1
|
Chepy A, Collet A, Launay D, Dubucquoi S, Sobanski V. Autoantibodies in systemic sclerosis: From disease bystanders to pathogenic players. J Transl Autoimmun 2025; 10:100272. [PMID: 39917316 PMCID: PMC11799969 DOI: 10.1016/j.jtauto.2025.100272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 02/09/2025] Open
Abstract
Autoantibodies (Aab) are recognized as key indicators in the diagnosis, classification, and monitoring of systemic autoimmune diseases (AID). Recent studies have expanded knowledge through the discovery of new antigenic targets, advanced methods for measuring Aab levels, and understanding their possible pathogenic roles in AID. This narrative review uses systemic sclerosis (SSc) as an example to highlight the importance of Aab associated with HEp-2 immunofluorescence assay positivity (traditionally referred as antinuclear antibodies [ANA]), exploring recent developments in the field. Firstly, we outline the various types of ANA found in SSc and their links with specific disease features. Newly discovered antibodies shed light on SSc cases where Aab had previously gone unidentified. Secondly, we emphasize the necessity for novel quantitative techniques to track Aab levels over time by gathering data regarding the timing of Aab occurrence relative to SSc symptoms and the relationships between Aab concentrations and disease severity. Finally, we discuss the experimental findings suggesting a potential direct role of Aab in the development of SSc. The advancements surrounding Aab provide insights into new disease mechanisms and may lead to innovative diagnostic and treatment approaches.
Collapse
Affiliation(s)
- Aurélien Chepy
- Univ. Lille, Inserm, CHU Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- CHU Lille, Département de Médecine interne et Immunologie Clinique, Centre de Référence des Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), Lille, France
| | - Aurore Collet
- Univ. Lille, Inserm, CHU Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- CHU Lille, Institut d’Immunologie, Lille, France
| | - David Launay
- Univ. Lille, Inserm, CHU Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- CHU Lille, Département de Médecine interne et Immunologie Clinique, Centre de Référence des Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), Lille, France
| | - Sylvain Dubucquoi
- Univ. Lille, Inserm, CHU Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- CHU Lille, Institut d’Immunologie, Lille, France
| | - Vincent Sobanski
- Univ. Lille, Inserm, CHU Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- CHU Lille, Département de Médecine interne et Immunologie Clinique, Centre de Référence des Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest, Méditerranée et Guadeloupe (CeRAINOM), Lille, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
2
|
Rojas A, Lindner C, Schneider I, Gonzalez I, Uribarri J. The RAGE Axis: A Relevant Inflammatory Hub in Human Diseases. Biomolecules 2024; 14:412. [PMID: 38672429 PMCID: PMC11048448 DOI: 10.3390/biom14040412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
In 1992, a transcendental report suggested that the receptor of advanced glycation end-products (RAGE) functions as a cell surface receptor for a wide and diverse group of compounds, commonly referred to as advanced glycation end-products (AGEs), resulting from the non-enzymatic glycation of lipids and proteins in response to hyperglycemia. The interaction of these compounds with RAGE represents an essential element in triggering the cellular response to proteins or lipids that become glycated. Although initially demonstrated for diabetes complications, a growing body of evidence clearly supports RAGE's role in human diseases. Moreover, the recognizing capacities of this receptor have been extended to a plethora of structurally diverse ligands. As a result, it has been acknowledged as a pattern recognition receptor (PRR) and functionally categorized as the RAGE axis. The ligation to RAGE leads the initiation of a complex signaling cascade and thus triggering crucial cellular events in the pathophysiology of many human diseases. In the present review, we intend to summarize basic features of the RAGE axis biology as well as its contribution to some relevant human diseases such as metabolic diseases, neurodegenerative, cardiovascular, autoimmune, and chronic airways diseases, and cancer as a result of exposure to AGEs, as well as many other ligands.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca 34600000, Chile; (A.R.); (I.G.)
| | - Cristian Lindner
- Department of Radiology, Faculty of Medicine, University of Concepción, Concepción 4030000, Chile;
| | - Ivan Schneider
- Centre of Primary Attention, South Metropolitan Health Service, Santiago 3830000, Chile;
| | - Ileana Gonzalez
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca 34600000, Chile; (A.R.); (I.G.)
