1
|
Amini-Mosleh-Abadi S, Yazdanpanah Z, Ketabat F, Saadatifar M, Mohammadi M, Salimi N, Asef Nejhad A, Sadeghianmaryan A. In vitro characterization of 3D printed polycaprolactone/graphene oxide scaffolds impregnated with alginate and gelatin hydrogels for bone tissue engineering. J Biomater Appl 2025:8853282251336552. [PMID: 40278887 DOI: 10.1177/08853282251336552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
To achieve successful bone tissue engineering (BTE), it is necessary to fabricate a biomedical scaffold with appropriate structure as well as favorable composition. Despite a broad range of studies, this remains a challenge, highlighting the need for a better understanding of how structural features (e.g., pore size) and scaffold composition influence mechanical and physical properties, as well as cellular behavior. Therefore, the objective of this study was to characterize physical properties (swelling, degradation), mechanical properties (compressive modulus), and cellular behavior in relation to varying compositions (referred to composite and hybrid scaffolds) as well as varying pore sizes in three-dimensional (3D) printed scaffolds. Composite scaffolds were fabricated from polycaprolactone (PCL) and two different graphene oxide (GO) (3% and 9% (w/v)) concentrations. Additionally, hybrid scaffolds were fabricated by impregnating 3D printed scaffolds in a hydrogel blend of alginate/gelatin. Pore sizes of 400, 1000, and 1500 μm were investigated in this study to assess their effect on the scaffold properties. Our findings showed that swelling and degradation properties were enhanced by (I) the addition of GO as well as introduction of both hydrogel and highest concentration of GO (9% (w/v) GO) into the polymeric matrix of PCL, and (II) increasing the pore size within the scaffolds. Mechanical testing revealed that compressive elastic modulus increased with decreasing pore size, incorporation of GO, and increasing GO content into the matrix of PCL. Although our investigated scaffolds with various pore sizes did not show comparable elastic moduli to that of cortical bone, they exhibited an elastic modulus range (∼31-48 MPa) matching that of trabecular bone. The highest compressive modulus (∼48 MPa) was observed in scaffolds of PCL/9% (w/v) GO (composite scaffolds) with the pore size of 400 μm. Cell viability assay demonstrated high MG-63 cell survival (greater than 70%) in all composite and hybrid scaffolds (indicating scaffold biocompatibility) except PCL/3% (w/v) GO scaffolds. The findings of this study contribute to the field of BTE by providing scaffold design insights in terms of pore size and composition.
Collapse
Affiliation(s)
| | - Zahra Yazdanpanah
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Farinaz Ketabat
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mahya Saadatifar
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Mohammadi
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nima Salimi
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azade Asef Nejhad
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Sadeghianmaryan
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Former Postdoctoral Research Fellow, Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA
| |
Collapse
|
2
|
Dalle Carbonare L, Braggio M, Minoia A, Cominacini M, Romanelli MG, Pessoa J, Tiso N, Valenti MT. Modeling Musculoskeletal Disorders in Zebrafish: Advancements in Muscle and Bone Research. Cells 2024; 14:28. [PMID: 39791729 PMCID: PMC11719663 DOI: 10.3390/cells14010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/22/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025] Open
Abstract
Zebrafish (Danio rerio) have emerged as a valuable model organism for investigating musculoskeletal development and the pathophysiology of associated diseases. Key genes and biological processes in zebrafish that closely mirror those in humans, rapid development, and transparent embryos make zebrafish ideal for the in vivo studies of bone and muscle formation, as well as the molecular mechanisms underlying musculoskeletal disorders. This review focuses on the utility of zebrafish in modeling various musculoskeletal conditions, with an emphasis on bone diseases such as osteoporosis and osteogenesis imperfecta, as well as muscle disorders like Duchenne muscular dystrophy. These models have provided significant insights into the molecular pathways involved in these diseases, helping to identify the key genetic and biochemical factors that contribute to their progression. These findings have also advanced our understanding of disease mechanisms and facilitated the development of potential therapeutic strategies for musculoskeletal disorders.
Collapse
Affiliation(s)
- Luca Dalle Carbonare
- Department of Engineering for the Innovation Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.C.)
| | - Michele Braggio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (M.B.); (M.G.R.)
| | - Arianna Minoia
- Department of Engineering for the Innovation Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.C.)
| | - Mattia Cominacini
- Department of Engineering for the Innovation Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.C.)
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (M.B.); (M.G.R.)
| | - João Pessoa
- Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Natascia Tiso
- Department of Biology, University of Padua, 35131 Padua, Italy;
| | - Maria Teresa Valenti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (M.B.); (M.G.R.)
| |
Collapse
|
3
|
Dorozhkin SV. Calcium Orthophosphate (CaPO4) Containing Composites for Biomedical Applications: Formulations, Properties, and Applications. JOURNAL OF COMPOSITES SCIENCE 2024; 8:218. [DOI: 10.3390/jcs8060218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The goal of this review is to present a wide range of hybrid formulations and composites containing calcium orthophosphates (abbreviated as CaPO4) that are suitable for use in biomedical applications and currently on the market. The bioactive, biocompatible, and osteoconductive properties of various CaPO4-based formulations make them valuable in the rapidly developing field of biomedical research, both in vitro and in vivo. Due to the brittleness of CaPO4, it is essential to combine the desired osteologic properties of ceramic CaPO4 with those of other compounds to create novel, multifunctional bone graft biomaterials. Consequently, this analysis offers a thorough overview of the hybrid formulations and CaPO4-based composites that are currently known. To do this, a comprehensive search of the literature on the subject was carried out in all significant databases to extract pertinent papers. There have been many formulations found with different material compositions, production methods, structural and bioactive features, and in vitro and in vivo properties. When these formulations contain additional biofunctional ingredients, such as drugs, proteins, enzymes, or antibacterial agents, they offer improved biomedical applications. Moreover, a lot of these formulations allow cell loading and promote the development of smart formulations based on CaPO4. This evaluation also discusses basic problems and scientific difficulties that call for more investigation and advancements. It also indicates perspectives for the future.
Collapse
Affiliation(s)
- Sergey V. Dorozhkin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
4
|
Piatti E, Miola M, Liverani L, Verné E, Boccaccini AR. Poly(ε-caprolactone)/bioactive glass composite electrospun fibers for tissue engineering applications. J Biomed Mater Res A 2023; 111:1692-1709. [PMID: 37300320 DOI: 10.1002/jbm.a.37578] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023]
Abstract
In this work, composite electrospun fibers containing innovative bioactive glass nanoparticles were produced and characterized. Poly(ε-caprolactone), benign solvents, and sol-gel B- and Cu-doped bioactive glass powders were used to fabricate fibrous scaffolds. The retention of bioactive glass nanoparticles in the polymer matrix, the electrospinnability of this novel solution and the obtained electrospun composites were extensively characterized. As a result, composite electrospun fibers characterized by biocompatibility, bioactivity, and exhibiting overall properties adequate for both hard and soft tissue engineering applications, have been produced. The addition of these bioactive glass nanoparticles was, indeed, able to impart bioactive properties to the fibers. Cell culture studies show promising results, demonstrating proliferation and growth of cells on the composite fibers. Wettability, degradation rate, and mechanical performance were also tested and are in line with previous results.
Collapse
Affiliation(s)
- Elisa Piatti
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Turin, Italy
| | - Marta Miola
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Turin, Italy
| | - Liliana Liverani
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nürnberg, Erlangen, Germany
- DGS S.p.A., Rome, Italy
| | - Enrica Verné
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Turin, Italy
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
5
|
Yazdanpanah Z, Sharma NK, Raquin A, Cooper DML, Chen X, Johnston JD. Printing tissue-engineered scaffolds made of polycaprolactone and nano-hydroxyapatite with mechanical properties appropriate for trabecular bone substitutes. Biomed Eng Online 2023; 22:73. [PMID: 37474951 PMCID: PMC10360269 DOI: 10.1186/s12938-023-01135-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Bone tissue engineering, based on three-dimensional (3D) printing technology, has emerged as a promising approach to treat bone defects using scaffolds. The objective of this study was to investigate the influence of porosity and internal structure on the mechanical properties of scaffolds. METHODS We fabricated composite scaffolds (which aimed to replicate trabecular bone) from polycaprolactone (PCL) reinforced with 30% (wt.) nano-hydroxyapatite (nHAp) by extrusion printing. Scaffolds with various porosities were designed and fabricated with and without an interlayer offset, termed as staggered and lattice structure, respectively. Mechanical compressive testing was performed to determine scaffold elastic modulus and yield strength. Linear regression was used to evaluate mechanical properties as a function of scaffold porosity. RESULTS Different relationships between mechanical properties and porosities were noted for the staggered and lattice structures. For elastic moduli, the two relationships intersected (porosity = 55%) such that the lattice structure exhibited higher moduli with porosity values greater than the intersection point; vice versa for the staggered structure. The lattice structure exhibited higher yield strength at all porosities. Mechanical testing results also indicated elastic moduli and yield strength properties comparable to trabecular bone (elastic moduli: 14-165 MPa; yield strength: 0.9-10 MPa). CONCLUSIONS Taken together, this study demonstrates that scaffolds printed from PCL/30% (wt.) nHAp with lattice and staggered structure offer promise for treating trabecular bone defects. This study identified the effect of porosity and internal structure on scaffold mechanical properties and provided suggestions for developing scaffolds with mechanical properties for substituting trabecular bone.
