1
|
Li L, Ling Z, Wang X, Zhang X, Li Y, Gao G. Proteomics-based screening of AKR1B1 as a therapeutic target and validation study for sepsis-associated acute kidney injury. PeerJ 2024; 12:e16709. [PMID: 38188141 PMCID: PMC10768659 DOI: 10.7717/peerj.16709] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024] Open
Abstract
Background Sepsis and sepsis-associated acute kidney injury (SA-AKI) pose significant global health challenges, necessitating the development of innovative therapeutic strategies. Dysregulated protein expression has been implicated in the initiation and progression of sepsis and SA-AKI. Identifying potential protein targets and modulating their expression is crucial for exploring alternative therapies. Method We established an SA-AKI rat model using cecum ligation perforation (CLP) and employed differential proteomic techniques to identify protein expression variations in kidney tissues. Aldose reductase (AKR1B1) emerged as a promising target. The SA-AKI rat model received treatment with the aldose reductase inhibitor (ARI), epalrestat. Blood urea nitrogen (BUN) and creatinine (CRE) levels, as well as IL-1β, IL-6 and TNF-α levels in the serum and kidney tissues, were monitored. Hematoxylin-eosin (H-E) staining and a pathological damage scoring scale assessed renal tissue damage, while protein blotting determined PKC (protein kinase C)/NF-κB pathway protein expression. Result Differential proteomics revealed significant downregulation of seven proteins and upregulation of 17 proteins in the SA-AKI rat model renal tissues. AKR1B1 protein expression was notably elevated, confirmed by Western blot. ARI prophylactic administration and ARI treatment groups exhibited reduced renal injury, low BUN and CRE levels and decreased IL-1β, IL-6 and TNF-α levels compared to the CLP group. These changes were statistically significant (P < 0.05). AKR1B1, PKC-α, and NF-κB protein expression levels were also lowered in the ARI prophylactic administration and ARI treatment groups compared to the CLP group (P < 0.05). Conclusions Epalrestat appeared to inhibit the PKC/NF-κB inflammatory pathway by inhibiting AKR1B1, resulting in reduced inflammatory cytokine levels in renal tissues and blood. This mitigated renal tissue injuries and improved the systemic inflammatory response in the severe sepsis rat model. Consequently, AKR1B1 holds promise as a target for treating sepsis-associated acute kidney injuries.
Collapse
Affiliation(s)
- Lei Li
- Intensive Care Unit, Shandong Public Health Clinical Center, Shandong University, Jinan, China
| | - Zaiqin Ling
- Department of Tubercular Medicine, Shandong Public Health Clinical Center, Shandong University, Jinan, China
| | - Xingsheng Wang
- Department of Emergency, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xinxin Zhang
- Department of Emergency Medicine, Fuyang People’s Hospital of Anhui Medical University, Fuyang, China
| | - Yun Li
- Intensive Care Unit, Central Hospital Affliated to Shandong First Medical University, Jinan, China
| | - Guangsheng Gao
- Neurological Intensive Care Unit, Central Hospital Affliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
2
|
Peerapen P, Thongboonkerd V. Kidney stone proteomics: an update and perspectives. Expert Rev Proteomics 2021; 18:557-569. [PMID: 34320328 DOI: 10.1080/14789450.2021.1962301] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Main problems of kidney stone disease are its increasing prevalence and high recurrence rate after calculi removal in almost all areas around the globe. Despite enormous efforts in the past, its pathogenic mechanisms remain unclear and need further elucidations. Proteomics has thus become an essential tool to unravel such sophisticated disease mechanisms at cellular, subcellular, molecular, tissue, and whole organism levels. AREAS COVERED This review provides abrief overview of kidney stone disease followed by updates on proteomics for investigating urinary stone modulators, matrix proteins, cellular responses to different types/doses of calcium oxalate (CaOx) crystals, sex hormones and other stimuli, crystal-cell interactions, crystal receptors, secretome, and extracellular vesicles (EVs), all of which lead to better understanding of the disease mechanisms. Finally, the future challenges and translation of these obtained data to the clinic are discussed. EXPERT OPINION Knowledge from urinary proteomics for exploring the important stone modulators (either inhibitors or promoters) will be helpful for early detection of asymptomatic cases for prompt prevention of symptoms, complications, and new stone formation. Moreover, these modulators may serve as the new therapeutic targets in the future for successful treatment and prevention of kidney stone disease by medications or other means of intervention.
Collapse
Affiliation(s)
- Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Khan SR, Al Rijjal D, Piro A, Wheeler MB. Integration of AI and traditional medicine in drug discovery. Drug Discov Today 2021; 26:982-992. [PMID: 33476566 DOI: 10.1016/j.drudis.2021.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/01/2020] [Accepted: 01/11/2021] [Indexed: 11/24/2022]
Abstract
AI integration in plant-based traditional medicine could be used to overcome drug discovery challenges.
Collapse
Affiliation(s)
- Saifur R Khan
- Endocrine and Diabetes Platform, Department of Physiology, University of Toronto, Medical Sciences Building, Room 3352, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Advanced Diagnostics, Metabolism, Toronto General Hospital Research Institute, Toronto, ON, Canada.
| | - Dana Al Rijjal
- Endocrine and Diabetes Platform, Department of Physiology, University of Toronto, Medical Sciences Building, Room 3352, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Advanced Diagnostics, Metabolism, Toronto General Hospital Research Institute, Toronto, ON, Canada
| | - Anthony Piro
- Endocrine and Diabetes Platform, Department of Physiology, University of Toronto, Medical Sciences Building, Room 3352, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Advanced Diagnostics, Metabolism, Toronto General Hospital Research Institute, Toronto, ON, Canada
| | - Michael B Wheeler
- Endocrine and Diabetes Platform, Department of Physiology, University of Toronto, Medical Sciences Building, Room 3352, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Advanced Diagnostics, Metabolism, Toronto General Hospital Research Institute, Toronto, ON, Canada
| |
Collapse
|
4
|
Thongboonkerd V. Proteomics of Crystal-Cell Interactions: A Model for Kidney Stone Research. Cells 2019; 8:cells8091076. [PMID: 31547429 PMCID: PMC6769877 DOI: 10.3390/cells8091076] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 01/27/2023] Open
Abstract
Nephrolithiasis/urolithiasis (i.e., kidney stone disease) remains a global public health problem with increasing incidence/prevalence. The most common chemical composition of kidney stones is calcium oxalate that initiates stone formation by crystallization, crystal growth, crystal aggregation, crystal–cell adhesion, and crystal invasion through extracellular matrix in renal interstitium. Among these processes, crystal–cell interactions (defined as “the phenomena in which the cell is altered by any means of effects from the crystal that adheres onto cellular surface or is internalized into the cell, accompanying with changes of the crystal, e.g., growth, adhesive capability, degradation, etc., induced by the cell”) are very important for crystal retention in the kidney. During the past 12 years, proteomics has been extensively applied to kidney stone research aiming for better understanding of the pathogenic mechanisms of kidney stone formation. This article provides an overview of the current knowledge in this field and summarizes the data obtained from all the studies that applied proteomics to the investigations of crystal–cell interactions that subsequently led to functional studies to address the significant impact or functional roles of the expression proteomics data in the pathogenesis of kidney stone disease.