| | - Jaime Uribarri
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10021, USA
| |
Collapse
|
3
|
Jiao M, Sun Y, Shi J, Zhang N, Tang X, Fan A, Liu S, Dai C, Qian Z, Zhang F, Wang C, Chen H, Zheng F. IL-33 and HMGB1 modulate the progression of EAE via oppositely regulating each other. Int Immunopharmacol 2023; 122:110653. [PMID: 37467690 DOI: 10.1016/j.intimp.2023.110653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/19/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
Interleukin-33 (IL-33) and high mobility group box 1 (HMGB1) have been reported to play crucial and distinct roles in experimental autoimmune encephalomyelitis (EAE). However, little is known about their interaction in the progression of EAE. In this study, the dynamic expression and release of IL-33 and HMGB1 in different stages of EAE in vivo, and their interaction in vitro were explored. We found that HMGB1 was dominant in pre-onset stage of EAE, while IL-33 was dominant in peak stage. Moreover, both blockade of extracellular HMGB1 in the central nervous system (CNS) and conditional knockout of HMGB1 in astrocytes decreased IL-33 release. HMGB1 promoted the release of IL-33, while IL-33 reduced the release of HMGB1 from primary astrocytes in vitro. Taken together, IL-33 and HMGB1 in the CNS jointly participate in the EAE progression and the inhibitory effect of IL-33 on HMGB1 may be involved in the self-limiting of EAE.
Collapse
Affiliation(s)
- Mengya Jiao
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yan Sun
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central Minzu University, Wuhan 430074, China; College of Life Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Junyu Shi
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng 475004, China
| | - Na Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xuhuan Tang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Anqi Fan
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Shiwang Liu
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chan Dai
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhigang Qian
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Feng Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chenchen Wang
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Huoying Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China; Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China.
| | - Fang Zheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China.
| |
Collapse
|
4
|
Trimarchi M, Lauritano D, Ronconi G, Caraffa A, Gallenga CE, Frydas I, Kritas SK, Calvisi V, Conti P. Mast Cell Cytokines in Acute and Chronic Gingival Tissue Inflammation: Role of IL-33 and IL-37. Int J Mol Sci 2022; 23:13242. [PMID: 36362030 PMCID: PMC9654575 DOI: 10.3390/ijms232113242] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/27/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Much evidence suggests autoimmunity in the etiopathogenesis of periodontal disease. In fact, in periodontitis, there is antibody production against collagen, DNA, and IgG, as well as increased IgA expression, T cell dysfunction, high expression of class II MHC molecules on the surface of gingival epithelial cells in inflamed tissues, activation of NK cells, and the generation of antibodies against the azurophil granules of polymorphonuclear leukocytes. In general, direct activation of autoreactive immune cells and production of TNF can activate neutrophils to release pro-inflammatory enzymes with tissue damage in the gingiva. Gingival inflammation and, in the most serious cases, periodontitis, are mainly due to the dysbiosis of the commensal oral microbiota that triggers the immune system. This inflammatory pathological state can affect the periodontal ligament, bone, and the entire gingival tissue. Oral tolerance can be abrogated by some cytokines produced by epithelial cells and activated immune cells, including mast cells (MCs). Periodontal cells and inflammatory-immune cells, including mast cells (MCs), produce cytokines and chemokines, mediating local inflammation of the gingival, along with destruction of the periodontal ligament and alveolar bone. Immune-cell activation and recruitment can be induced by inflammatory cytokines, such as IL-1, TNF, IL-33, and bacterial products, including lipopolysaccharide (LPS). IL-1 and IL-33 are pleiotropic cytokines from members of the IL-1 family, which mediate inflammation of MCs and contribute to many key features of periodontitis and other inflammatory disorders. IL-33 activates several immune cells, including lymphocytes, Th2 cells, and MCs in both innate and acquired immunological diseases. The classic therapies for periodontitis include non-surgical periodontal treatment, surgery, antibiotics, anti-inflammatory drugs, and surgery, which have been only partially effective. Recently, a natural cytokine, IL-37, a member of the IL-1 family and a suppressor of IL-1b, has received considerable attention for the treatment of inflammatory diseases. In this article, we report that IL-37 may be an important and effective therapeutic cytokine that may inhibit periodontal inflammation. The purpose of this paper is to study the relationship between MCs, IL-1, IL-33, and IL-37 inhibition in acute and chronic inflamed gingival tissue.