Collapse
Affiliation(s)
- Zahra Yazdanpanah
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Nitin Kumar Sharma
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Alice Raquin
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Institut Catholique Des Arts Et Métiers, 85000, La Roche-Sur-Yon, France
| | - David M L Cooper
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - James D Johnston
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
6
|
Popkov A, Kononovich N, Dubinenko G, Gorbach E, Shastov A, Tverdokhlebov S, Popkov D. Long Bone Defect Filling with Bioactive Degradable 3D-Implant: Experimental Study. Biomimetics (Basel) 2023; 8:biomimetics8020138. [PMID: 37092390 PMCID: PMC10123725 DOI: 10.3390/biomimetics8020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/26/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
Previously, 3D-printed bone grafts made of titanium alloy with bioactive coating has shown great potential for the restoration of bone defects. Implanted into a medullary canal titanium graft with cellular structure demonstrated stimulation of the reparative osteogenesis and successful osseointegration of the graft into a single bone-implant block. The purpose of this study was to investigate osseointegration of a 3D-printed degradable polymeric implant with cellular structure as preclinical testing of a new technique for bone defect restoration. During an experimental study in sheep, a 20 mm-long segmental tibial defect was filled with an original cylindrical implant with cellular structure made of polycaprolactone coated with hydroxyapatite. X-ray radiographs demonstrated reparative bone regeneration from the periosteum lying on the periphery of cylindrical implant to its center in a week after the surgery. Cellular structure of the implant was fully filled with newly-formed bone tissue on the 4th week after the surgery. The bone tissue regeneration from the proximal and distal bone fragments was evident on 3rd week. This provides insight into the use of bioactive degradable implants for the restoration of segmental bone defects. Degradable implant with bioactive coating implanted into a long bone segmental defect provides stimulation of reparative osteogenesis and osseointegration into the single implant-bone block.
Collapse
|
7
|
She Y, Tang S, Zhu Z, Sun Y, Deng W, Wang S, Jiang N. Comparison of temporomandibular joint disc, meniscus, and intervertebral disc in fundamental characteristics and tissue engineering. J Biomed Mater Res B Appl Biomater 2023; 111:717-729. [PMID: 36221912 DOI: 10.1002/jbm.b.35178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 01/21/2023]
Abstract
The temporomandibular joint (TMJ) disc, meniscus and intervertebral disc (IVD) are three fibrocartilage discs, which play critical roles in our daily life. Their degeneration contributes to diseases such as TMJ disorders, osteoarthritis and degenerative disc disease, affecting patients' quality of life and causing substantial morbidity and mortality. Interestingly, similar in some aspects of fundamental characteristics, they exhibit differences in other aspects such as biomechanical properties. Highlighting these similarities and differences can not only benefit a comprehensive understanding of them and their pathology but also assist in future research of tissue engineering. Likewise, comparing their tissue engineering in cell sources, scaffold and stimuli can guide imitation and improvement of their engineered discs. However, the anatomical structure, function, and biomechanical characteristics of the IVD, TMJ, and Meniscus have not been compared in any meaningful depth needed to advance current tissue engineering research on these joints, resulting in incomplete understanding of them and their pathology and ultimately limiting future research of tissue engineering. This review, for the first time, comprehensively compares three fibrocartilage discs in those aspects to cast light on their similarities and differences.
Collapse
Affiliation(s)
- Yilin She
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Disease and West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiyi Tang
- West China Medical School, Sichuan University, Chengdu, China
| | - Zilin Zhu
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Yixin Sun
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Disease and West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wanyu Deng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Disease and West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sicheng Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Disease and West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Nan Jiang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Disease and West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Xu H, Zhu Y, Xu J, Tong W, Hu S, Chen Y, Deng S, Yao H, Li J, Lee C, Chan HF. Injectable bioactive glass/sodium alginate hydrogel with immunomodulatory and angiogenic properties for enhanced tendon healing. Bioeng Transl Med 2023; 8:e10345. [PMID: 36684098 PMCID: PMC9842034 DOI: 10.1002/btm2.10345] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/17/2022] [Accepted: 04/29/2022] [Indexed: 01/25/2023] Open
Abstract
Tendon healing is a complex process involving inflammation, proliferation, and remodeling, eventually achieving a state of hypocellularity and hypovascularity. Currently, few treatments can satisfactorily restore the structure and function of native tendon. Bioactive glass (BG) has been shown to possess immunomodulatory and angiogenic properties. In this study, we investigated whether an injectable hydrogel fabricated of BG and sodium alginate (SA) could be applied to enhance tenogenesis following suture repair of injured tendon. We demonstrated that BG/SA hydrogel significantly accelerated tenogenesis without inducing heterotopic ossification based on histological analysis. The therapeutic effect could attribute to increased angiogenesis and M1 to M2 phenotypic switch of macrophages within 7 days post-surgery. Morphological characterization demonstrated that BG/SA hydrogel partially reverted the pathological changes of Achilles tendon, including increased length and cross-sectional area (CSA). Finally, biomechanical test showed that BG/SA hydrogel significantly improved ultimate load, failure stress, and tensile modulus of the repaired tendon. In conclusion, administration of an injectable BG/SA hydrogel can be a novel and promising therapeutic approach to augment Achilles tendon healing in conjunction with surgical intervention.
Collapse
Affiliation(s)
- Hongtao Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
- Department of OrthopedicsThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yanlun Zhu
- Institute for Tissue Engineering and Regenerative Medicine, Faculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
| | - Wenxue Tong
- Musculoskeletal Research Laboratory, Department of Orthopedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
| | - Shiwen Hu
- Musculoskeletal Research Laboratory, Department of Orthopedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
- School of Materials Science and EngineeringLanzhou University of TechnologyLanzhouChina
| | - Yi‐Fan Chen
- The Ph.D. Program for Translational Medicine, College of Medical Science and TechnologyTaipei Medical UniversityTaipeiTaiwan
- Graduate Institute of Translational Medicine, College of Medical Science and TechnologyTaipei Medical UniversityTaipeiTaiwan
- International Ph.D. Program for Translational Science, College of Medical Science and TechnologyTaipei Medical UniversityTaipeiTaiwan
- Master Program in Clinical Genomics and Proteomics, School of PharmacyTaipei Medical UniversityTaipeiTaiwan
| | - Shuai Deng
- Institute for Tissue Engineering and Regenerative Medicine, Faculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Hao Yao
- Musculoskeletal Research Laboratory, Department of Orthopedics and TraumatologyThe Chinese University of Hong KongHong Kong SARChina
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong SARChina
| | - Jie Li
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Chien‐Wei Lee
- Center for Translational Genomics ResearchChina Medical University Hospital, China Medical UniversityTaichungTaiwan
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, Faculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of MedicineThe Chinese University of Hong KongHong Kong SARChina
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and GeneticsThe Chinese University of Hong KongHong Kong SARChina
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkHong Kong SARChina
| |
Collapse
|
9
|
Amini M, Venkatesan JK, Liu W, Leroux A, Nguyen TN, Madry H, Migonney V, Cucchiarini M. Advanced Gene Therapy Strategies for the Repair of ACL Injuries. Int J Mol Sci 2022; 23:ijms232214467. [PMID: 36430947 PMCID: PMC9695211 DOI: 10.3390/ijms232214467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
The anterior cruciate ligament (ACL), the principal ligament for stabilization of the knee, is highly predisposed to injury in the human population. As a result of its poor intrinsic healing capacities, surgical intervention is generally necessary to repair ACL lesions, yet the outcomes are never fully satisfactory in terms of long-lasting, complete, and safe repair. Gene therapy, based on the transfer of therapeutic genetic sequences via a gene vector, is a potent tool to durably and adeptly enhance the processes of ACL repair and has been reported for its workability in various experimental models relevant to ACL injuries in vitro, in situ, and in vivo. As critical hurdles to the effective and safe translation of gene therapy for clinical applications still remain, including physiological barriers and host immune responses, biomaterial-guided gene therapy inspired by drug delivery systems has been further developed to protect and improve the classical procedures of gene transfer in the future treatment of ACL injuries in patients, as critically presented here.
Collapse
Affiliation(s)
- Mahnaz Amini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Jagadeesh K. Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Amélie Leroux
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Tuan Ngoc Nguyen
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Véronique Migonney
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
- Correspondence: or
| |
Collapse
|
10
|
Kim Y, Kim CH, Kim TH, Park SH. Soft Biomimetic 3D Free-Form Artificial Vascular Graft Using a Highly Uniform Microspherical Porous Structure. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29588-29598. [PMID: 35730532 DOI: 10.1021/acsami.2c05839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study presents a biomimetic 3D customizable artificial vascular graft with a highly porous and uniform microscale structure. The structural features were obtained by dip coating of a highly close-packed microsphere suspension on a 3D printed sacrificial template. Considering the structured arrangement of microspherical porogens in the coating layer, the microsphere-leached constructs showed higher uniformity and porosity than the conventionally particulate-leached structures, leading to ultrasoft mechanical compliance. Considering biomechanical compatibility, the resulting elastic moduli were at the sub-MPa level, comparable with those of native vascular tissues. In addition, the developed porous graft was reinforced selectively at the edge regions using a nonporous coating to secure its practical sutureability for clinical use. The sufficiently low cytotoxicity was clinically confirmed to alleviate the stiffness mismatch issues at the anastomotic interface between the native tissue and the artificial graft, thus overcoming the relevant clinical complications. Furthermore, the overall superior properties could be implemented on the 3D printed template for patient-specific medicare, thus implying the manufacturability of patient-specific vascular grafts.