Collapse
Affiliation(s)
- Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
5
|
Abstract
Proteome analysis has been applied in multiple studies in the context of chronic kidney disease, aiming at improving our knowledge on the molecular pathophysiology of the disease. The approach is generally based on the hypothesis that proteins are key in maintaining kidney function, and disease is a clinical consequence of a significant change of the protein level. Knowledge on critical proteins and their alteration in disease should in turn enable identification of ideal biomarkers that could guide patient management. In addition, all drugs currently employed target proteins. Hence, proteome analysis also promises to enable identifying the best suited therapeutic target, and, in combination with biomarkers, could be used as the rationale basis for personalized intervention. To assess the current status of proteome analysis in the context of CKD, we present the results of a systematic review, of up-to-date scientific research, and give an outlook on the developments that can be expected in near future. Based on the current literature, proteome analysis has already seen implementation in the management of CKD patients, and it is expected that this approach, also supported by the positive results generated to date, will see advanced high-throughput application.
Collapse
|
6
|
Differential proteomics of lesional vs. non-lesional biopsies revealed non-immune mechanisms of alopecia areata. Sci Rep 2018; 8:521. [PMID: 29323127 PMCID: PMC5765109 DOI: 10.1038/s41598-017-18282-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 12/08/2017] [Indexed: 12/31/2022] Open
Abstract
Alopecia areata (AA) is one of the common hair disorders for which treatment is frequently ineffective and associated with relapsing episodes. Better understanding of disease mechanisms and novel therapeutic targets are thus required. From 10 AA patients, quantitative proteomics using LTQ-Orbitrap-XL mass spectrometer revealed 104 down-regulated, 4 absent, 3 up-regulated and 11 newly present proteins in lesional vs. non-lesional biopsies. Among these, the decreased levels of α-tubulin, vimentin, heat shock protein 70 (HSP70), HSP90, annexin A2 and α-enolase were successfully confirmed by Western blotting. Protein-protein interactions network analysis using STRING tool revealed that the most frequent biological processes/networks of the down-regulated proteins included tissue development, cell differentiation, response to wounding and catabolic process, whereas those for the up-regulated proteins included biological process, metabolic process, cellular transport, cellular component organization and response to stimulus. Interestingly, only 5 increased/newly present proteins were associated with the regulation of immune system, which may not be the predominant pathway in AA pathogenic mechanisms as previously assumed. In summary, we report herein the first proteome dataset of AA demonstrating a number of novel pathways, which can be linked to the disease mechanisms and may lead to discovery of new therapeutic targets for AA.
Collapse
|
7
|
Kapincharanon C, Thongboonkerd V. K + deficiency caused defects in renal tubular cell proliferation, oxidative stress response, tissue repair and tight junction integrity, but enhanced energy production, proteasome function and cellular K + uptake. Cell Adh Migr 2017; 12:247-258. [PMID: 28820294 DOI: 10.1080/19336918.2017.1356554] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Hypokalemia is a common electrolyte disorder in hospitalized patients and those with chronic diseases and is associated with renal tubular injury. Our recent expression proteomics study revealed changes in levels of several proteins in renal tubular cells during K+ deficiency. However, functional significance and mechanisms underlying such changes remained unclear. The present study, thus, aimed to investigate functional changes of renal tubular cells induced by K+ deficiency. MDCK cells were maintained in normal-K+ (ANK; [K+] = 5.0 mM), Low-K+ (ALK; [K+] = 2.5 mM), or K+-depleted (AKD; [K+] = 0 mM) medium. Cell count and cell death assay showed that ALK and AKD groups had marked decrease in cell proliferation without significant change in cell death. Other functional investigations revealed that AKD cells had significantly increased levels of carbonylated proteins (by OxyBlot assay), impaired tissue repair (by scratch assay), defective tight junction (by Western blotting, immunofluorescence staining and measuring transepithelial electrical resistance), increased intracellular ATP level (by ATP measurement), decreased levels of ubiquitinated proteins (by Western blotting), and increased level of Na+/K+-ATPase (by Western blotting), which was consistent with the increased cellular K+ uptake after K+ repletion. Our findings have shown that AKD caused defects in cell proliferation, oxidative stress response, tissue repair and tight junction integrity, but on the other hand, enhanced energy production, proteasome function and cellular K+ uptake. These findings may shed light onto cellular response to K+ deficiency and better understanding of both pathogenic and compensatory mechanisms in hypokalemic nephropathy.
Collapse
Affiliation(s)
- Chompunoot Kapincharanon
- a Medical Proteomics Unit, Office for Research and Development , Siriraj Hospital, Mahidol University , Bangkok , Thailand.,b Department of Immunology , Siriraj Hospital, Mahidol University , Bangkok , Thailand.,c Center for Research in Complex Systems Science , Mahidol University , Bangkok , Thailand
| | - Visith Thongboonkerd
- a Medical Proteomics Unit, Office for Research and Development , Siriraj Hospital, Mahidol University , Bangkok , Thailand.,c Center for Research in Complex Systems Science , Mahidol University , Bangkok , Thailand
| |
Collapse
|
8
|
Rao S, Walters KB, Wilson L, Chen B, Bolisetty S, Graves D, Barnes S, Agarwal A, Kabarowski JH. Early lipid changes in acute kidney injury using SWATH lipidomics coupled with MALDI tissue imaging. Am J Physiol Renal Physiol 2016; 310:F1136-47. [PMID: 26911846 DOI: 10.1152/ajprenal.00100.2016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 02/23/2016] [Indexed: 11/22/2022] Open
Abstract
Acute kidney injury (AKI) is one of the leading causes of in-hospital morbidity and mortality, particularly in critically ill patients. Although our understanding of AKI at the molecular level remains limited due to its complex pathophysiology, recent advances in both quantitative and spatial mass spectrometric approaches offer new opportunities to assess the significance of renal metabolomic changes in AKI models. In this study, we evaluated lipid changes in early ischemia-reperfusion (IR)-related AKI in mice by using sequential window acquisition of all theoretical spectra (SWATH)-mass spectrometry (MS) lipidomics. We found a significant increase in two abundant ether-linked phospholipids following IR at 6 h postinjury, a plasmanyl choline, phosphatidylcholine (PC) O-38:1 (O-18:0, 20:1), and a plasmalogen, phosphatidylethanolamine (PE) O-42:3 (O-20:1, 22:2). Both of these lipids correlated with the severity of AKI as measured by plasma creatinine. In addition to many more renal lipid changes associated with more severe AKI, PC O-38:1 elevations were maintained at 24 h post-IR, while renal PE O-42:3 levels decreased, as were all ether PEs detected by SWATH-MS at this later time point. To further assess the significance of this early increase in PC O-38:1, we used matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS) to determine that it occurred in proximal tubules, a region of the kidney that is most prone to IR injury and also rich in the rate-limiting enzymes involved in ether-linked phospholipid biosynthesis. Use of SWATH-MS lipidomics in conjunction with MALDI-IMS for lipid localization will help in elucidating the role of lipids in the pathobiology of AKI.