Collapse
Affiliation(s)
- Matteo Trimarchi
- Centre of Neuroscience of Milan, Department of Medicine and Surgery, University of Milan, 20122 Milano, Italy;
| | - Dorina Lauritano
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Gianpaolo Ronconi
- Clinica dei Pazienti del Territorio, Fondazione Policlinico Gemelli, 00185 Rome, Italy;
| | | | - Carla E. Gallenga
- Section of Ophthalmology, Department of Biomedical Sciences and Specialist Surgery, University of Ferrara, 44121 Ferrara, Italy;
| | - Ilias Frydas
- Department of Parasitology, Aristotle University, 54124 Thessaloniki, Greece;
| | - Spyros K. Kritas
- Department of Microbiology and Infectious Diseases, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Macedonia, Greece;
| | - Vittorio Calvisi
- Orthopaedics Department, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Pio Conti
- Immunology Division, Postgraduate Medical School, University of Chieti, 65100 Pescara, Italy
| |
Collapse
|
5
|
IL-33/ST2 Activation Is involved in Ro60-Regulated Photosensitivity in Cutaneous Lupus Erythematosus. Mediators Inflamm 2022; 2022:4955761. [PMID: 35909659 PMCID: PMC9328989 DOI: 10.1155/2022/4955761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Interleukin- (IL-) 33 contributes to various inflammatory processes. IL-33/ST2 activation participates in systemic lupus erythematous via binding to the receptor of Suppression of Tumorigenicity 2 protein (ST2). However, whether IL-33/ST2 interferes with the nosogenesis of cutaneous lupus erythematosus (CLE) has not been reported so far. Herein, we proposed to disclose the impacts on IL-33/ST2 activation and Ro60 on CLE and their potential implications in the photosensitization of CLE cells. IL-33, ST2, and Ro60 in CLE patients' skin lesions were detected. Murine keratinocytes stimulated with or without IL-33 were irradiated by ultraviolet B (UVB), and the levels of Ro60 and inflammation markers were determined. Keratinocytes were cocultured with J774.2 macrophages and stimulated with IL-33 for analysis of chemostasis. The results identified that IL-33, ST2, and downstream inflammation markers were significantly upregulated in CLE lesions with Ro60 overexpression. Additionally, IL-33 treatment promoted the upregulation of Ro60 induced by UVB treatment in murine keratinocytes. Moreover, IL-33 stimulates keratinocytes to induce macrophage migration via enhancing the generation of the chemokine (C–C motif) ligands 17 and 22. Meanwhile, the silencing of ST2 or nuclear factor-kappa B (NF-κB) suppression abolished IL-33-induced upregulation of Ro60 in keratinocytes. Similarly, the inhibition of SOX17 expression was followed by downregulation of Ro60 in keratinocytes following IL-33 stimulation. In addition, UVB irradiation upregulated SOX17 in keratinocytes. Conclusively, the IL-33/ST2 axis interferes with Ro60-regulated photosensitization via activating the NF-κB- and PI3K/Akt- and SOX17-related pathways.
Collapse
|
6
|
Danieli MG, Antonelli E, Piga MA, Claudi I, Palmeri D, Tonacci A, Allegra A, Gangemi S. Alarmins in autoimmune diseases. Autoimmun Rev 2022; 21:103142. [PMID: 35853572 DOI: 10.1016/j.autrev.2022.103142] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/10/2022] [Indexed: 12/18/2022]
Abstract
Alarmins are endogenous, constitutively expressed, chemotacting and immune activating proteins or peptides released because of non-programmed cell death (i.e. infections, trauma, etc). They are considered endogenous damage-associated molecular patterns (DAMPs), able to induce a sterile inflammation. In the last years, several studies highlighted a possible role of different alarmins in the pathogenesis of various autoimmune and immune-mediated diseases. We reviewed the relevant literature about this topic, for about 160 articles. Particularly, we focused on systemic autoimmune diseases (systemic lupus erythematosus, rheumatoid arthritis, idiopathic inflammatory myopathies, ANCA-associated vasculitides, Behçet's disease) and cutaneous organ-specific autoimmune diseases (vitiligo, psoriasis, alopecia, pemphigo). Finally, we discussed about future perspectives and potential therapeutic implications of alarmins in autoimmune diseases. In fact, identification of receptors and downstream signal transducers of alarmins may lead to the identification of antagonistic inhibitors and agonists, with the capacity to modulate alarmins-related pathways and potential therapeutic applicability.