Collapse
Affiliation(s)
- Yuseok Kim
- School of Mechanical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Chae Hwa Kim
- Advanced Textile R&D Department, Korea Institute of Industrial Technology, Ansan 15588, Republic of Korea
| | - Tae Hee Kim
- Advanced Textile R&D Department, Korea Institute of Industrial Technology, Ansan 15588, Republic of Korea
| | - Suk Hee Park
- School of Mechanical Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
11
|
Khalvandi A, Saber-Samandari S, Aghdam MM. Application of artificial neural networks to predict Young's moduli of cartilage scaffolds: An in-vitro and micromechanical study. BIOMATERIALS ADVANCES 2022; 136:212768. [PMID: 35929308 DOI: 10.1016/j.bioadv.2022.212768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 06/15/2023]
Abstract
In this study, four-phase Gelatin-Polypyrrole-Akermanite-Magnetite scaffolds were fabricated and analyzed using in-vitro tests and numerical simulations. Such scaffolds contained various amounts of Magnetite bioceramics as much as 0, 5, 10, and 15 wt% of Gelatin-Polypyrrole-Akermanite biocomposite. X-ray diffraction analysis and Fourier transform infrared spectroscopy were conducted. Swelling and degradation of the scaffolds were studied by immersing them in phosphate-buffered saline, PBS, solution. Magnetite bioceramics decreased the swelling percent and degradation duration. By immersing scaffolds in simulated body fluid, the highest formation rate of Apatite was observed in the 15 wt% Magnetite samples. The mean pore size was in an acceptable range to provide suitable conditions for cell proliferation. MG-63 cells were cultured on extracts of the scaffolds for 24, 48, and 72 h and their surfaces for 24 h. Cell viabilities and cell morphologies were assessed. Afterward, micromechanical models with spherical and polyhedral voids and artificial neural networks were employed to predict Young's moduli of the scaffolds. Based on the results of finite element analyses, spherical-shaped void models made the best predictions of elastic behavior in the 0, 5 wt% Magnetite scaffolds compared to the experimental data. Results of the simulations and experimental tests for the ten wt% Magnetite samples were well matched in both micromechanical models. In the 15 wt% Magnetite sample, models with polyhedral voids could precisely predict Young's modulus of such scaffolds.
Collapse
Affiliation(s)
- Ali Khalvandi
- Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | | |
Collapse
|
12
|
Yazdanpanah Z, Johnston JD, Cooper DML, Chen X. 3D Bioprinted Scaffolds for Bone Tissue Engineering: State-Of-The-Art and Emerging Technologies. Front Bioeng Biotechnol 2022; 10:824156. [PMID: 35480972 PMCID: PMC9035802 DOI: 10.3389/fbioe.2022.824156] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Treating large bone defects, known as critical-sized defects (CSDs), is challenging because they are not spontaneously healed by the patient’s body. Due to the limitations associated with conventional bone grafts, bone tissue engineering (BTE), based on three-dimensional (3D) bioprinted scaffolds, has emerged as a promising approach for bone reconstitution and treatment. Bioprinting technology allows for incorporation of living cells and/or growth factors into scaffolds aiming to mimic the structure and properties of the native bone. To date, a wide range of biomaterials (either natural or synthetic polymers), as well as various cells and growth factors, have been explored for use in scaffold bioprinting. However, a key challenge that remains is the fabrication of scaffolds that meet structure, mechanical, and osteoconductive requirements of native bone and support vascularization. In this review, we briefly present the latest developments and discoveries of CSD treatment by means of bioprinted scaffolds, with a focus on the biomaterials, cells, and growth factors for formulating bioinks and their bioprinting techniques. Promising state-of-the-art pathways or strategies recently developed for bioprinting bone scaffolds are highlighted, including the incorporation of bioactive ceramics to create composite scaffolds, the use of advanced bioprinting technologies (e.g., core/shell bioprinting) to form hybrid scaffolds or systems, as well as the rigorous design of scaffolds by taking into account of the influence of such parameters as scaffold pore geometry and porosity. We also review in-vitro assays and in-vivo models to track bone regeneration, followed by a discussion of current limitations associated with 3D bioprinting technologies for BTE. We conclude this review with emerging approaches in this field, including the development of gradient scaffolds, four-dimensional (4D) printing technology via smart materials, organoids, and cell aggregates/spheroids along with future avenues for related BTE.
Collapse
Affiliation(s)
- Zahra Yazdanpanah
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Zahra Yazdanpanah,
| | - James D. Johnston
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - David M. L. Cooper
- Department of Anatomy Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
13
|
Fazeli N, Arefian E, Irani S, Ardeshirylajimi A, Seyedjafari E. 3D-Printed PCL Scaffolds Coated with Nanobioceramics Enhance Osteogenic Differentiation of Stem Cells. ACS OMEGA 2021; 6:35284-35296. [PMID: 34984260 PMCID: PMC8717387 DOI: 10.1021/acsomega.1c04015] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/22/2021] [Indexed: 06/01/2023]
Abstract
With advances in bone tissue engineering, various materials and methods have been explored to find a better scaffold that can help in improving bone growth and regeneration. Three-dimensional (3D) printing by fused deposition modeling can produce customized scaffolds from biodegradable polyesters such as polycaprolactone (PCL). Although the fabricated PCL scaffolds exhibited a lack of bioactivity and poor cell attachment on their surfaces, herein, using a simple postfabrication modification method with hydroxyapatite (HA) and bioglasses (BGs), we obtained better cell proliferation and attachment. Biological behavior and osteosupportive capacity of the 3D-printed scaffolds including PCL, PCL/HA, PCL/BG, and PCL/HA/BG were evaluated in this study, while human adipose tissue-derived mesenchymal stem cells (hADSCs) were cultured on the scaffolds. The cell morphology, attachment, and proliferation were investigated using scanning electron microscopy (SEM), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, and 4',6-diamidino-2-phenylindole (DAPI) staining. In the next step, the ability of stem cells to differentiate into osteoblasts was evaluated by measuring alkaline phosphatase (ALP) activity, calcium deposition, and bone-related gene and protein expression. In the end, the expression levels of miR-20a, miR-125a, and their target genes were also investigated as positive and negative regulators in osteogenesis pathways. The results showed that the coated scaffolds with bioceramics present a more appropriate surface for cell adhesion and proliferation, as well as efficient potential in inducing osteoconduction and osteointegration compared to PCL alone and control. The PCL/HA/BG scaffold exhibited higher in vitro cell viability and bone formation compared to the other groups, which can be due to the synergistic effect of HA and BG. On the whole, this tricomponent 3D-printing scaffold has a promising prospect for bone tissue engineering applications.
Collapse
Affiliation(s)
- Nasrin Fazeli
- Department
of Biology, Science and Research Branch, Islamic Azad University, Tehran 14778 93855, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology,
College of Science, University of Tehran, Tehran 14179 35840, Iran
| | - Shiva Irani
- Department
of Biology, Science and Research Branch, Islamic Azad University, Tehran 14778 93855, Iran
| | - Abdolreza Ardeshirylajimi
- Urogenital
Stem Cell Research Center, Shahid Beheshti
University of Medical Sciences, Tehran 19839 63113, Iran
| | - Ehsan Seyedjafari
- Department
of Biotechnology, College of Science, University
of Tehran, Tehran 14179 35840, Iran
| |
Collapse
|
14
|
Majumdar S, Gupta S, Krishnamurthy S. Multifarious applications of bioactive glasses in soft tissue engineering. Biomater Sci 2021; 9:8111-8147. [PMID: 34766608 DOI: 10.1039/d1bm01104a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tissue engineering (TE), a new paradigm in regenerative medicine, repairs and restores the diseased or damaged tissues and eliminates drawbacks associated with autografts and allografts. In this context, many biomaterials have been developed for regenerating tissues and are considered revolutionary in TE due to their flexibility, biocompatibility, and biodegradability. One such well-documented biomaterial is bioactive glasses (BGs), known for their osteoconductive and osteogenic potential and their abundant orthopedic and dental clinical applications. However, in the last few decades, the soft tissue regenerative potential of BGs has demonstrated great promise. Therefore, this review comprehensively covers the biological application of BGs in the repair and regeneration of tissues outside the skeleton system. BGs promote neovascularization, which is crucial to encourage host tissue integration with the implanted construct, making them suitable biomaterial scaffolds for TE. Moreover, they heal acute and chronic wounds and also have been reported to restore the injured superficial intestinal mucosa, aiding in gastroduodenal regeneration. In addition, BGs promote regeneration of the tissues with minimal renewal capacity like the heart and lungs. Besides, the peripheral nerve and musculoskeletal reparative properties of BGs are also reported. These results show promising soft tissue regenerative potential of BGs under preclinical settings without posing significant adverse effects. Albeit, there is limited bench-to-bedside clinical translation of elucidative research on BGs as they require rigorous pharmacological evaluations using standardized animal models for assessing biomolecular downstream pathways.
