in MRSP. However, contrary to previous observations in erythromycin-treated MRSP, clarithromycin upregulated the transcription of the pneumococcal autolysis-related lytA gene and enhanced autolysis, leading to the leakage of pneumococcal DNA. On the other hand, compared to erythromycin, clarithromycin significantly downregulated the gene encoding pneumolysin. In a mouse model of MRSP pneumonia, the administration of both clarithromycin and erythromycin significantly decreased the pneumolysin protein level in bronchoalveolar lavage fluid and improved lung injury and arterial oxygen saturation without affecting bacterial load. Collectively, these in vitro and in vivo data reinforce the benefits of macrolides on the clinical outcomes of patients with pneumococcal pneumonia. IMPORTANCE Pneumolysin is a potent intracellular toxin possessing multiple functions that augment pneumococcal virulence. For over 10 years, sub-MICs of macrolides, including clarithromycin, have been recognized to decrease pneumolysin production and release from pneumococcal cells. However, this study indicates that macrolides significantly slowed pneumococcal growth, which may be related to decreased pneumolysin release recorded by previous studies. In this study, we demonstrated that clarithromycin decreases pneumolysin production through downregulation of ply gene transcription, regardless of its inhibitory activity against bacterial growth. Additionally, administration of clarithromycin resulted in the amelioration of lung injury in a mouse model of pneumonia induced by macrolide-resistant pneumococci. Therefore, therapeutic targeting of pneumolysin offers a good strategy to treat pneumococcal pneumonia.
Collapse
|
2
|
A Cross-Reactive Protein Vaccine Combined with PCV-13 Prevents Streptococcus pneumoniae- and Haemophilus influenzae-Mediated Acute Otitis Media. Infect Immun 2019; 87:IAI.00253-19. [PMID: 31308088 DOI: 10.1128/iai.00253-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/11/2019] [Indexed: 11/20/2022] Open
Abstract
Acute otitis media is one of the most common childhood infections worldwide. Currently licensed vaccines against the common otopathogen Streptococcus pneumoniae target the bacterial capsular polysaccharide and confer no protection against nonencapsulated strains or capsular types outside vaccine coverage. Mucosal infections such as acute otitis media remain prevalent, even those caused by vaccine-covered serotypes. Here, we report that a protein-based vaccine, a fusion construct of epitopes of CbpA to pneumolysin toxoid, confers effective protection against pneumococcal acute otitis media for non-PCV-13 serotypes and enhances protection for PCV-13 serotypes when coadministered with PCV-13. Having cross-reactive epitopes, the fusion protein also induces potent antibody responses against nontypeable Haemophilus influenzae and S. pneumoniae, engendering protection against acute otitis media caused by emerging unencapsulated otopathogens. These data suggest that augmenting capsule-based vaccination with conserved, cross-reactive protein-based vaccines broadens and enhances protection against acute otitis media.
Collapse
|
3
|
Mechanism of Macrolide-Induced Inhibition of Pneumolysin Release Involves Impairment of Autolysin Release in Macrolide-Resistant Streptococcus pneumoniae. Antimicrob Agents Chemother 2018; 62:AAC.00161-18. [PMID: 30181369 DOI: 10.1128/aac.00161-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/27/2018] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae is a leading cause of community-acquired pneumonia. Over the past 2 decades, macrolide resistance among S. pneumoniae organisms has been increasing steadily and has escalated at an alarming rate worldwide. However, the use of macrolides in the treatment of community-acquired pneumonia has been reported to be effective regardless of the antibiotic susceptibility of the causative pneumococci. Although previous studies suggested that sub-MICs of macrolides inhibit the production of the pneumococcal pore-forming toxin pneumolysin by macrolide-resistant S. pneumoniae (MRSP), the underlying mechanisms of the inhibitory effect have not been fully elucidated. Here, we show that the release of pneumococcal autolysin, which promotes cell lysis and the release of pneumolysin, was inhibited by treatment with azithromycin and erythromycin, whereas replenishing with recombinant autolysin restored the release of pneumolysin from MRSP. Additionally, macrolides significantly downregulated ply transcription followed by a slight decrease of the intracellular pneumolysin level. These findings suggest the mechanisms involved in the inhibition of pneumolysin in MRSP, which may provide an additional explanation for the benefits of macrolides on the outcome of treatment for pneumococcal diseases.