Collapse
Affiliation(s)
- Maria Giovanna Danieli
- Clinica Medica, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, via Tronto 10/A, 60126 Torrette di Ancona, Italy; Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy.
| | - Eleonora Antonelli
- PostGraduate School of Internal Medicine, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy.
| | - Mario Andrea Piga
- Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy.
| | - Ilaria Claudi
- Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy.
| | - Davide Palmeri
- Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy.
| | - Alessandro Tonacci
- Institute of Clinical Physiology, National Research Council of Italy (IFC-CNR), Via G. Moruzzi 1, 56124 Pisa, Italy.
| | - Alessandro Allegra
- Division of Haematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy.
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy.
| |
Collapse
|
7
|
Li Y, Shao Y, He Y, Li Q, Duan L. Potential role of interleukin-33 in systemic lupus erythematosus by regulating toll like receptor 4. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221094455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Introduction Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by immune activation and multi-immunologic phenotypes. Interleukin-33 (IL-33) has been shown to be a critical and pleiotropic immunoregulatory mediator in the pathogenesis of many autoimmune diseases. At present, there are conflicting findings in the research of IL-33 in SLE. The purpose of this study was to investigate whether and how IL-33 is involved in the occurrence and development of SLE. Methods 43 SLE patients and 43 healthy volunteers were recruited for this study. Serum levels of IL-33, IL-4, IL-6, IL-10 and IL-21 were measured by ELISA. The expression of IL-33 was investigated in kidney sections by immunohistochemistry in lupus nephritis patients ( n = 5) and controls ( n = 3). The mRNA expressions of Toll like receptor 4 (TLR4), TLR2, and tumorigenicity 2 (ST2)L were quantified in peripheral blood mononuclear cells (PBMCs) by real-time PCR. The surface expression of TLR4 on T cells, B cells, monocytes, and neutrophils was assessed by flow cytometry ( n = 22). Mann–Whitney U-test and Spearman’s test were used for statistical analysis. Results Serum concentrations of IL-33 were significantly higher in SLE patients than in healthy controls ( p < 0.0001). IL-33 expressions were positively correlated with IL-4 and IL-6 levels in SLE patients, which play pivotal roles in the autoantibody production. In addition, TLR4 and TLR2 mRNA were markedly increased in PBMCs from SLE patients ( p < 0.05). TLR4 was positively associated with IL-33, while TLR2 was not. Conclusions These results imply that upregulated expression of serum IL-33 together with increased TLR4 in PBMCs may contribute to the pathogenesis of SLE via promotion of inflammatory cytokines production.
Collapse
Affiliation(s)
- Yi Li
- Medical College of Nanchang University, Nanchang, Jiangxi, China
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
| | - Yijia Shao
- Medical College of Nanchang University, Nanchang, Jiangxi, China
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
| | - Yan He
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Qiugen Li
- Medical College of Nanchang University, Nanchang, Jiangxi, China
- Department of Pulmonary and Critical Care Medicine, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
| | - Lihua Duan
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
- The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| |
Collapse
|
8
|
Liu N, Chen J, Zhao Y, Zhang M, Piao L, Wang S, Yue Y. Role of the IL-33/ST2 receptor axis in ovarian cancer progression. Oncol Lett 2021; 22:504. [PMID: 33986865 DOI: 10.3892/ol.2021.12765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 11/26/2020] [Indexed: 01/02/2023] Open
Abstract
Ovarian cancer remains a significant health problem for women in the world due to its diagnosis at advanced stages of disease and the high mortality rate of patients. To date, ovarian cancer is frequently treated with tumor reduction surgery followed by platinum/paclitaxel-based chemotherapy; however, most patients eventually develop relapsed disease. The mRNA expression levels of interleukin-33 (IL-33) and the suppressor of tumorigenicity 2 (ST2) receptor are significantly upregulated in ovarian cancer tissues and metastatic tumor lesions. In addition, IL-33 and ST2 expression has been associated with a poor overall survival in patients with epithelial ovarian cancer. The IL-33 receptor ST2 is expressed as both a membrane-anchored receptor (ST2L) activated by IL-33, and as a soluble variant that exhibits anti-inflammatory properties. In the present review, the functions of the IL-33/ST2L axis in cells and their aberrant expression levels in ovarian cancer were discussed. In addition, targeting their expression as a novel strategy for the control of ovarian cancer progression was emphasized.