Collapse
Affiliation(s)
- Shreyasi Majumdar
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India.
| | - Smriti Gupta
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India.
| | - Sairam Krishnamurthy
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India.
| |
Collapse
|
15
|
Sonatkar J, Kandasubramanian B. Bioactive glass with biocompatible polymers for bone applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
16
|
Samadian H, Khastar H, Ehterami A, Salehi M. Bioengineered 3D nanocomposite based on gold nanoparticles and gelatin nanofibers for bone regeneration: in vitro and in vivo study. Sci Rep 2021; 11:13877. [PMID: 34230542 PMCID: PMC8260712 DOI: 10.1038/s41598-021-93367-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
The main aim of the present study was to fabricate 3D scaffold based on poly (L-lactic acid) (PLLA)/Polycaprolactone (PCL) matrix polymer containing gelatin nanofibers (GNFs) and gold nanoparticles (AuNPs) as the scaffold for bone tissue engineering application. AuNPs were synthesized via the Turkevich method as the osteogenic factor. GNFs were fabricated by the electrospinning methods and implemented into the scaffold as the extracellular matrix mimicry structure. The prepared AuNPs and Gel nanofibers were composited by PLLA/PCL matrix polymer and converted to a 3D scaffold using thermal-induced phase separation. SEM imaging illustrated the scaffold's porous structure with a porosity range of 80-90% and a pore size range of 80 to 130 µm. The in vitro studies showed that the highest concentration of AuNPs (160 ppm) induced toxicity and 80 ppm AuNPs exhibited the highest cell proliferation. The in vivo studies showed that PCL/PLLA/Gel/80ppmAuNPs induced the highest neo-bone formation, osteocyte in lacuna woven bone formation, and angiogenesis in the defect site. In conclusion, this study showed that the prepared scaffold exhibited suitable properties for bone tissue engineering in terms of porosity, pore size, mechanical properties, biocompatibility, and osteoconduction activities.
Collapse
Affiliation(s)
- Hadi Samadian
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Khastar
- Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Arian Ehterami
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Majid Salehi
- Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
17
|
Influence of varying concentrations of chitosan coating on the pore wall of polycaprolactone based porous scaffolds for tissue engineering application. Carbohydr Polym 2021; 259:117501. [DOI: 10.1016/j.carbpol.2020.117501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/25/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022]
|
18
|
Hammad HG, Salama MNF. Porosity Pattern of 3D Chitosan/Bioactive Glass Tissue Engineering Scaffolds Prepared for Bone Regeneration. Open Dent J 2021. [DOI: 10.2174/1874210602115010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aim:
The study was conducted to investigate the obtained external and internal porosity and the pore-interconnectivity of specific fabricated bioactive composite tissue engineering scaffolds for bone regeneration in dental applications.
Materials and Methods:
In this study, the bioactive glass [M] was elaborated as a quaternary system to be incorporated into the chitosan [C] scaffold preparation on a magnetic stirrer to provide bioactivity and better strength properties for the attempted composite scaffolds [C/ M] of variable compositions. The homogenous chitosan/bioactive glass mix was poured into tailor-made cylindrical molds [10cm×10cm]; a freeze-dryer program was used for the creation of uniform and interconnected macropores for all prepared chitosan-based scaffolds. The morphology of fabricated chitosan [C] and chitosan-bioactive glass [C/ M] composite scaffolds was studied by a scanning electron microscope [SEM] and a mercury porosimeter. In addition, the in-vitro biodegradation rate of all elaborated scaffolds was reported after immersing the prepared scaffolds in a simulated body fluid [SBF] solution. Furthermore, for every prepared scaffold composition, characterization was performed for phase identification, microstructure, porosity, bioactivity, and mechanical properties using an X-ray diffraction analysis [XRD], an X-ray Fourier transfer infrared spectroscopy [FTIR], a mercury porosimetry, a scanning electron microscopy [SEM] coupled to an energy-dispersive X-ray spectrometry [EDS] and a universal testing machine, respectively.
Results:
All the prepared porous chitosan-based composite materials showed pore sizes suitable for osteoblasts seeding, with relatively larger pore sizes for the C scaffolds.
Conclusion:
The smart blending of the prepared bioactive glass [M] with the chitosan matrix offered some advantages, such as the formation of an apatite layer for cell adhesion upon the scaffold surfaces, the reasonable decrease in scaffold pore size, and the relative increase in compressive strength that were enhanced by the incorporation of [M]. Therefore, the morphology, microstructure, and mechanical behavior of the elaborated stress loaded biocomposite tissue engineering scaffolds seem highly dependent on their critical contented bioactive glass.
Collapse
|
19
|
Soleymani Eil Bakhtiari S, Karbasi S, Toloue EB. Modified poly(3-hydroxybutyrate)-based scaffolds in tissue engineering applications: A review. Int J Biol Macromol 2020; 166:986-998. [PMID: 33152357 DOI: 10.1016/j.ijbiomac.2020.10.255] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/09/2020] [Accepted: 10/30/2020] [Indexed: 01/13/2023]
Abstract
As a member of the polyhydroxyalkanoate (PHAs) family, Poly(3-hydroxybutyrate) (PHB) has attracted much attention for a variety of medical applications because of its desirable properties such as high biocompatibility, nontoxic degradation products and high mechanical strength in comparison to other polymers in different fields including tissue engineering. There are different approaches such as making PHB alloy scaffolds, using PHB as a coating for ceramic-based scaffolds and producing composite scaffolds by using a mixture of PHB with ceramic particles utilized to improve hydrophobicity, degradation rate and brittleness. In this review, different applications of PHB, its alloys and composites in tissue engineering are explained based on the common methods of fabrication such as polymeric sponge replication, electrospinning and salt leaching.
Collapse
Affiliation(s)
- Sanaz Soleymani Eil Bakhtiari
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Saeed Karbasi
- Biomaterials and Tissue Engineering Department, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Elahe Bahremandi Toloue
- Biomaterials and Tissue Engineering Department, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
20
|
Bahraminasab M. Challenges on optimization of 3D-printed bone scaffolds. Biomed Eng Online 2020; 19:69. [PMID: 32883300 PMCID: PMC7469110 DOI: 10.1186/s12938-020-00810-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/22/2020] [Indexed: 12/15/2022] Open
Abstract
Advances in biomaterials and the need for patient-specific bone scaffolds require modern manufacturing approaches in addition to a design strategy. Hybrid materials such as those with functionally graded properties are highly needed in tissue replacement and repair. However, their constituents, proportions, sizes, configurations and their connection to each other are a challenge to manufacturing. On the other hand, various bone defect sizes and sites require a cost-effective readily adaptive manufacturing technique to provide components (scaffolds) matching with the anatomical shape of the bone defect. Additive manufacturing or three-dimensional (3D) printing is capable of fabricating functional physical components with or without porosity by depositing the materials layer-by-layer using 3D computer models. Therefore, it facilitates the production of advanced bone scaffolds with the feasibility of making changes to the model. This review paper first discusses the development of a computer-aided-design (CAD) approach for the manufacture of bone scaffolds, from the anatomical data acquisition to the final model. It also provides information on the optimization of scaffold's internal architecture, advanced materials, and process parameters to achieve the best biomimetic performance. Furthermore, the review paper describes the advantages and limitations of 3D printing technologies applied to the production of bone tissue scaffolds.
Collapse
Affiliation(s)
- Marjan Bahraminasab
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
21
|
Mesoporous bioactive glasses for bone healing and biomolecules delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 106:110180. [PMID: 31753410 DOI: 10.1016/j.msec.2019.110180] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/22/2019] [Accepted: 09/09/2019] [Indexed: 01/17/2023]
Abstract
Impact of bone diseases and injury is increasing at an enormous rate during the past decades due to increase in road traffic accidents and other injuries. Bioactive glasses have excellent biocompatibility and osteoconductivity that makes it suitable for bone regeneration. Researches and studies conducted on several bioactive glasses gives an insight on the need of multi-disciplinary approaches involving various scientific fields to attain its full potential. Of late, a next generation bioactive glass called as mesoporous bioactive glass (MBG) has been developed with higher specific surface area and control over mesoporous structure that presents a new material for bone regeneration. A brief discussion and overview on the potential use of MBG as a suitable material for bone tissue regeneration and biomolecule delivery is included. Additionally, possible control of the structural and functional property based on composition and fabrication techniques are also covered. According to recent researches, MBG-implant interaction with bone forming cells for cellular growth and differentiation as well as its effect on delivery of growth factor, both in vitro and in vivo, are optimistic; yet, the complete efficacy of this material is still to be explored. Hence, in this article we will review the current development and its applications for bone tissue engineering (TE).
Collapse
|
22
|
Kim SY, Bae EB, Huh JW, Ahn JJ, Bae HY, Cho WT, Huh JB. Bone Regeneration Using a Three-Dimensional Hexahedron Channeled BCP Block Combined with Bone Morphogenic Protein-2 in Rat Calvarial Defects. MATERIALS 2019; 12:ma12152435. [PMID: 31370160 PMCID: PMC6696350 DOI: 10.3390/ma12152435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 12/14/2022]
Abstract
It is important to obtain sufficient bone mass before implant placement on alveolar bone, and synthetic bone such as biphasic calcium phosphate (BCP) has been studied to secure this. This study used a BCP block bone with a specific structure of the three-dimensional (3D) hexahedron channel and coating with recombinant human bone morphogenetic protein-2 (rhBMP-2) impregnated carboxymethyl cellulose (CMC) was used to examine the enhancement of bone regeneration of this biomaterial in rat calvarial defect. After the preparation of critical-size calvarial defects in fifteen rats, defects were divided into three groups and were implanted with the assigned specimen (n = 5): Boneplant (untreated 3D hexahedron channeled BCP block), Boneplant/CMC (3D hexahedron channeled BCP block coated with CMC), and Boneplant/CMC/BMP (3D hexahedron channeled BCP block coated with CMC containing rhBMP-2). After 4 weeks, the volumetric, histologic, and histometric analyses were conducted to measure the newly formed bone. Histologically, defects in the Boneplant/CMC/BMP group were almost completely filled with new bone compared to the Boneplant and Boneplant/CMC groups. The new bone volume (P < 0.05) and area (P < 0.001) in the Boneplant/CMC/BMP group (20.12% ± 2.17, 33.79% ± 3.66) were much greater than those in the Boneplant (10.77% ± 4.8, 16.48% ± 9.11) and Boneplant/CMC (10.72% ± 3.29, 16.57% ± 8.94) groups, respectively. In conclusion, the 3D hexahedron channeled BCP block adapted rhBMP-2 with carrier CMC showed high possibility as an effective bone graft material.