Collapse
|
4
|
Lin Q, London E. The influence of natural lipid asymmetry upon the conformation of a membrane-inserted protein (perfringolysin O). J Biol Chem 2014; 289:5467-78. [PMID: 24398685 DOI: 10.1074/jbc.m113.533943] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic membrane proteins generally reside in membrane bilayers that have lipid asymmetry. However, in vitro studies of the impact of lipids upon membrane proteins are generally carried out in model membrane vesicles that lack lipid asymmetry. Our recently developed method to prepare lipid vesicles with asymmetry similar to that in plasma membranes and with controlled amounts of cholesterol was used to investigate the influence of lipid composition and lipid asymmetry upon the conformational behavior of the pore-forming, cholesterol-dependent cytolysin perfringolysin O (PFO). PFO conformational behavior in asymmetric vesicles was found to be distinct both from that in symmetric vesicles with the same lipid composition as the asymmetric vesicles and from that in vesicles containing either only the inner leaflet lipids from the asymmetric vesicles or only the outer leaflet lipids from the asymmetric vesicles. The presence of phosphatidylcholine in the outer leaflet increased the cholesterol concentration required to induce PFO binding, whereas phosphatidylethanolamine and phosphatidylserine in the inner leaflet of asymmetric vesicles stabilized the formation of a novel deeply inserted conformation that does not form pores, even though it contains transmembrane segments. This conformation may represent an important intermediate stage in PFO pore formation. These studies show that lipid asymmetry can strongly influence the behavior of membrane-inserted proteins.
Collapse
Affiliation(s)
- Qingqing Lin
- From the Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794-5215
| | | |
Collapse
|
5
|
Hupp S, Heimeroth V, Wippel C, Förtsch C, Ma J, Mitchell TJ, Iliev AI. Astrocytic tissue remodeling by the meningitis neurotoxin pneumolysin facilitates pathogen tissue penetration and produces interstitial brain edema. Glia 2011; 60:137-46. [PMID: 21989652 DOI: 10.1002/glia.21256] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 09/21/2011] [Indexed: 11/06/2022]
Abstract
Astrocytes represent a major component of brain tissue and play a critical role in the proper functioning and protection of the brain. Streptococcus pneumoniae, the most common cause of bacterial meningitis, has a high lethality and causes serious disabilities in survivors. Pneumolysin (PLY), a member of the cholesterol-dependent cytolysin group and a major S. pneumoniae neurotoxin, causes deterioration over the course of experimental S. pneumoniae meningitis. At disease-relevant sub-lytic concentrations, PLY produces actin and tubulin reorganization and astrocyte cell shape changes in vitro. In this article, we show that sub-lytic amounts of PLY remodel brain tissue and produce astrocytic process retraction, cortical astroglial reorganization and increased interstitial fluid retention, which is manifested as tissue edema. These changes caused increased tissue permeability to macromolecules and bacteria. The pore-forming capacity of PLY remained necessary for these changes because none of the nonpore-forming mutants were capable of producing similar effects. We suggest that PLY can increase the permeability of brain tissue toward pathogenic factors and bacteria in the course of meningitis, thus contributing to the deterioration caused by the disease.
Collapse
Affiliation(s)
- Sabrina Hupp
- DFG Membrane/Cytoskeleton Interaction Group, Institute of Pharmacology and Toxicology & Rudolf Virchow Center for Experimental Medicine, University of Würzburg, Versbacherstr. 9, 97078 Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
6
|
Allicin from garlic neutralizes the hemolytic activity of intra- and extra-cellular pneumolysin O in vitro. Toxicon 2011; 57:540-5. [DOI: 10.1016/j.toxicon.2010.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 12/13/2010] [Accepted: 12/14/2010] [Indexed: 11/17/2022]
|
7
|
Li-Korotky HS, Lo CY, Zeng FR, Lo D, Banks JM. Interaction of phase variation, host and pressure/gas composition: pneumococcal gene expression of PsaA, SpxB, Ply and LytA in simulated middle ear environments. Int J Pediatr Otorhinolaryngol 2009; 73:1417-22. [PMID: 19682756 PMCID: PMC2891361 DOI: 10.1016/j.ijporl.2009.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 07/09/2009] [Accepted: 07/10/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Streptococcus pneumoniae, a leading cause of otitis media (OM), undergoes spontaneous intra-strain variations in colony morphology. Transparent (T) variants are more efficient in colonizing the nasopharynx while opaque (O) variants exhibit greater virulence during systemic infections. This study was intended to delineate the underlying molecular mechanisms by which the predominant S. pneumoniae variant efficiently infects the middle ear (ME) mucosa. METHODS Human ME epithelial cells were preconditioned for 24h under one of the three gas/pressure conditions designed to simulate those for (1) normal ME (NME), (2) ME with Eustachian tube obstruction (ETO) and (3) ME with tympanostomy tube placement (TT), and then were incubated with ∼ 10(7)CFU/ml of either T or O variants of S. pneumoniae (6A) for 3h. Relative expression levels of genes encoding virulence factors, PsaA (surface adhesion), SpxB (pyruvate oxidase), Ply (pneumolysin), and LytA (autolysin) were assessed separately in epithelium-attached and supernatant bacteria 3h post infection using real-time PCR. RESULTS Basal levels of the virulence molecules in inocula were comparable between two variants. However, relative expression levels of the gene transcripts were significantly induced in epithelium-attached T variants 3h after infection. Comparing with NME and TT conditions, ETO environment produced the largest effect on the differential expression of the virulence genes in the infected ME epithelial cells between T (induced) and O (suppressed) phenotypic pneumococci. CONCLUSIONS T variant is a predominant phenotype responsible for the pathogenesis of pneumococcal OM.