Collapse
Affiliation(s)
- Ning Liu
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Jintong Chen
- Department of Cancer Immunology, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Yinghua Zhao
- Department of Cancer Immunology, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Mingyue Zhang
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Li Piao
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Siqing Wang
- Department of Cancer Immunology, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Ying Yue
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| |
Collapse
|
9
|
Yang Y, Yang L, Jiang S, Yang T, Lan J, Lei Y, Tan H, Pan K. HMGB1 mediates lipopolysaccharide-induced inflammation via interacting with GPX4 in colon cancer cells. Cancer Cell Int 2020; 20:205. [PMID: 32514250 PMCID: PMC7260829 DOI: 10.1186/s12935-020-01289-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 05/22/2020] [Indexed: 12/29/2022] Open
Abstract
Background Inflammation is one of a main reason for colon cancer progression and poor prognosis. The high-mobility group box-1 (HMGB1) and glutathione peroxidase 4 (GPX4) are responsible for inflammation, but the relationship between HMGB1 and GPX4 remains unknown about inflammation in colon cancer. Methods RT-qPCR was carried out to investigate the expression of IL1β, IL6 and TNFα in colon cancer cells stimulated with LPS or siHMGB1. To observe the relationship between HMGB1, GPX4 and inflammation or ROS, Western blot assays were adopted. Pull-down, CoIP and immunohistochemistry assays were performed to further investigate the molecular mechanisms of HMGB1 and GPX4 in colon cancer. Results We report that HMGB1 mediates lipopolysaccharide (LPS)-induced inflammation in colon cancer cells. Mechanistically, acetylated HMGB1 interacts with GPX4, negatively regulating GPX4 activity. Furthermore, by utilizing siHMGB1 and its inhibitor, our discoveries demonstrate that HMGB1 knockdown can inhibit inflammation and reactive oxygen species (ROS) accumulation via NF-kB. Conclusion Collectively, our findings first demonstrate that acetylated HMGB1 can interact with GPX4, leading to inflammation, and providing therapeutic strategies targeting HMGB1 and GPX4 for colon cancer.
Collapse
Affiliation(s)
- Yuhan Yang
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500 Sichuan People's Republic of China
| | - Ling Yang
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, People's Republic of China
| | - Sheng Jiang
- Ministry of science and technology, Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, People's Republic of China
| | - Ting Yang
- Department of pathology, Yiyang Central Hospital, Yiyang, 413000 Hunan People's Republic of China
| | - Jingbin Lan
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500 Sichuan People's Republic of China
| | - Yun Lei
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, People's Republic of China
| | - Hao Tan
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500 Sichuan People's Republic of China
| | - Kejian Pan
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, 610500 Sichuan People's Republic of China
| |
Collapse
|
10
|
Renoprotective effect of calycosin in high fat diet-fed/STZ injected rats: Effect on IL-33/ST2 signaling, oxidative stress and fibrosis suppression. Chem Biol Interact 2020; 315:108897. [DOI: 10.1016/j.cbi.2019.108897] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/30/2019] [Accepted: 11/08/2019] [Indexed: 12/29/2022]
|
11
|
Han R, Liu Z, Sun N, Liu S, Li L, Shen Y, Xiu J, Xu Q. BDNF Alleviates Neuroinflammation in the Hippocampus of Type 1 Diabetic Mice via Blocking the Aberrant HMGB1/RAGE/NF-κB Pathway. Aging Dis 2019; 10:611-625. [PMID: 31165005 PMCID: PMC6538223 DOI: 10.14336/ad.2018.0707] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/07/2018] [Indexed: 01/12/2023] Open
Abstract
Diabetes is a systemic disease that can cause brain damage such as synaptic impairments in the hippocampus, which is partly because of neuroinflammation induced by hyperglycemia. Brain-derived neurotrophic factor (BDNF) is essential in modulating neuroplasticity. Its role in anti-inflammation in diabetes is largely unknown. In the present study, we investigated the effects of BDNF overexpression on reducing neuroinflammation and the underlying mechanism in mice with type 1 diabetes induced by streptozotocin (STZ). Animals were stereotactically microinjected in the hippocampus with recombinant adeno-associated virus (AAV) expressing BDNF or EGFP. After virus infection, four groups of mice, the EGFP+STZ, BDNF+STZ, EGFP Control and BDNF Control groups, received STZ or vehicle treatment as indicated. Three weeks later brain tissues were collected. We found that BDNF overexpression in the hippocampus significantly rescued STZ-induced decreases in mRNA and protein expression of two synaptic plasticity markers, spinophilin and synaptophysin. More interestingly, BDNF inhibited hyperglycemia-induced microglial activation and reduced elevated levels of inflammatory factors (TNF-α, IL-6). BDNF blocked the increase in HMGB1 levels and specifically, in levels of one of the HMGB1 receptors, RAGE. Downstream of HMGB1/RAGE, the increase in the protein level of phosphorylated NF-κB was also reversed by BDNF in STZ-treated mice. These results show that BDNF overexpression reduces neuroinflammation in the hippocampus of type 1 diabetic mice and suggest that the HMGB1/RAGE/NF-κB signaling pathway may contribute to alleviation of neuroinflammation by BDNF in diabetic mice.