Collapse
Affiliation(s)
- So-Yeun Kim
- Department of Prosthodontics, Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea
| | - Eun-Bin Bae
- Department of Prosthodontics, Dental Research Institute, Dental and Life Science Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Jae-Woong Huh
- Department of Prosthodontics, Dental Research Institute, Dental and Life Science Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea
- Seroun Dental Clinic, Suyeong-ro, Nam-gu, Busan 48445, Korea
| | - Jong-Ju Ahn
- Department of Prosthodontics, Dental Research Institute, Dental and Life Science Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Hyun-Young Bae
- Department of Prosthodontics, Dental Research Institute, Dental and Life Science Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Won-Tak Cho
- Department of Prosthodontics, Dental Research Institute, Dental and Life Science Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Jung-Bo Huh
- Department of Prosthodontics, Dental Research Institute, Dental and Life Science Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| |
Collapse
|
23
|
Dinoro J, Maher M, Talebian S, Jafarkhani M, Mehrali M, Orive G, Foroughi J, Lord MS, Dolatshahi-Pirouz A. Sulfated polysaccharide-based scaffolds for orthopaedic tissue engineering. Biomaterials 2019; 214:119214. [PMID: 31163358 DOI: 10.1016/j.biomaterials.2019.05.025] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/11/2022]
Abstract
Given their native-like biological properties, high growth factor retention capacity and porous nature, sulfated-polysaccharide-based scaffolds hold great promise for a number of tissue engineering applications. Specifically, as they mimic important properties of tissues such as bone and cartilage they are ideal for orthopaedic tissue engineering. Their biomimicry properties encompass important cell-binding motifs, native-like mechanical properties, designated sites for bone mineralisation and strong growth factor binding and signaling capacity. Even so, scientists in the field have just recently begun to utilise them as building blocks for tissue engineering scaffolds. Most of these efforts have so far been directed towards in vitro studies, and for these reasons the clinical gap is still substantial. With this review paper, we have tried to highlight some of the important chemical, physical and biological features of sulfated-polysaccharides in relation to their chondrogenic and osteogenic inducing capacity. Additionally, their usage in various in vivo model systems is discussed. The clinical studies reviewed herein paint a promising picture heralding a brave new world for orthopaedic tissue engineering.
Collapse
Affiliation(s)
- Jeremy Dinoro
- Intelligent Polymer Research Institute ARC Centre of Excellence for Electromaterials Science AIIM Facility University of Wollongong, Australia
| | - Malachy Maher
- Intelligent Polymer Research Institute ARC Centre of Excellence for Electromaterials Science AIIM Facility University of Wollongong, Australia
| | - Sepehr Talebian
- Intelligent Polymer Research Institute ARC Centre of Excellence for Electromaterials Science AIIM Facility University of Wollongong, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Mahboubeh Jafarkhani
- Technical University of Denmark, DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceuticals, 2800 Kgs, Denmark
| | - Mehdi Mehrali
- Technical University of Denmark, DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceuticals, 2800 Kgs, Denmark
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz, 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore
| | - Javad Foroughi
- Intelligent Polymer Research Institute ARC Centre of Excellence for Electromaterials Science AIIM Facility University of Wollongong, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Megan S Lord
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Alireza Dolatshahi-Pirouz
- Technical University of Denmark, DTU Nanotech, Center for Intestinal Absorption and Transport of Biopharmaceuticals, 2800 Kgs, Denmark; Department of Regenerative Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, Nijmegen, 6525 EX, the Netherlands.
| |
Collapse
|
24
|
Dehnavi N, Parivar K, Goodarzi V, Salimi A, Nourani MR. Systematically engineered electrospun conduit based on PGA/collagen/bioglass nanocomposites: The evaluation of morphological, mechanical, and bio‐properties. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4648] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Navid Dehnavi
- Department of Biology, Science and Research BranchIslamic Azad University Tehran Iran
| | - Kazem Parivar
- Department of Biology, Science and Research BranchIslamic Azad University Tehran Iran
| | - Vahabodin Goodarzi
- Nanobiotechnology Research CenterBaqiyatallah University of Medical Sciences Tehran Iran
| | - Ali Salimi
- Nanobiotechnology Research CenterBaqiyatallah University of Medical Sciences Tehran Iran
| | - Mohammad Reza Nourani
- Nanobiotechnology Research CenterBaqiyatallah University of Medical Sciences Tehran Iran
| |
Collapse
|
25
|
Willerth SM, Sakiyama-Elbert SE. Combining Stem Cells and Biomaterial Scaffolds for Constructing Tissues and Cell Delivery. ACTA ACUST UNITED AC 2019. [DOI: 10.3233/stj-180001] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Combining stem cells with biomaterial scaffolds serves as a promising strategy for engineering tissues for both in vitro and in vivo applications. This updated review details commonly used biomaterial scaffolds for engineering tissues from stem cells. We first define the different types of stem cells and their relevant properties and commonly used scaffold formulations. Next, we discuss natural and synthetic scaffold materials typically used when engineering tissues, along with their associated advantages and drawbacks and gives examples of target applications. New approaches to engineering tissues, such as 3D bioprinting, are described as they provide exciting opportunities for future work along with current challenges that must be addressed. Thus, this review provides an overview of the available biomaterials for directing stem cell differentiation as a means of producing replacements for diseased or damaged tissues.
Collapse
Affiliation(s)
- Stephanie M. Willerth
- Department of Mechanical Engineering, University of Victoria, VIC, Canada
- Division of Medical Sciences, University of Victoria, VIC, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
26
|
Tamburaci S, Tihminlioglu F. Biosilica incorporated 3D porous scaffolds for bone tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:274-291. [DOI: 10.1016/j.msec.2018.05.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 05/02/2018] [Accepted: 05/10/2018] [Indexed: 01/06/2023]
|
27
|
Liu X, Laurent C, Du Q, Targa L, Cauchois G, Chen Y, Wang X, de Isla N. Mesenchymal stem cell interacted with PLCL braided scaffold coated with poly-l-lysine/hyaluronic acid for ligament tissue engineering. J Biomed Mater Res A 2018; 106:3042-3052. [PMID: 30194699 DOI: 10.1002/jbm.a.36494] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 01/07/2023]
Abstract
The challenge of finding an adapted scaffold for ligament tissue engineering remains unsolved after years of researches. A technology to fabricate a multilayer braided scaffold with flexible and elastic poly (l-lactide-co-caprolactone) (PLCL 85/15) has been recently pioneered by our team. In this study, polyelectrolyte multilayer films (PEM) with poly-l-lysine (PLL)/ hyaluronic acid (HA) were deposited on this scaffold. After PEM modification, polygonal (PLL) and particle-like (HA) structures were present on the braided scaffold with no significant variation of fibers Young's modulus. Wharton's jelly mesenchymal stem cells (WJ-MSC) and bone marrow mesenchymal stem cells (BM-MSC) showed good metabolic activity on scaffolds. They presented a spindled shape along the fiber longitudinal direction, and crossed the fibers to form cell bridges. Collagen type I, collagen type III, and tenascin-C secreted by MSCs were detected on day 14. Moreover, one-layer modified scaffold presented increased chemotaxis. As a conclusion, our results indicate that this braided PLCL scaffold with one-layer PEM modification shows inspiring potential with satisfying mechanical properties and biocompatibility. It opens new perspectives to incorporate growth factors within PEM-modified braided PLCL scaffold for ligament tissue engineering and to recruit endogenous cells after implantation. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 3042-3052, 2018.
Collapse
Affiliation(s)
- Xing Liu
- CNRS UMR 7365 -Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Vandœuvre-lès-Nancy, France
| | - Cédric Laurent
- CNRS UMR 7239 LEM3 - Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Qiaoyue Du
- Department of Biomedical Engineering, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Laurie Targa
- CNRS UMR 7365 -Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Vandœuvre-lès-Nancy, France
| | - Ghislaine Cauchois
- CNRS UMR 7365 -Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Vandœuvre-lès-Nancy, France
| | - Yun Chen
- Department of Biomedical Engineering, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Xiong Wang
- CNRS UMR 7365 -Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Vandœuvre-lès-Nancy, France
| | - Natalia de Isla
- CNRS UMR 7365 -Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Vandœuvre-lès-Nancy, France
| |
Collapse
|
28
|
Du X, Fu S, Zhu Y. 3D printing of ceramic-based scaffolds for bone tissue engineering: an overview. J Mater Chem B 2018; 6:4397-4412. [PMID: 32254656 DOI: 10.1039/c8tb00677f] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Currently, one of the most promising strategies in bone tissue engineering focuses on the development of biomimetic scaffolds. Ceramic-based scaffolds with favorable osteogenic ability and mechanical properties are promising candidates for bone repair. Three-dimensional (3D) printing is an additive manufacturing technique, which allows the fabrication of patient-specific scaffolds with high structural complexity and design flexibility, and gains growing attention. This review aims to highlight advances in 3D printing of ceramic-based scaffolds for bone tissue engineering. Technical limitations and practical challenges are emphasized and design considerations are also discussed.