Collapse
Affiliation(s)
- Sangeetha Rao
- Division of Pediatric Critical Care, Children's Hospital of Alabama, Birmingham, Alabama
| | - Kelly B Walters
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama; Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Landon Wilson
- Targeted Metabolomics and Proteomics Laboratory, Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Bo Chen
- Division of Nephrology and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Subhashini Bolisetty
- Division of Nephrology and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - David Graves
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama
| | - Stephen Barnes
- Targeted Metabolomics and Proteomics Laboratory, Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Anupam Agarwal
- Division of Nephrology and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Janusz H Kabarowski
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama;
| |
Collapse
|
9
|
Urinary Kininogen-1 and Retinol binding protein-4 respond to Acute Kidney Injury: predictors of patient prognosis? Sci Rep 2016; 6:19667. [PMID: 26792617 PMCID: PMC4726181 DOI: 10.1038/srep19667] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 12/02/2015] [Indexed: 01/09/2023] Open
Abstract
Implementation of therapy for acute kidney injury (AKI) depends on successful prediction of individual patient prognosis. Clinical markers as serum creatinine (sCr) have limitations in sensitivity and early response. The aim of the study was to identify novel molecules in urine which show altered levels in response to AKI and investigate their value as predictors of recovery. Changes in the urinary proteome were here investigated in a cohort of 88 subjects (55 AKI patients and 33 healthy donors) grouped in discovery and validation independent cohorts. Patients’ urine was collected at three time points: within the first 48 h after diagnosis(T1), at 7 days of follow-up(T2) and at discharge of Nephrology(T3). Differential gel electrophoresis was performed and data were confirmed by Western blot (WB), liquid chromatography/mass spectrometry (LC-MS/MS) and enzyme-linked immunosorbent assay (ELISA). Retinol binding protein 4 (RBP4) and kininogen-1 (KNG1) were found significantly altered following AKI. RBP4 increased at T1, and progressively decreased towards normalization. Maintained decrease was observed for KNG1 from T1. Individual patient response along time revealed RBP4 responds to recovery earlier than sCr. In conclusion, KNG1 and RBP4 respond to AKI. By monitoring RBP4, patient’s recovery can be anticipated pointing to a role of RBP4 in prognosis evaluation.
Collapse
|
10
|
Gonzalez-Calero L, Martin-Lorenzo M, de la Cuesta F, Maroto AS, Baldan-Martin M, Ruiz-Hurtado G, Pulido-Olmo H, Segura J, Barderas MG, Ruilope LM, Vivanco F, Alvarez-Llamas G. Urinary alpha-1 antitrypsin and CD59 glycoprotein predict albuminuria development in hypertensive patients under chronic renin-angiotensin system suppression. Cardiovasc Diabetol 2016; 15:8. [PMID: 26772976 PMCID: PMC4715311 DOI: 10.1186/s12933-016-0331-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/08/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hypertension is a multi-factorial disease of increasing prevalence and a major risk factor for cardiovascular mortality even in the presence of adequate treatment. Progression of cardiovascular disease (CVD) occurs frequently during chronic renin-angiotensin-system (RAS) suppression, and albuminuria is a marker of CV risk. High prevalence of albuminuria in treated hypertensive patients has been demonstrated, but there are no available markers able to predict evolution. The aim of this study was the identification of novel indicators of albuminuria progression measurable in urine of diabetic and non-diabetic patients. METHODS 1143 hypertensive patients under chronic treatment were followed for a minimum period of 3 years. Among them, 105 diabetic and non-diabetic patients were selected and classified in three groups according to albuminuria development during follow-up: (a) patients with persistent normoalbuminuria; (b) patients developing de novo albuminuria; (c) patients with maintained albuminuria. Differential urine analysis was performed by 2D gel electrophoresis (2D-DIGE) and further confirmed by liquid chromatography-mass spectrometry. Non-parametric statistical tests were applied. RESULTS CD59 glycoprotein and alpha-1 antitrypsin (AAT) resulted already altered in patients developing albuminuria de novo, with a similar response in those with maintained albuminuria. A prospective study in a sub-group of normoalbuminuric patients who were clinically followed up for at least 1 year from urine sampling, revealed CD59 and AAT proteins significantly varied in the urine collected from normoalbuminurics who will negatively progress, serving as predictors of future albuminuria development. CONCLUSIONS CD59 and AAT proteins are significantly altered in hypertensive patients developing albuminuria. Interestingly, CD59 and AAT are able to predict, in normoalbuminuric individuals, who will develop albuminuria in the future, being potential predictors of vascular damage and CV risk. These findings contribute to early identify patients at risk of developing albuminuria even when this classical predictor is still in the normal range, constituting a novel strategy towards a prompt and more efficient therapeutic intervention with better outcome.
Collapse
Affiliation(s)
- Laura Gonzalez-Calero
- Departamento de Inmunologia, Laboratorio de Inmunoalergia y Proteomica, IIS-Fundacion Jimenez Diaz, UAM, REDinREN, Avda Reyes Catolicos 2, 28040, Madrid, Spain.
| | - Marta Martin-Lorenzo
- Departamento de Inmunologia, Laboratorio de Inmunoalergia y Proteomica, IIS-Fundacion Jimenez Diaz, UAM, REDinREN, Avda Reyes Catolicos 2, 28040, Madrid, Spain.
| | - Fernando de la Cuesta
- Laboratorio de Fisiopatologia Vascular, Hospital Nacional de Paraplejicos SESCAM, Toledo, Spain.
| | - Aroa S Maroto
- Departamento de Inmunologia, Laboratorio de Inmunoalergia y Proteomica, IIS-Fundacion Jimenez Diaz, UAM, REDinREN, Avda Reyes Catolicos 2, 28040, Madrid, Spain.
| | - Montserrat Baldan-Martin
- Laboratorio de Fisiopatologia Vascular, Hospital Nacional de Paraplejicos SESCAM, Toledo, Spain.
| | - Gema Ruiz-Hurtado
- Unidad de Hipertension, Instituto de Investigacion i + 12, Hospital Universitario 12 de Octubre, Avenida de Córdoba s/n, 28041, Madrid, Spain.