Collapse
Affiliation(s)
- Ha-Sheng Li-Korotky
- Division of Pediatric Otolaryngology, Children's Hospital of Pittsburgh, Pittsburgh, PA 15201, USA.
| | | | | | | | | |
Collapse
|
8
|
Fickl H, Theron AJ, Anderson R, Mitchell TJ, Feldman C. Palladium Attenuates the Pro-Inflammatory Interactions of C5a, Interleukin-8 and Pneumolysin with Human Neutrophils. J Immunotoxicol 2008; 4:247-52. [DOI: 10.1080/15476910701385612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
9
|
Rosado CJ, Kondos S, Bull TE, Kuiper MJ, Law RHP, Buckle AM, Voskoboinik I, Bird PI, Trapani JA, Whisstock JC, Dunstone MA. The MACPF/CDC family of pore-forming toxins. Cell Microbiol 2008; 10:1765-74. [PMID: 18564372 PMCID: PMC2654483 DOI: 10.1111/j.1462-5822.2008.01191.x] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pore-forming toxins (PFTs) are commonly associated with bacterial pathogenesis. In eukaryotes, however, PFTs operate in the immune system or are deployed for attacking prey (e.g. venoms). This review focuses upon two families of globular protein PFTs: the cholesterol-dependent cytolysins (CDCs) and the membrane attack complex/perforin superfamily (MACPF). CDCs are produced by Gram-positive bacteria and lyse or permeabilize host cells or intracellular organelles during infection. In eukaryotes, MACPF proteins have both lytic and non-lytic roles and function in immunity, invasion and development. The structure and molecular mechanism of several CDCs are relatively well characterized. Pore formation involves oligomerization and assembly of soluble monomers into a ring-shaped pre-pore which undergoes conformational change to insert into membranes, forming a large amphipathic transmembrane β-barrel. In contrast, the structure and mechanism of MACPF proteins has remained obscure. Recent crystallographic studies now reveal that although MACPF and CDCs are extremely divergent at the sequence level, they share a common fold. Together with biochemical studies, these structural data suggest that lytic MACPF proteins use a CDC-like mechanism of membrane disruption, and will help understand the roles these proteins play in immunity and development.
Collapse
Affiliation(s)
- Carlos J Rosado
- Department of Biochemistry, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Feldman C, Anderson R. Controversies in the treatment of pneumococcal community-acquired pneumonia. Future Microbiol 2006; 1:271-81. [PMID: 17661640 DOI: 10.2217/17460913.1.3.271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Community-acquired pneumonia remains an important cause of disease and death both in the developed and the developing worlds, despite the ready availability of potent antimicrobial agents to which the organisms remain susceptible. Furthermore, disease management is complicated by emerging resistance of the common pathogens to the various classes of commonly prescribed antimicrobial agents. Much recent research in the field of community-acquired pneumonia has focused attention on optimal treatment, evaluating the impact of antibiotic resistance, as well as of antimicrobial choices, on the outcome of these infections. In addition, efforts have been directed towards finding adjunctive therapies to antibiotics that may improve the prognosis of these patients. This article reviews some of these research areas, highlighting controversies that still exist with regard to final recommendations, and in particular with regard to infections with Streptococcus pneumoniae, the most common bacterial cause of community-acquired pneumonia.