Collapse
Affiliation(s)
- Xiaoyu Du
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| | | | | |
Collapse
|
29
|
Maji K, Dasgupta S, Pramanik K, Bissoyi A. Preparation and characterization of gelatin-chitosan-nanoβ-TCP based scaffold for orthopaedic application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018. [DOI: 10.1016/j.msec.2018.02.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Rogina A, Antunović M, Milovac D. Biomimetic design of bone substitutes based on cuttlefish bone‐derived hydroxyapatite and biodegradable polymers. J Biomed Mater Res B Appl Biomater 2018; 107:197-204. [DOI: 10.1002/jbm.b.34111] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/21/2018] [Accepted: 02/28/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Anamarija Rogina
- Department of Physical ChemistryFaculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, p.p.177, 10001 Zagreb Croatia
| | - Maja Antunović
- Department of Molecular BiologyFaculty of Science, University of Zagreb, Horvatovac102a10001Zagreb Croatia
| | - Dajana Milovac
- Department of Inorganic Chemical Technology and Non‐MetalsFaculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, p.p.17710001Zagreb Croatia
| |
Collapse
|
31
|
Tamjid E. Three-dimensional polycaprolactone-bioactive glass composite scaffolds: Effect of particle size and volume fraction on mechanical properties and in vitro cellular behavior. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2017.1417285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Elnaz Tamjid
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
32
|
Guarino V, Benfenati V, Cruz-Maya I, Saracino E, Zamboni R, Ambrosio L. Instructive proteins for tissue regeneration. FUNCTIONAL 3D TISSUE ENGINEERING SCAFFOLDS 2018:23-49. [DOI: 10.1016/b978-0-08-100979-6.00002-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
33
|
Mohamadi F, Ebrahimi-Barough S, Nourani MR, Mansoori K, Salehi M, Alizadeh AA, Tavangar SM, Sefat F, Sharifi S, Ai J. Enhanced sciatic nerve regeneration by human endometrial stem cells in an electrospun poly (ε-caprolactone)/collagen/NBG nerve conduit in rat. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1731-1743. [DOI: 10.1080/21691401.2017.1391823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Forouzan Mohamadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Nourani
- Nano Biotechnology Research Centre, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Korosh Mansoori
- Neuromusculoskletal Research Centre Firozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Salehi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Alizadeh
- Department of Tissue Engineering and Applied Cell Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Tavangar
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Sefat
- Department of Medical Engineering, School of Engineering, University of Bradford, Bradford, UK
| | - Siavash Sharifi
- Department of Veterinary Surgery and Radiology, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Ardeshirylajimi A. Applied Induced Pluripotent Stem Cells in Combination With Biomaterials in Bone Tissue Engineering. J Cell Biochem 2017; 118:3034-3042. [DOI: 10.1002/jcb.25996] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 03/16/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Abdolreza Ardeshirylajimi
- Department of Tissue Engineering and Applied Cell SciencesSchool of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
- Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSaint LouisMissouri
| |
Collapse
|
35
|
Mohamadi F, Ebrahimi-Barough S, Reza Nourani M, Ali Derakhshan M, Goodarzi V, Sadegh Nazockdast M, Farokhi M, Tajerian R, Faridi Majidi R, Ai J. Electrospun nerve guide scaffold of poly(ε-caprolactone)/collagen/nanobioglass: an in vitro
study in peripheral nerve tissue engineering. J Biomed Mater Res A 2017; 105:1960-1972. [DOI: 10.1002/jbm.a.36068] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/23/2017] [Accepted: 03/17/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Forouzan Mohamadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Mohammad Reza Nourani
- Nano Biotechnology Research Center, Baqiyatallah University of Medical Sciences; Tehran Iran
| | - Mohammad Ali Derakhshan
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies; Shiraz University of Medical Sciences; Shiraz Iran
| | - Vahabodin Goodarzi
- Nano Biotechnology Research Center, Baqiyatallah University of Medical Sciences; Tehran Iran
| | | | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran; Tehran Iran
| | - Roksana Tajerian
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Reza Faridi Majidi
- Department of Nanomedicine, School of Advanced Medical Technologies; Tehran University of Medical Sciences; Tehran Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine; Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
36
|
Hosseinpour S, Ghazizadeh Ahsaie M, Rezai Rad M, Baghani MT, Motamedian SR, Khojasteh A. Application of selected scaffolds for bone tissue engineering: a systematic review. Oral Maxillofac Surg 2017; 21:109-129. [PMID: 28194530 DOI: 10.1007/s10006-017-0608-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 01/30/2017] [Indexed: 12/15/2022]
Abstract
PURPOSE The current systematic review investigated the results of application of some of the most commonly used scaffolds in conjugation with stem cells and growth factors in animal and clinical studies. METHODS A comprehensive electronic search was conducted according to the PRISMA guidelines in NCBI PMC and PubMed from January 1970 to December 2015 limited to English language publications with available full texts. In vivo studies in relation to "bone healing," "bone regeneration," and at least one of the following items were investigated: allograft, β-tricalcium phosphate, deproteinized bovine bone mineral, hydroxyapetite/tricalcium phosphate, nanohydroxyapatite, and composite scaffolds. RESULTS A total of 1252 articles were reviewed, and 46 articles completely fulfilled the inclusion criteria of this study. The highest bone regeneration has been achieved when combination of all three elements, given scaffolds, mesenchymal stem cells, and growth factors, were used. Among studies being reported in this review, bone marrow mesenchymal stem cells are the most studied mesenchymal stem cells, β-tricalcium phosphate is the most frequently used scaffold, and platelet-rich plasma is the most commonly used growth factor. CONCLUSION The current review aimed to inform reconstructive surgeons of how combinations of various mesenchymal stem cells, scaffolds, and growth factors enhance bone regeneration. The highest bone regeneration has been achieved when combination of all three elements, given scaffolds, mesenchymal stem cells, and growth factors, were used.
Collapse
Affiliation(s)
- Sepanta Hosseinpour
- School of Dentistry, Students' Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mitra Ghazizadeh Ahsaie
- School of Dentistry, Students' Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezai Rad
- Dental Research Center, Research Institute of Dental Research, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Baghani
- Department of Orthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Reza Motamedian
- Prosthodontics Department, Dental School, Shahed University of Medical Sciences, Tehran, Iran
| | - Arash Khojasteh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Leite ÁJ, Mano JF. Biomedical applications of natural-based polymers combined with bioactive glass nanoparticles. J Mater Chem B 2017; 5:4555-4568. [DOI: 10.1039/c7tb00404d] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The combination of natural polymers with nanoparticles allowed the development of functional bioinspired constructs. This review discusses the composition, design, and applications of bioinspired nanocomposite constructs based on bioactive glass nanoparticles (BGNPs).
Collapse
Affiliation(s)
- Á. J. Leite
- 3B's Research Group – Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine
- Guimarães
| | - J. F. Mano
- 3B's Research Group – Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine
- Guimarães
| |
Collapse
|
38
|
Lin F, Wang X, Wang Y, Yang Y, Li Y. Preparation and biocompatibility of electrospinning PDLLA/β-TCP/collagen for peripheral nerve regeneration. RSC Adv 2017. [DOI: 10.1039/c7ra05966c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A unique nerve conduit composed of poly(d,l-lactic acid) (PDLLA), β-tricalcium phosphate (β-TCP) and collagen was prepared by electrospinning for the first time.
Collapse
Affiliation(s)
- Fei Lin
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
- Biomedical Materials and Engineering Research Centre of Hubei Province
| | - Xinyu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
- Biomedical Materials and Engineering Research Centre of Hubei Province
| | - Yiyu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
- Biomedical Materials and Engineering Research Centre of Hubei Province
| | - Yushi Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
- Biomedical Materials and Engineering Research Centre of Hubei Province
| | - Yi Li
- Institute of Textiles and Clothing
- The Hong Kong Polytechnic University
- Hong Kong
- P. R. China
| |
Collapse
|
39
|
Park JC, Bae EB, Kim SE, Kim SY, Choi KH, Choi JW, Bae JH, Ryu JJ, Huh JB. Effects of BMP-2 Delivery in Calcium Phosphate Bone Graft Materials with Different Compositions on Bone Regeneration. MATERIALS 2016; 9:ma9110954. [PMID: 28774075 PMCID: PMC5457269 DOI: 10.3390/ma9110954] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/07/2016] [Accepted: 11/17/2016] [Indexed: 12/18/2022]
Abstract
This study was undertaken to investigate the effect of loading rhBMP-2 onto biphasic calcium phosphate (BCP) and calcium pyrophosphate (CPP) on bone regeneration, and to examine the efficacies of BCP and CPP as rhBMP-2 carriers. Specimens were divided into the BCP, CPP, BCP/BMP, and CPP/BMP groups; BCP and CPP were in granules and not coated with rhBMP-2. BCP/BMP and CPP/BMP were prepared as discs, which were treated with rhBMP-2 and collagen. Physical and biological features were investigated using in-vitro and in-vivo tests. New bone area percentages (%) in the BCP/BMP and CPP/BMP groups were significantly greater than in the BCP and CPP groups. At weeks 4 and 8 post-implantation, CPP/BMP showed the most new bone growth. Within the limitations of this study, treatment of BCP and CPP with rhBMP-2 significantly enhanced bone regeneration. CPP was found to be a suitable carrier for rhBMP-2.