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain.
| | - Helena Pulido-Olmo
- Unidad de Hipertension, Instituto de Investigacion i + 12, Hospital Universitario 12 de Octubre, Avenida de Córdoba s/n, 28041, Madrid, Spain.
| | - Julian Segura
- Unidad de Hipertension, Instituto de Investigacion i + 12, Hospital Universitario 12 de Octubre, Avenida de Córdoba s/n, 28041, Madrid, Spain.
| | - Maria G Barderas
- Laboratorio de Fisiopatologia Vascular, Hospital Nacional de Paraplejicos SESCAM, Toledo, Spain.
| | - Luis M Ruilope
- Unidad de Hipertension, Instituto de Investigacion i + 12, Hospital Universitario 12 de Octubre, Avenida de Córdoba s/n, 28041, Madrid, Spain.
| | - Fernando Vivanco
- Departamento de Inmunologia, Laboratorio de Inmunoalergia y Proteomica, IIS-Fundacion Jimenez Diaz, UAM, REDinREN, Avda Reyes Catolicos 2, 28040, Madrid, Spain.
- Departamento de Bioquimica y Biologia Molecular I, Universidad Complutense de Madrid, Madrid, Spain.
| | - Gloria Alvarez-Llamas
- Departamento de Inmunologia, Laboratorio de Inmunoalergia y Proteomica, IIS-Fundacion Jimenez Diaz, UAM, REDinREN, Avda Reyes Catolicos 2, 28040, Madrid, Spain.
| |
Collapse
|
11
|
Zhai Y, Xu H, Shen Q, Cao Q, Zhu G, Wei M, Sun L, Liu H, Rao J, Fang X, Chen J, Guo W. Renal histological features of school-age children with asymptomatic haematuria and/or proteinuria: a multicenter study. Nephrology (Carlton) 2015; 19:426-31. [PMID: 24720478 DOI: 10.1111/nep.12260] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2014] [Indexed: 11/27/2022]
Abstract
AIM The risk of asymptomatic haematuria and/or proteinuria development into chronic progressive glomerulonephritis (CPG) is unclear. The indications for renal biopsy and follow-up on these asymptomatic children remain controversial. METHODS A multicenter, retrospective study was performed to investigate the renal histological features of school-age children with asymptomatic urine abnormalities. RESULTS A total of 112 asymptomatic children's renal biopsy data were studied. Most of the children (71%) received a renal biopsy because of isolated microscopic haematuria (IH), and these children were predominantly (60%) proven to have only mild lesions in the glomeruli. Approximately 30% of the children were biopsied because of asymptomatic proteinuria with or without microscopic haematuria (HP or isolated asymptomatic proteinuria (IP)), and these children were mostly (44-83%) indicated to have CPG, such as IgA nephropathy, focal segmental glomerulosclerosis, and Alport syndrome. The junior high school students had a greater percentage of HP than the primary school children. IgA nephropathy was the most common diagnosis in children who received renal biopsy because of HP. CONCLUSIONS Our findings indicate that IP and especially HP may have a high risk of development into CPG. IH, however, has a relatively low risk of severe histological lesions. Thus, IH per se might not be suggested as an indication for early renal biopsy. Long-term follow-up is necessary for these asymptomatic children.
Collapse
Affiliation(s)
- Yihui Zhai
- Department of Nephrology and Rheumatology, Children's Hospital of Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
De Loor J, Daminet S, Smets P, Maddens B, Meyer E. Urinary biomarkers for acute kidney injury in dogs. J Vet Intern Med 2013; 27:998-1010. [PMID: 23952327 DOI: 10.1111/jvim.12155] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 05/23/2013] [Accepted: 07/10/2013] [Indexed: 11/29/2022] Open
Abstract
Routinely, kidney dysfunction and decreased glomerular filtration rate (GFR) are diagnosed by the evaluation of changes in the serum creatinine (SCr) and blood urea nitrogen (BUN) concentrations. However, neither of these tests is sensitive or specific enough for the early diagnosis of impaired kidney function because they are both affected by other renal and nonrenal factors. Furthermore, kidney injury can be present in the absence of kidney dysfunction. Renal reserve enables normal GFR even when nephrons are damaged. Renal biomarkers, especially those present in urine, may be useful for the study of both acute and chronic nephropathies. The aim of this review is to describe the current status of urinary biomarkers as diagnostic tools for kidney injury in dogs with particular focus on acute kidney injury (AKI). The International Renal Interest Society (IRIS) canine AKI grading system and the implementation of urinary biomarkers in this system also are discussed. The discovery of novel urinary biomarkers has emerged from hypotheses about the pathophysiology of kidney injury, but few proteomic urine screening approaches have been described in dogs. Lack of standardization of biomarker assays further complicates the comparison of novel canine urinary biomarker validation results among studies. Future research should focus on novel biomarkers of renal origin and evaluate promising biomarkers in different clinical conditions. Validation of selected urinary biomarkers in the diagnosis of canine kidney diseases must include dogs with both renal and nonrenal diseases to evaluate their sensitivity, specificity as well as their negative and positive predictive values.
Collapse
Affiliation(s)
- J De Loor
- Department of Pharmacology, Toxicology and Biochemistry, Ghent University, Merelbeke, Belgium
| | | | | | | | | |
Collapse
|
13
|
Pastushkova LK, Kireev KS, Kononikhin AS, Tiys ES, Popov IA, Starodubtseva NL, Dobrokhotov IV, Ivanisenko VA, Larina IM, Kolchanov NA, Nikolaev EN. Detection of renal tissue and urinary tract proteins in the human urine after space flight. PLoS One 2013; 8:e71652. [PMID: 23967230 PMCID: PMC3742504 DOI: 10.1371/journal.pone.0071652] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 07/03/2013] [Indexed: 11/18/2022] Open
Abstract
The urine protein composition samples of ten Russian cosmonauts (male, aged of 35 up to 51) performed long flight missions and varied from 169 up to 199 days on the International Space Station (ISS) were analyzed. As a control group, urine samples of six back-up cosmonauts were analyzed. We used proteomic techniques to obtain data and contemporary bioinformatics approaches to perform the analysis. From the total number of identified proteins (238) in our data set, 129 were associated with a known tissue origin. Preflight samples contained 92 tissue-specific proteins, samples obtained on Day 1 after landing had 90 such proteins, while Day 7 samples offered 95 tissue-specific proteins. Analysis showed that consistently present proteins in urine (under physiological conditions and after space flight) are cubilin, epidermal growth factor, kallikrein-1, kininogen-1, megalin, osteopontin, vitamin K-dependent protein Z, uromodulin. Variably present proteins consists of: Na(+)/K(+) ATPase subunit gamma, β-defensin-1, dipeptidyl peptidase 4, maltasa-glucoamilasa, cadherin-like protein, neutral endopeptidase and vascular cell adhesion protein 1. And only three renal proteins were related to the space flight factors. They were not found in the pre-flight samples and in the back-up cosmonaut urine, but were found in the urine samples after space flight: AFAM (afamin), AMPE (aminopeptidase A) and AQP2 (aquaporin-2). This data related with physiological readaptation of water-salt balance. The proteomic analysis of urine samples in different phases of space missions with bioinformation approach to protein identification provides new data relative to biomechemical mechanism of kidney functioning after space flight.