Collapse
Affiliation(s)
- Charles Feldman
- University of the Witwatersrand Medical School, Division of Pulmonology, Department of Medicine, Parktown, Johannesburg, South Africa.
| | | |
Collapse
|
11
|
Feldman C, Cockeran R, Jedrzejas MJ, Mitchell TJ, Anderson R. Hyaluronidase augments pneumolysin-mediated injury to human ciliated epithelium. Int J Infect Dis 2006; 11:11-5. [PMID: 16483814 DOI: 10.1016/j.ijid.2005.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 08/01/2005] [Accepted: 09/08/2005] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVES The main objective of this study was to investigate the effects of pneumococcal hyaluronidase (0.1-10microg/ml), alone and in combination with pneumolysin (50 and 100ng/ml), on human ciliated epithelium. METHODS Ciliary beat frequency (CBF) and structural integrity of human ciliated respiratory epithelium in vitro were studied using a phototransistor technique and a visual scoring index, respectively. RESULTS Hyaluronidase per se did not affect either CBF or the structural integrity of the epithelium. However, preincubation of the epithelial strips with hyaluronidase (10microg/ml) for 30min at 37 degrees C significantly potentiated pneumolysin-mediated ciliary slowing and epithelial damage. Hyaluronan, a substrate of hyaluronidase, had no effects on the ciliated respiratory epithelium in concentrations up to 100microg/ml and did not antagonize the injurious effects of pneumolysin on the epithelium. However, preincubation of the epithelial strips with hyaluronan (100microg/ml) was associated with attenuation of the ciliary slowing and epithelial damage induced by incubation of the strips with hyaluronidase (10microg/ml) for 30min at 37 degrees C followed by addition of pneumolysin (50ng/ml). CONCLUSIONS Although having no direct effects alone, hyaluronidase may contribute to pneumolysin-mediated damage and dysfunction to respiratory epithelium, thereby favoring colonization and subsequently extra-pulmonary dissemination of the pneumococcus.
Collapse
Affiliation(s)
- C Feldman
- Division of Pulmonology, Department of Medicine, Johannesburg Hospital and University of the Witwatersrand, 7 York Road, Parktown, 2193 Johannesburg, South Africa.
| | | | | | | | | |
Collapse
|
12
|
Fickl H, Cockeran R, Steel HC, Feldman C, Cowan G, Mitchell TJ, Anderson R. Pneumolysin-mediated activation of NFkappaB in human neutrophils is antagonized by docosahexaenoic acid. Clin Exp Immunol 2005; 140:274-81. [PMID: 15807851 PMCID: PMC1809376 DOI: 10.1111/j.1365-2249.2005.02757.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
This study was designed to investigate the relationship between influx of extracellular Ca(2+), activation of NFkappaB and synthesis of interleukin-8 (IL-8) following exposure of human neutrophils to subcytolytic concentrations (8.37 and 41.75 ng/ml) of the pneumococcal toxin, pneumolysin, as well as the potential of the omega-3 polyunsaturated fatty acid, docosahexaenoic acid, to antagonize these events. Activation and translocation of NFkappaB were measured using a radiometric electrophoretic mobility shift assay, while influx of extracellular Ca(2+) and synthesis of IL-8 were determined using a radioassay and an ELISA procedure, respectively. Exposure of neutrophils to pneumolysin was accompanied by influx of Ca(2+), activation of NFkappaB, and synthesis of IL-8, all of which were eliminated by inclusion of the Ca(2+)-chelating agent, EGTA (10 m m), in the cell-suspending medium, as well as by pretreatment of the cells with docosahexaenoic acid (5 and 10 microg/ml). The antagonistic effects of docosahexaenoic acid on these pro-inflammatory interactions of pneumolysin with neutrophils were not attributable to inactivation of the toxin, and required the continuous presence of the fatty acid. These observations demonstrate that activation of NFkappaB and synthesis of IL-8, following exposure of neutrophils to pneumolysin are dependent on toxin-mediated influx of Ca(2+) and that these potentially harmful activities of the toxin are antagonized by docosahexaenoic acid.
Collapse
Affiliation(s)
- H Fickl
- Medical Research Council Unit for Inflammation and Immunity, Department of Immunology, University of PretoriaPretoria
| | - R Cockeran
- Medical Research Council Unit for Inflammation and Immunity, Department of Immunology, University of PretoriaPretoria
| | - H C Steel
- Medical Research Council Unit for Inflammation and Immunity, Department of Immunology, University of PretoriaPretoria
| | - C Feldman
- Division of Pulmonology, Department of Medicine, Johannesburg Hospital and University of the WitwatersrandJohannesburg, South Africa
| | - G Cowan
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of GlasgowGlasgow, UK
| | - T J Mitchell
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of GlasgowGlasgow, UK
| | - R Anderson
- Medical Research Council Unit for Inflammation and Immunity, Department of Immunology, University of PretoriaPretoria
| |
Collapse
|