Collapse
Affiliation(s)
- Jin-Chul Park
- Department of Dentistry, School of Medicine, Korea University, Seoul 02841, Korea.
| | - Eun-Bin Bae
- Department of Prosthodontics, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Se-Eun Kim
- Department of Veterinary Surgery, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea.
| | - So-Yun Kim
- School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Kyung-Hee Choi
- Tissue Biotech Institute, Cowellmedi Co., Ltd., Busan 46986, Korea.
| | - Jae-Won Choi
- Department of Prosthodontics, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Ji-Hyeon Bae
- Department of Prosthodontics, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Jae-Jun Ryu
- Department of Dentistry, School of Medicine, Korea University, Seoul 02841, Korea.
| | - Jung-Bo Huh
- Department of Prosthodontics, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| |
Collapse
|
40
|
Esenyel CZ, Tekin C, Çakar M, Bayraktar K, Saygili S, Esenyel M, Tekin ZN. Surgical treatment of the neglected achilles tendon rupture with Hyalonect. J Am Podiatr Med Assoc 2016; 104:434-43. [PMID: 25275730 DOI: 10.7547/0003-0538-104.5.434] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND The purpose of this study was to report the management and outcomes of ten patients with chronic Achilles tendon rupture treated with a turndown gastrocnemius-soleus fascial flap wrapped with a surgical mesh (Hyalonect). METHODS Ten men with neglected Achilles tendon rupture were treated with a centrally based turndown gastrocnemius fascial flap wrapped with Hyalonect. Hyalonect is a knitted mesh composed of HYAFF, a benzyl ester of hyaluronic acid. The Achilles tendon ruptures were diagnosed more than 1 month after injury. The mean patient age was 41 years. All of the patients had weakness of active plantarflexion. The mean preoperative American Orthopaedic Foot and Ankle Society score was 64.8. RESULTS The functional outcome was excellent. The mean American Orthopaedic Foot and Ankle Society score was 97.8 at the latest follow-up. There were significant differences between the preoperative and postoperative scores. Ankle range of motion was similar in both ankles. Neither rerupture nor major complication, particularly of wound healing, was observed. CONCLUSIONS For patients with chronic Achilles tendon rupture with a rupture gap of at least 5 cm, surgical repair using a single turndown fascial flap covered with Hyalonect achieved excellent outcomes.
Collapse
Affiliation(s)
- Cem Zeki Esenyel
- Department of Orthopaedic Surgery and Traumatology, Okmeydani Research and Training Hospital, Istanbul, Turkey
| | - Cagri Tekin
- Department of Orthopaedic Surgery and Traumatology, Okmeydani Research and Training Hospital, Istanbul, Turkey
| | - Murat Çakar
- Department of Orthopaedic Surgery and Traumatology, Okmeydani Research and Training Hospital, Istanbul, Turkey
| | - Kursat Bayraktar
- Department of Orthopaedic Surgery and Traumatology, Okmeydani Research and Training Hospital, Istanbul, Turkey
| | - Selcuk Saygili
- Department of Orthopaedic Surgery and Traumatology, Okmeydani Research and Training Hospital, Istanbul, Turkey
| | - Meltem Esenyel
- Department of Physical Therapy and Rehabilitation, Medeniyet University, Göztepe Training and Research Hospital, İstanbul, Turkey
| | - Zeynep N. Tekin
- Department of Radiology, Darica Farabi Government Hospital, Kocaeli, Turkey
| |
Collapse
|
41
|
Di Luca A, Longoni A, Criscenti G, Mota C, van Blitterswijk C, Moroni L. Toward mimicking the bone structure: design of novel hierarchical scaffolds with a tailored radial porosity gradient. Biofabrication 2016; 8:045007. [DOI: 10.1088/1758-5090/8/4/045007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
42
|
Guarino V, Zuppolini S, Borriello A, Ambrosio L. Electro-Active Polymers (EAPs): A Promising Route to Design Bio-Organic/Bioinspired Platforms with on Demand Functionalities. Polymers (Basel) 2016; 8:E185. [PMID: 30979278 PMCID: PMC6432240 DOI: 10.3390/polym8050185] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/19/2016] [Accepted: 05/04/2016] [Indexed: 11/17/2022] Open
Abstract
Through recent discoveries and new knowledge among correlations between molecular biology and materials science, it is a growing interest to design new biomaterials able to interact-i.e., to influence, to guide or to detect-with cells and their surrounding microenvironments, in order to better control biological phenomena. In this context, electro-active polymers (EAPs) are showing great promise as biomaterials acting as an interface between electronics and biology. This is ascribable to the highly tunability of chemical/physical properties which confer them different conductive properties for various applicative uses (i.e., molecular targeting, biosensors, biocompatible scaffolds). This review article is divided into three parts: the first one is an overview on EAPs to introduce basic conductivity mechanisms and their classification. The second one is focused on the description of most common processes used to manipulate EAPs in the form of two-dimensional (2D) and three-dimensional (3D) materials. The last part addresses their use in current applications in different biomedical research areas including tissue engineering, biosensors and molecular delivery.
Collapse
Affiliation(s)
- Vincenzo Guarino
- Institute of Polymers, Composites and Biomaterials, Department of Chemical Sciences and Materials Technologies, National Research Council of Italy, V.le Kennedy 54, 80125 Naples, Italy.
| | - Simona Zuppolini
- Institute of Polymers, Composites and Biomaterials, Department of Chemical Sciences and Materials Technologies, National Research Council of Italy, V.le Kennedy 54, 80125 Naples, Italy.
| | - Anna Borriello
- Institute of Polymers, Composites and Biomaterials, Department of Chemical Sciences and Materials Technologies, National Research Council of Italy, V.le Kennedy 54, 80125 Naples, Italy.
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, Department of Chemical Sciences and Materials Technologies, National Research Council of Italy, V.le Kennedy 54, 80125 Naples, Italy.
| |
Collapse
|
43
|
Altamura D, Pastore SG, Raucci MG, Siliqi D, De Pascalis F, Nacucchi M, Ambrosio L, Giannini C. Scanning Small- and Wide-Angle X-ray Scattering Microscopy Selectively Probes HA Content in Gelatin/Hydroxyapatite Scaffolds for Osteochondral Defect Repair. ACS APPLIED MATERIALS & INTERFACES 2016; 8:8728-8736. [PMID: 27020229 DOI: 10.1021/acsami.6b00557] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study is aimed at investigating the structure of a scaffold made of bovine gelatin and hydroxyapatite for bone tissue engineering purposes. In particular, the detailed characterization of such a material has a great relevance because of its application in the healing process of the osteochondral defect that consists of a damage of cartilage and injury of the adjacent subchondral bone, significantly compromising millions of patient's quality of life. Two different techniques exploiting X-ray radiation, with table-top setups, are used: microtomography (micro-CT) and microdiffraction. Micro-CT characterizes the microstructure in the three dimensions at the micrometer scale spatial resolution, whereas microdiffraction provides combined structural/morphological information at the atomic and nanoscale, in two dimensional microscopy images with a hundred micrometer spatial resolution. The combination of these two techniques allowed an appropriate structural characterization for the purpose of validating the engineering approach used for the realization of the hydroxyapatite gradient across the scaffold, with properties close to the natural model.
Collapse
Affiliation(s)
- Davide Altamura
- Institute of Crystallography (IC), National Research Council , Bari 70125, Italy
| | - Stella G Pastore
- Institute of Crystallography (IC), National Research Council , Bari 70125, Italy
| | - Maria G Raucci
- Institute of Polymers, Composites, and Biomaterials (IPCB), National Research Council , Naples, Italy
| | - Dritan Siliqi
- Institute of Crystallography (IC), National Research Council , Bari 70125, Italy
| | - Fabio De Pascalis
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) , Brindisi 72100, Italy
| | - Michele Nacucchi
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) , Brindisi 72100, Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composites, and Biomaterials (IPCB), National Research Council , Naples, Italy
- Department of Chemical Sciences and Materials Technology (DSCTM), National Research Council , Rome 000133, Italy
| | - Cinzia Giannini
- Institute of Crystallography (IC), National Research Council , Bari 70125, Italy
| |
Collapse
|
44
|
Guarino V, Veronesi F, Marrese M, Giavaresi G, Ronca A, Sandri M, Tampieri A, Fini M, Ambrosio L. Needle-like ion-doped hydroxyapatite crystals influence osteogenic properties of PCL composite scaffolds. ACTA ACUST UNITED AC 2016; 11:015018. [PMID: 26928781 DOI: 10.1088/1748-6041/11/1/015018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Surface topography and chemistry both play a crucial role on influencing cell response in 3D porous scaffolds in terms of osteogenesis. Inorganic materials with peculiar morphology and chemical functionalities may be proficiently used to improve scaffold properties-in the bulk and along pore surface-promoting in vitro and in vivo osseous tissue in-growth. The present study is aimed at investigating how bone regenerative properties of composite scaffolds made of poly(Ɛ-caprolactone) (PCL) can be augmented by the peculiar properties of Mg(2+) ion doped hydroxyapatite (dHA) crystals, mainly emphasizing the role of crystal shape on cell activities mediated by microstructural properties. At the first stage, the study of mechanical response by crossing experimental compression tests and theoretical simulation via empirical models, allow recognizing a significant contribution of dHA shape factor on scaffold elastic moduli variation as a function of the relative volume fraction. Secondly, the peculiar needle-like shape of dHA crystals also influences microscopic (i.e. crystallinity, adhesion forces) and macroscopic (i.e. roughness) properties with relevant effects on biological response of the composite scaffold: differential scanning calorimetry (DSC) analyses clearly indicate a reduction of crystallization heat-from 66.75 to 43.05 J g(-1)-while atomic force microscopy (AFM) ones show a significant increase of roughness-from (78.15 ± 32.71) to (136.13 ± 63.21) nm-and of pull-off forces-from 33.7% to 48.7%. Accordingly, experimental studies with MG-63 osteoblast-like cells show a more efficient in vitro secretion of alkaline phosphatase (ALP) and collagen I and a more copious in vivo formation of new bone trabeculae, thus suggesting a relevant role of dHA to support the main mechanisms involved in bone regeneration.