Collapse
Affiliation(s)
- Lyudmila Kh. Pastushkova
- Institute of Biomedical Problems – Russian Federation State Scientific Research Center RAS, Moscow, Russia
| | - Kirill S. Kireev
- Institute of Biomedical Problems – Russian Federation State Scientific Research Center RAS, Moscow, Russia
- Gagarin Cosmonauts Training Center, Star City, Russia
- * E-mail:
| | - Alexey S. Kononikhin
- Emanuel Institute of Biochemical Physics RAS, Moscow, Russia
- Institute for Energy Problems of Chemical Physics RAS, Moscow, Russia
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - Evgeny S. Tiys
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Igor A. Popov
- Emanuel Institute of Biochemical Physics RAS, Moscow, Russia
- Institute for Energy Problems of Chemical Physics RAS, Moscow, Russia
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - Natalia L. Starodubtseva
- Institute for Energy Problems of Chemical Physics RAS, Moscow, Russia
- Moscow Institute of Physics and Technology, Moscow, Russia
- Research Center for Obstetrics, Gynecology, Moscow, Russia
| | - Igor V. Dobrokhotov
- Institute of Biomedical Problems – Russian Federation State Scientific Research Center RAS, Moscow, Russia
| | | | - Irina M. Larina
- Institute of Biomedical Problems – Russian Federation State Scientific Research Center RAS, Moscow, Russia
| | | | - Evgeny N. Nikolaev
- Emanuel Institute of Biochemical Physics RAS, Moscow, Russia
- Institute for Energy Problems of Chemical Physics RAS, Moscow, Russia
- Orekhovich Institute of Biomedical Chemistry of the Russian Academy of Medical Sciences, Moscow, Russia
| |
Collapse
|
14
|
Soggiu A, Piras C, Bonizzi L, Hussein HA, Pisanu S, Roncada P. A discovery-phase urine proteomics investigation in type 1 diabetes. Acta Diabetol 2012; 49:453-64. [PMID: 22678621 DOI: 10.1007/s00592-012-0407-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/22/2012] [Indexed: 01/15/2023]
Abstract
Diabetes is a chronic metabolic disease which can lead to serious health problems particularly in and to the development of cardiovascular and renal complications. The aim of this study is to possibly identify distinctive molecular features in urine samples which might correlate to the progression and complications of type 1 diabetes. Diabetic patients with normo- and micro-albuminuria have been analyzed and compared to a group of control subjects. Urine proteins of control and type 1 diabetes subjects were investigated in their proteome profiles, using high-resolution two-dimensional gel electrophoresis separation and protein identifications by MALDI-TOF-MS and LC-MS/MS analysis. Proteomics analysis highlighted differential expression of several proteins between control and type 1 diabetes subjects. In particular, five proteins were found to be down-regulated and four proteins up-regulated. Lower protein representations in diabetic subjects were associated with Tamm-Horsfall urinary glycoprotein, apolipoprotein A-I, apolipoprotein E, α2-thiol proteinase inhibitor, and human complement regulatory protein CD59, while higher protein representations were found for α-1-microglobulin, zinc-α2 glycoprotein, α-1B glycoprotein, and retinol-binding protein 4. These differences were maintained comparing control subjects with type 1 diabetes normo-albuminuric and micro-albuminuric subjects. Furthermore, these proteins are correlated to glycosylated hemoglobin and microalbuminuria, confirming their role in diabetic pathology. This study gives new insights on potential molecular mechanisms associated with the complications of type 1 diabetic disease providing evidences of urine proteins potentially exploitable as putative prognostic biomarkers.
Collapse
Affiliation(s)
- A Soggiu
- Dipartimento di Patologia Animale, Igiene e Sanità Pubblica Veterinaria, Facoltà di Medicina Veterinaria, Università Degli Studi di Milano, Milan, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Bennett MR, Devarajan P. Proteomic analysis of acute kidney injury: biomarkers to mechanisms. Proteomics Clin Appl 2010; 5:67-77. [PMID: 21280238 DOI: 10.1002/prca.201000066] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/08/2010] [Accepted: 10/20/2010] [Indexed: 12/19/2022]
Abstract
Acute kidney injury (AKI) is a devastating clinical condition, both in terms of mortality and costs, and is occurring with increasing incidence. Despite better clinical care, the outcomes of AKI have changed little in the last 50 years. This lack of progress is due in part to a lack of early diagnostic biomarkers and a poor understanding of the disease mechanisms. This review will focus on the rapid progress being made in both the understanding of AKI and the promising panel of early biomarkers for AKI that have come out of both direct proteomic analysis of body fluids of AKI patients and more targeted proteomic approaches using clues from other methods such as transcriptomics. This review concludes with a discussion of the future of proteomics and personalized medicine in AKI and the challenges presented in translating these exciting proteomic results to the clinic.
Collapse
Affiliation(s)
- Michael R Bennett
- Cincinnati Children's Hospital Medical Center, Division of Nephrology and Hypertension, and University of Cincinnati College of Medicine, Department of Pediatrics, Cincinnati, OH 45229, USA.
| | | |
Collapse
|
16
|
Petri AL, Simonsen AH, Høgdall E, Christensen IJ, Kjaer SK, Yip C, Risum S, Pedersen AT, Hartwell D, Fung ET, Høgdall C. Comparison of proteomic biomarker panels in urine and serum for ovarian cancer diagnosis. Proteomics Clin Appl 2010; 4:304-14. [DOI: 10.1002/prca.200900042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2009] [Revised: 09/29/2009] [Accepted: 10/21/2009] [Indexed: 11/07/2022]
|
17
|
Havanapan PO, Thongboonkerd V. Are protease inhibitors required for gel-based proteomics of kidney and urine? J Proteome Res 2009; 8:3109-17. [PMID: 19354301 DOI: 10.1021/pr900015q] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteolysis is one of the major problems in collection and storage of biological samples for proteome analysis, particularly when the samples undergo freeze-thaw cycles. The use of protease inhibitors for prevention of such proteolysis in some samples is debated because protease inhibitors may interfere with proteome analysis and whether protease inhibitors are useful for renal and urinary proteomics remains unclear. We therefore performed a systematic evaluation of the use of protease inhibitors in gel-based renal and urinary proteomics. Renal proteins were extracted from porcine kidney tissue and stored at -30 or -70 degrees C without protease inhibitors. After 0, 2, 4, 6, 8, 10, and 12 freeze-thaw cycles, the 2-D proteome profile was examined. Differential spot analysis and ANOVA with Tukey posthoc multiple comparisons revealed significantly quantitative changes in intensity levels of 12 and 7 renal proteins that were stored at -30 and -70 degrees C, respectively, after >or=4 freeze-thaw cycles. Additionally, there were qualitative changes (vertical elongation or streak) in 6 and 1 renal proteins that were stored at -30 and -70 degrees C, respectively. All these changes could be successfully prevented by the addition of 1% (v/v) protease inhibitors cocktail prior to storage. In contrast, neither quantitative nor qualitative changes were observed in urine samples that were stored without protease inhibitors and processed as for kidney samples. From these data, the addition of protease inhibitors is highly recommended for gel-based renal proteomics, but no longer recommended for gel-based urinary proteomics.
Collapse
Affiliation(s)
- Phattara-Orn Havanapan
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
18
|
Nirmalan NJ, Harnden P, Selby PJ, Banks RE. Development and validation of a novel protein extraction methodology for quantitation of protein expression in formalin-fixed paraffin-embedded tissues using western blotting. J Pathol 2009; 217:497-506. [PMID: 19156775 DOI: 10.1002/path.2504] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The development of efficient formaldehyde cross-link reversal strategies will make the vast diagnostic tissue archives of pathology departments amenable to prospective and retrospective translational research, particularly in biomarker-driven proteomic investigations. Heat-induced antigen retrieval strategies (HIARs) have achieved varying degrees of cross-link reversal, potentially enabling archival tissue usage for proteomic applications outside its current remit of immunohistochemistry (IHC). While most successes achieved so far have been based on retrieving tryptic peptide fragments using shot-gun proteomic approaches, attempts at extracting full-length, non-degraded, immunoreactive proteins from archival tissue have proved challenging. We have developed a novel heat-induced antigen retrieval strategy using SDS-containing Laemmli buffer for efficient intact protein recovery from formalin-fixed tissues for subsequent analysis by western blotting. Protocol optimization and comparison of extraction efficacies with frozen tissues and current leader methodology is presented. Quantitative validation of methodology was carried out in a cohort of matched tumour/normal, frozen/FFPE renal tissue samples from 10 patients, probed by western blotting for a selected panel of seven proteins known to be differentially expressed in renal cancer. Our data show that the protocol enables efficient extraction of non-degraded, full-length, immunoreactive protein, with tumour versus normal differential expression profiles for a majority of the panel of proteins tested being comparable to matched frozen tissue controls (rank correlation, r = 0.7292, p < 1.825e-09). However, the variability observed in extraction efficacies for some membrane proteins emphasizes the need for cautious interpretation of quantitative data from this subset of proteins. The method provides a viable, cost-effective quantitative option for the validation of potential biomarker panels through a range of clinical samples from existing diagnostic archives, provided that validation of the method is first carried out for the specific proteins under study.
Collapse
Affiliation(s)
- Niroshini J Nirmalan
- Clinical and Biomedical Proteomics Group, Cancer Research UK Clinical Centre, Leeds, UK
| | | | | | | |
Collapse
|
19
|
Thongboonkerd V, Semangoen T, Sinchaikul S, Chen ST. Proteomic Analysis of Calcium Oxalate Monohydrate Crystal-Induced Cytotoxicity in Distal Renal Tubular Cells. J Proteome Res 2008; 7:4689-700. [DOI: 10.1021/pr8002408] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Visith Thongboonkerd
- Medical Proteomics Unit & Medical Molecular Biology Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, Department of Immunology and Immunology Graduate Program, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, Institute of Biological Chemistry and Genomic Research Center, Academia Sinica, Taipei, Taiwan, and Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Theptida Semangoen
- Medical Proteomics Unit & Medical Molecular Biology Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, Department of Immunology and Immunology Graduate Program, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, Institute of Biological Chemistry and Genomic Research Center, Academia Sinica, Taipei, Taiwan, and Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Supachok Sinchaikul
- Medical Proteomics Unit & Medical Molecular Biology Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, Department of Immunology and Immunology Graduate Program, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, Institute of Biological Chemistry and Genomic Research Center, Academia Sinica, Taipei, Taiwan, and Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shui-Tein Chen
- Medical Proteomics Unit & Medical Molecular Biology Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, Department of Immunology and Immunology Graduate Program, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand, Institute of Biological Chemistry and Genomic Research Center, Academia Sinica, Taipei, Taiwan, and Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
20
|
Petri AL, Høgdall C, Christensen IJ, Simonsen AH, T'Jampens D, Hellmann ML, Kjaer SK, Fung ET, Høgdall E. Sample handling for mass spectrometric proteomic investigations of human urine. Proteomics Clin Appl 2008; 2:1184-93. [DOI: 10.1002/prca.200780010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Indexed: 11/10/2022]
|
21
|
Bellei E, Rossi E, Lucchi L, Uggeri S, Albertazzi A, Tomasi A, Iannone A. Proteomic analysis of early urinary biomarkers of renal changes in type 2 diabetic patients. Proteomics Clin Appl 2008; 2:478-91. [DOI: 10.1002/prca.200780109] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Indexed: 01/04/2023]
|
22
|
Abstract
Acute kidney injury (AKI), previously referred to as acute renal failure, represents a common and devastating problem in clinical medicine. Despite significant improvements in therapeutics, the mortality and morbidity associated with AKI remain high. A major reason for this is the lack of early markers for AKI, and hence an unacceptable delay in initiating therapy. Fortunately, the application of innovative technologies such as functional genomics and proteomics to human and animal models of AKI has uncovered several novel biomarkers and therapeutic targets. The most promising of these are chronicled in this review. These include the identification of biomarker panels in plasma (neutrophil gelatinase-associated lipocalin and cystatin C) and urine (neutrophil gelatinase-associated lipocalin, kidney injury molecule-1, interleukin-18, cystatin C, alpha1-microglobulin, Fetuin-A, Gro-alpha, and meprin). It is likely that the AKI panels will be useful for timing the initial insult, and assessing the duration and severity of AKI. It is also probable that the AKI panels will distinguish between the various etiologies of AKI and predict clinical outcomes. It will be important in future studies to validate the sensitivity and specificity of these biomarker panels in clinical samples from large cohorts and from multiple clinical situations. Such studies will be facilitated markedly by the development of commercial tools for the reproducible measurement of biomarkers across different laboratories.
Collapse
Affiliation(s)
- Prasad Devarajan
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
23
|
Thongboonkerd V. Urinary proteomics: towards biomarker discovery, diagnostics and prognostics. MOLECULAR BIOSYSTEMS 2008; 4:810-5. [DOI: 10.1039/b802534g] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
24
|
Chatterjee PK. Novel pharmacological approaches to the treatment of renal ischemia-reperfusion injury: a comprehensive review. Naunyn Schmiedebergs Arch Pharmacol 2007; 376:1-43. [PMID: 18038125 DOI: 10.1007/s00210-007-0183-5] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Accepted: 08/01/2007] [Indexed: 02/07/2023]
Abstract
Renal ischemia-reperfusion (I-R) contributes to the development of ischemic acute renal failure (ARF). Multi-factorial processes are involved in the development and progression of renal I-R injury with the generation of reactive oxygen species, nitric oxide and peroxynitrite, and the decline of antioxidant protection playing major roles, leading to dysfunction, injury, and death of the cells of the kidney. Renal inflammation, involving cytokine/adhesion molecule cascades with recruitment, activation, and diapedesis of circulating leukocytes is also implicated. Clinically, renal I-R occurs in a variety of medical and surgical settings and is responsible for the development of acute tubular necrosis (a characteristic feature of ischemic ARF), e.g., in renal transplantation where I-R of the kidney directly influences graft and patient survival. The cellular mechanisms involved in the development of renal I-R injury have been targeted by several pharmacological interventions. However, although showing promise in experimental models of renal I-R injury and ischemic ARF, they have not proved successful in the clinical setting (e.g., atrial natriuretic peptide, low-dose dopamine). This review highlights recent pharmacological developments, which have shown particular promise against experimental renal I-R injury and ischemic ARF, including novel antioxidants and antioxidant enzyme mimetics, nitric oxide and nitric oxide synthase inhibitors, erythropoietin, peroxisome-proliferator-activated receptor agonists, inhibitors of poly(ADP-ribose) polymerase, carbon monoxide-releasing molecules, statins, and adenosine. Novel approaches such as recent research involving combination therapies and the potential of non-pharmacological strategies are also considered.