Collapse
Affiliation(s)
- V Guarino
- Institute of Polymers, Composites and Biomaterials, Department of Chemical Sciences & Materials Technology National Research Council of Italy, Mostra D'Oltremare, Pad.20, V. le Kennedy 54, 80125, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking inspiration from the role and multi-component construction of native extracellular matrices (ECMs) for cell accommodation, the synthetic biomaterials produced today routinely incorporate biologically active components to define an artificial in vivo milieu with complex and dynamic interactions that foster and regulate stem cells, similar to the events occurring in a natural cellular microenvironment. The range and degree of biomaterial sophistication have also dramatically increased as more knowledge has accumulated through materials science, matrix biology and tissue engineering. However, achieving clinical translation and commercial success requires regenerative biomaterials to be not only efficacious and safe but also cost-effective and convenient for use and production. Utilizing biomaterials of human origin as building blocks for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural tissue with regard to its physical and chemical properties for the orchestration of wound healing and tissue regeneration. In addition to directly using tissue transfers and transplants for repair, new applications of human-derived biomaterials are now focusing on the use of naturally occurring biomacromolecules, decellularized ECM scaffolds and autologous preparations rich in growth factors/non-expanded stem cells to either target acceleration/magnification of the body's own repair capacity or use nature's paradigms to create new tissues for restoration. In particular, there is increasing interest in separating ECMs into simplified functional domains and/or biopolymeric assemblies so that these components/constituents can be discretely exploited and manipulated for the production of bioscaffolds and new biomimetic biomaterials. Here, following an overview of tissue auto-/allo-transplantation, we discuss the recent trends and advances as well as the challenges and future directions in the evolution and application of human-derived biomaterials for reconstructive surgery and tissue engineering. In particular, we focus on an exploration of the structural, mechanical, biochemical and biological information present in native human tissue for bioengineering applications and to provide inspiration for the design of future biomaterials.
Collapse
|
46
|
Zhao F, Zhang W, Fu X, Xie W, Chen X. Fabrication and characterization of bioactive glass/alginate composite scaffolds by a self-crosslinking processing for bone regeneration. RSC Adv 2016. [DOI: 10.1039/c6ra18309c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bioactive glass/alginate composite scaffolds were fabricated through a self-crosslinking process by bioactive glass microspheres provided Ca2+completely.
Collapse
Affiliation(s)
- Fujian Zhao
- Department of Biomedical Engineering
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Wen Zhang
- Department of Biomedical Engineering
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Xiaoling Fu
- Department of Biomedical Engineering
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Weihan Xie
- Department of Biomedical Engineering
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Xiaofeng Chen
- Department of Biomedical Engineering
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
| |
Collapse
|
47
|
Bakhtiyari SSE, Karbasi S, Monshi A, Montazeri M. Evaluation of the effects of nano-TiO2 on bioactivity and mechanical properties of nano bioglass-P3HB composite scaffold for bone tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:2. [PMID: 26610925 DOI: 10.1007/s10856-015-5613-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/24/2015] [Indexed: 06/05/2023]
Abstract
To emulate bone structure, porous composite scaffold with suitable mechanical properties should be designed. In this research the effects of nano-titania (nTiO2) on the bioactivity and mechanical properties of nano-bioglass-poly-3-hydroxybutyrate (nBG/P3HB)-composite scaffold were evaluated. First, nBG powder was prepared by melting method of pure raw materials at a temperature of 1400 °C and then the porous ceramic scaffold of nBG/nTiO2 with 30 wt% of nBG containing different weight ratios of nTiO2 (3, 6, and 9 wt% of nTiO2 with grain size of 35-37 nm) was prepared by using polyurethane sponge replication method. Then the scaffolds were coated with P3HB in order to increase the scaffold's mechanical properties. Mechanical strength and modulus of scaffolds were improved by adding nTiO2 to nBG scaffold and adding P3HB to nBG/nTiO2 composite scaffold. The results of the compressive strength and porosity tests showed that the best scaffold is 30 wt% of nBG with 6 wt% of nTiO2 composite scaffold immersed for 30 s in P3HB with 79.5-80 % of porosity in 200-600 μm, with a compressive strength of 0.15 MPa and a compressive modulus of 30 MPa, which is a good candidate for bone tissue engineering. To evaluate the bioactivity of the scaffold, the simulated body fluid (SBF) solution was used. The best scaffold with 30 wt% of nBG, 6 wt% of P3HB and 6 wt% of nTiO2 was immersed in SBF for 4 weeks at an incubation temperature of 37 °C. The bioactivity of the scaffolds was characterized by AAS, SEM, EDXA and XRD. The results of bioactivity showed that bone-like apatite layer formed well at scaffold surface and adding nTiO2 to nBG/P3HB composite scaffold helped increase the bioactivity rate.
Collapse
Affiliation(s)
| | - Saeed Karbasi
- Biomaterials Group, Advance Medical Technology Department, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Ahmad Monshi
- Department of Material Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Mahbobeh Montazeri
- Department of Materials Engineering, Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad, Isfahan, Iran
| |
Collapse
|
48
|
Bone Marrow Stromal Stem Cells for Bone Repair: Basic and Translational Aspects. RECENT ADVANCES IN STEM CELLS 2016. [DOI: 10.1007/978-3-319-33270-3_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
49
|
Dorozhkin SV. Calcium Orthophosphate-Containing Biocomposites and Hybrid Biomaterials for Biomedical Applications. J Funct Biomater 2015; 6:708-832. [PMID: 26262645 PMCID: PMC4598679 DOI: 10.3390/jfb6030708] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/31/2015] [Accepted: 08/01/2015] [Indexed: 12/30/2022] Open
Abstract
The state-of-the-art on calcium orthophosphate (CaPO4)-containing biocomposites and hybrid biomaterials suitable for biomedical applications is presented. Since these types of biomaterials offer many significant and exciting possibilities for hard tissue regeneration, this subject belongs to a rapidly expanding area of biomedical research. Through the successful combinations of the desired properties of matrix materials with those of fillers (in such systems, CaPO4 might play either role), innovative bone graft biomaterials can be designed. Various types of CaPO4-based biocomposites and hybrid biomaterials those are either already in use or being investigated for biomedical applications are extensively discussed. Many different formulations in terms of the material constituents, fabrication technologies, structural and bioactive properties, as well as both in vitro and in vivo characteristics have been already proposed. Among the others, the nano-structurally controlled biocomposites, those containing nanodimensional compounds, biomimetically fabricated formulations with collagen, chitin and/or gelatin, as well as various functionally graded structures seem to be the most promising candidates for clinical applications. The specific advantages of using CaPO4-based biocomposites and hybrid biomaterials in the selected applications are highlighted. As the way from a laboratory to a hospital is a long one and the prospective biomedical candidates have to meet many different necessities, the critical issues and scientific challenges that require further research and development are also examined.
Collapse
|
50
|
Zhao S, Zhang J, Zhu M, Zhang Y, Liu Z, Tao C, Zhu Y, Zhang C. Three-dimensional printed strontium-containing mesoporous bioactive glass scaffolds for repairing rat critical-sized calvarial defects. Acta Biomater 2015; 12:270-280. [PMID: 25449915 DOI: 10.1016/j.actbio.2014.10.015] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/09/2014] [Accepted: 10/15/2014] [Indexed: 01/17/2023]
Abstract
The development of a new generation of biomaterials with high osteogenic ability for fast osseointegration with host bone is being intensively investigated. In this study, we have fabricated three-dimensional (3-D) strontium-containing mesoporous bioactive glass (Sr-MBG) scaffolds by a 3-D printing technique. Sr-MBG scaffolds showed uniform interconnected macropores (∼400μm), high porosity (∼70%) and enhanced compressive strength (8.67±1.74MPa). Using MBG scaffolds as a control, the biological properties of Sr-MBG scaffolds were evaluated by apatite-forming ability, adhesion, proliferation, alkaline phosphatase activity and osteogenic gene expression of osteoblast-like cells MC3T3-E1. Furthermore, Sr-MBG scaffolds were used to repair critical-sized rat calvarial defects. The results showed that Sr-MBG scaffolds possessed good apatite-forming ability and stimulated MC3T3-E1 cell proliferation and differentiation. Importantly, the in vivo results revealed that Sr-MBG scaffolds had good osteogenic capability and stimulated new blood vessel formation in critical-sized rat calvarial defects within 8 weeks. Therefore, 3-D printed Sr-MBG scaffolds with favorable pore structure and high osteogenic ability have more potential applications in bone regeneration.
Collapse
|