Collapse
Affiliation(s)
- Prabal K Chatterjee
- Division of Pharmacology and Therapeutics, School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockcroft Building, Lewes Road, Moulsecoomb, Brighton BN2 4GJ, UK.
| |
Collapse
|
25
|
Abstract
During the proteomic era, one of the most rapidly growing areas in biomedical research is biomarker discovery, particularly using proteomic technologies. Urinary proteomics has become one of the most attractive subdisciplines in clinical proteomics, as the urine is an ideal source for the discovery of noninvasive biomarkers for human diseases. However, there are several barriers to the success of the field and urinary proteome analysis is not a simple task because the urine has low protein concentration, high levels of salts or other interfering compounds, and more importantly, high degree of variations (both intra-individual and inter-individual variabilities). This article provides step-by-step practical points to perform urinary proteome analysis, covering detailed information for study design, sample collection, sample storage, sample preparation, proteomic analysis, and data interpretation. The discussion herein should stimulate further discussion and refinement to develop guidelines and standardizations for urinary proteome study.
Collapse
Affiliation(s)
- Visith Thongboonkerd
- Medical Molecular Biology Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
26
|
Bermúdez-Crespo J, López JL. A better understanding of molecular mechanisms underlying human disease. Proteomics Clin Appl 2007; 1:983-1003. [PMID: 21136752 DOI: 10.1002/prca.200700086] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Indexed: 01/06/2023]
Abstract
This review summarises and discusses the degree to which proteomics is contributing to medical care, providing examples and signspots for future directions. Why do genomic approaches provide a limited view of gene expression? Because of the multifactorial nature of many diseases, proteomics enables us to understand the molecular basis of disease, not only at the organism, whole-cell or tissue levels, but also in subcellular structures, protein complexes and biological fluids. The application of proteomics in medicine is expected to have a major impact by providing an integrated view of individual disease processes. This review describes several proteomic platforms and examines the role of proteomics as a tool for clinical biomarker discovery, the identification of prognostic and earlier diagnostic markers, their use in monitoring the effects of drug treatments and eventually find more efficient and safer therapeutics for a wide range of pathologies.
Collapse
Affiliation(s)
- José Bermúdez-Crespo
- Department of Genetics, Faculty of Biology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | |
Collapse
|
27
|
Thongboonkerd V. Recent progress in urinary proteomics. Proteomics Clin Appl 2007; 1:780-91. [PMID: 21136734 DOI: 10.1002/prca.200700035] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2007] [Indexed: 11/08/2022]
Abstract
Urinary proteomics has become one of the most attractive subdisciplines in clinical proteomics as the urine is an ideal source for the discovery of noninvasive biomarkers for kidney and nonkidney diseases. This field has been growing rapidly as indicated by >80 original research articles on urinary proteome analyses appearing since 2001, of which 28 (approximately 1/3) had been published within the year 2006. The most common technologies used in recent urinary proteome studies remain gel-based methods (1-DE, 2-DE and 2-D DIGE), whereas LC-MS/MS, SELDI-TOF MS, and CE-MS are other commonly used techniques. In addition, mass spectrometric immunoassay (MSIA) and array technology have also been applied. This review provides an extensive but concise summary of recent applications of urinary proteomics. Proteomic analyses of dialysate and ultrafiltrate fluids derived from renal replacement therapy (or artificial kidney) are also discussed.
Collapse
Affiliation(s)
- Visith Thongboonkerd
- Medical Molecular Biology Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand. ,
| |
Collapse
|
28
|
Abstract
Microarray technology holds a distinct advantage over traditional genomic methods, with the unique capability to rapidly generate multiple global gene expression profiles in parallel. This technology is quickly gaining widespread use in many areas of science and medicine because it can be easily adapted to study many experimental questions, particularly relating to disease heterogeneity. Microarray experiments have begun to advance our understanding of the underlying molecular processes in solid organ transplantation; however, several obstacles must be overcome before this technology is ready for application in the clinical setting. This article will review the current applications of microarray technology in the field of transplantation, and discuss the potential impact of this technology on monitoring of solid organ transplant recipients.
Collapse
|
29
|
Perco P, Pleban C, Kainz A, Lukas A, Mayer B, Oberbauer R. Gene expression and biomarkers in renal transplant ischemia reperfusion injury. Transpl Int 2007; 20:2-11. [PMID: 17181647 DOI: 10.1111/j.1432-2277.2006.00376.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The incidence of postischemic acute renal allograft failure (ARF) occurs in roughly 25% of cadaveric donor kidney recipients. This high rate remained virtually unchanged over the last decades despite modification in recipient management and modern immunosuppressive strategies. It has recently been shown that among other reasons, the systemic inflammation in the brain death cadaveric organ donor contributes to subsequent ARF in the recipient. This review focuses on the consequences of ischemia and reperfusion on the cellular level and offers potential solutions for the reduction of ARF. Genome-wide gene expression analysis together with sophisticated biostatistical analysis made it possible to identify several candidate gene products and proteins that may act as specific and sensitive biomarker for renal inflammation and ischemia. These markers may be very helpful in the clinical management of patients with a high a priori risk of subsequent ARF such as recipients of marginal donor kidneys. Ongoing clinical trials will evaluate whether immunosuppression of the cadaveric organ donor before organ harvest will have the potential to reduce inflammation in the transplant kidney and subsequently lead to a reduction in the rate of ARF.
Collapse
Affiliation(s)
- Paul Perco
- Krankenhaus der Elisabethinen, Linz, Austria
| | | | | | | | | | | |
Collapse
|
30
|
Thongboonkerd V, Kanlaya R, Sinchaikul S, Parichatikanond P, Chen ST, Malasit P. Proteomic Identification of Altered Proteins in Skeletal Muscle During Chronic Potassium Depletion: Implications for Hypokalemic Myopathy. J Proteome Res 2006; 5:3326-35. [PMID: 17137334 DOI: 10.1021/pr060136h] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Prolonged potassium depletion is a well-known cause of myopathy. The pathophysiology of hypokalemic myopathy, however, remains unclear. We performed a gel-based, differential proteomics study to define altered proteins in skeletal muscles during chronic potassium depletion. BALB/c mice were fed with normal chow (0.36% K+) or K+-depleted (KD) diet (<0.001% K+) for 8 weeks (n = 5 in each group). Left gastrocnemius muscles were surgically removed from each animal. Histopathological examination showed mild-degree infiltration of polymornuclear and mononuclear cells at the interstitium of the KD muscles. Extracted proteins were resolved with two-dimensional electrophoresis (2-DE), and visualized with Coomassie Brilliant Blue R-250 stain. Quantitative intensity analysis revealed 16 up-regulated protein spots in the KD muscles, as compared to the controls. These differentially expressed proteins were subsequently identified by peptide mass fingerprinting and by quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS). Most of the altered proteins induced by chronic potassium depletion were muscle enzymes that play significant roles in several various metabolic pathways. Other up-regulated proteins included myosin-binding protein H, alpha-B Crystallin, and translationally controlled tumor protein (TCTP). These findings may lead to a new roadmap for research on hypokalemic myopathy, to better understanding of the pathophysiology of this medical disease, and to biomarker discovery.
Collapse
Affiliation(s)
- Visith Thongboonkerd
- Medical Molecular Biology Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | | | | | | | | | | |
Collapse
|
31
|
Perco P, Pleban C, Kainz A, Lukas A, Mayer G, Mayer B, Oberbauer R. Protein biomarkers associated with acute renal failure and chronic kidney disease. Eur J Clin Invest 2006; 36:753-63. [PMID: 17032342 DOI: 10.1111/j.1365-2362.2006.01729.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Acute renal failure (ARF) as well as chronic kidney disease (CKD) are currently categorized according to serum creatinine concentrations. Serum creatinine, however, has shortcomings because of its low predictive values. The need for novel markers for the early diagnosis and prognosis of renal diseases is imminent, particularly for markers reflecting intrinsic organ injury in stages when glomerular filtration is not impaired. This review summarizes protein markers discussed in the context of ARF as well as CKD, and provides an overview on currently available discovery results following 'omics' techniques. The identified set of candidate marker proteins is discussed in their cellular and functional context. The systematic review of proteomics and genomics studies revealed 56 genes to be associated with acute or chronic kidney disease. Context analysis, i.e. correlation of biological processes and molecular functions of reported kidney markers, revealed that 15 genes on the candidate list were assigned to the most significant ontology groups: immunity and defence. Other significantly enriched groups were cell communication (14 genes), signal transduction (22 genes) and apoptosis (seven genes). Among 24 candidate protein markers, nine proteins were also identified by gene expression studies. Next generation candidate marker proteins with improved diagnostic and prognostic values for kidney diseases will be derived from whole genome scans and protemics approaches. Prospective validation still remains elusive for all proposed candidates.
Collapse
Affiliation(s)
- P Perco
- Krankenhaus der Elisabethinen, Linz, Austria
| | | | | | | | | | | | | |
Collapse
|
32
|
Thongboonkerd V, Chutipongtanate S, Kanlaya R, Songtawee N, Sinchaikul S, Parichatikanond P, Chen ST, Malasit P. Proteomic identification of alterations in metabolic enzymes and signaling proteins in hypokalemic nephropathy. Proteomics 2006; 6:2273-85. [PMID: 16502468 DOI: 10.1002/pmic.200500530] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hypokalemic nephropathy caused by prolonged K(+) deficiency is associated with metabolic alkalosis, polydipsia, polyuria, growth retardation, hypertension, and progressive tubulointerstitial injury. Its pathophysiology, however, remains unclear. We performed gel-based, differential proteomics analysis of kidneys from BALB/c mice fed with high-normal-K(+) (HNK), low-normal-K(+) (LNK), or K(+)-depleted diet for 8 wk (n = 6 in each group). Plasma K(+) levels were 4.62 +/- 0.35, 4.46 +/- 0.23, and 1.51 +/- 0.21 mmol/L for HNK, LNK, and KD mice, respectively (p < 0.0001; KD vs. others). With comparable amounts of food intake, the KD mice drank significantly more water than the other two groups and had polyuria. Additionally, the KD mice had growth retardation, metabolic alkalosis, markedly enlarged kidneys, renal tubular dilation, intratubular deposition of amorphous and laminated hyaline materials, and tubular atrophy. A total of 33 renal proteins were differentially expressed between the KD mice and others, whereas only eight proteins were differentially expressed between the HNK and LNK groups, as determined by quantitative intensity analysis and ANOVA with Tukey's post hoc multiple comparisons. Using MALDI-MS and/or quadrupole-TOF MS/MS, 30 altered proteins induced by K(+)-depletion were identified as metabolic enzymes (e.g., carbonic anhydrase II, aldose reductase, glutathione S-transferase GT41A, etc.), signaling proteins (14-3-3 epsilon, 14-3-3 zeta, and cofilin 1), and cytoskeletal proteins (gamma-actin and tropomyosin). Some of these altered proteins, particularly metabolic enzymes and signaling proteins, have been demonstrated to be involved in metabolic alkalosis, polyuria, and renal tubular injury. Our findings may lead to a new road map for research on hypokalemic nephropathy and to better understanding of the pathophysiology of this medical disease when the functional and physiological significances of these altered proteins are defined.
Collapse
Affiliation(s)
- Visith Thongboonkerd
- Medical Molecular Biology Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Thongboonkerd V, Chutipongtanate S, Kanlaya R. Systematic evaluation of sample preparation methods for gel-based human urinary proteomics: quantity, quality, and variability. J Proteome Res 2006; 5:183-91. [PMID: 16396510 DOI: 10.1021/pr0502525] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We performed systematic evaluation of 38 protocols to concentrate normal human urinary proteins prior to 2D-PAGE analysis. Recovery yield and pattern of resolved protein spots were compared among different methods and intra-/inter-individual variabilities were examined. Precipitation with 90% ethanol provided the greatest protein recovery yield (92.99%), whereas precipitation with 10% acetic acid had the least protein recovery (1.91%). In most of precipitation protocols, the higher percentage of applied organic compounds provided the greater recovery yield. With a fixed concentration at 75%, the urine precipitated with acetonitrile had the greatest number of protein spots visualized in 2D gel, whereas the acetic-precipitated sample had the smallest number of spots. For the intra-individual variability, the first morning urine had the greatest amount of total protein but provided the smallest number of protein spots visualized. Excessive water drinking, not caffeine ingestion, caused alterations in the urinary proteome profile with newly presenting spots and also proteins with decreased excretion levels. As expected, there was a considerable degree of inter-individual variability. Coefficients of variation for albumin and transferrin expression were greatest by inter-individual variables. Male urine had greater amount of total protein but provided smaller number of protein spots compared to female urine. These data offer a wealth of useful information for designing a high-quality, large-scale human urine proteome project.
Collapse
Affiliation(s)
- Visith Thongboonkerd
- Siriraj Proteomics Facility, Medical Molecular Biology Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok 10700, Thailand.
| | | | | |
Collapse
|