Collapse
Affiliation(s)
- Rongrong Han
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,2Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Zeyue Liu
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,2Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Nannan Sun
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,2Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Shu Liu
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,2Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Lanlan Li
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,2Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Shen
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,2Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianbo Xiu
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,2Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Xu
- 1State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.,2Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Li Q, Hu Y, Chen Y, Lv Z, Wang J, An G, Du X, Wang H, Corrigan CJ, Wang W, Ying S. IL-33 induces production of autoantibody against autologous respiratory epithelial cells: a potential mechanism for the pathogenesis of COPD. Immunology 2019; 157:137-150. [PMID: 30801682 DOI: 10.1111/imm.13054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 12/29/2022] Open
Abstract
The mechanisms underlying the chronic, progressive airways inflammation, remodelling and alveolar structural damage characteristic of human chronic obstructive pulmonary disease (COPD) remain unclear. In the present study, we address the hypothesis that these changes are at least in part mediated by respiratory epithelial alarmin (IL-33)-induced production of autoantibodies against airways epithelial cells. Mice immunized with homologous, syngeneic lung tissue lysate along with IL-33 administered directly to the respiratory tract or systemically produced IgG autoantibodies binding predominantly to their own alveolar type II epithelial cells, along with increased percentages of Tfh cells and B2 B-cells in their local, mediastinal lymph nodes. Consistent with its specificity for respiratory epithelial cells, this autoimmune inflammation was confined principally to the lung and not other organs such as the liver and kidney. Furthermore, the serum autoantibodies produced by the mice bound not only to murine, but also to human alveolar type II epithelial cells, suggesting specificity for common, cross-species determinants. Finally, concentrations of antibodies against both human and murine alveolar epithelial cells were significantly elevated in the serum of patients with COPD compared with those of control subjects. These data are consistent with the hypothesis that IL-33 contributes to the chronic, progressive airways obstruction, inflammation and alveolar destruction characteristic of phenotypes of COPD/emphysema through induction of autoantibodies against lung tissue, and particularly alveolar type II epithelial cells.
Collapse
Affiliation(s)
- Qin Li
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yue Hu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yan Chen
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhe Lv
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jingjing Wang
- Department of Laboratory Animal Sciences, Capital Medical University, Beijing, China
| | - Gao An
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaonan Du
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Huating Wang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University & Beijing Institute of Respiratory Medicine, Beijing, China
| | - Chris J Corrigan
- Faculty of Life Sciences & Medicine, School of Immunology & Microbial Sciences, Asthma UK Centre in Allergic Mechanisms of Asthma King's College London, London, UK
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Sun Ying
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Kapurniotu A, Gokce O, Bernhagen J. The Multitasking Potential of Alarmins and Atypical Chemokines. Front Med (Lausanne) 2019; 6:3. [PMID: 30729111 PMCID: PMC6351468 DOI: 10.3389/fmed.2019.00003] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/04/2019] [Indexed: 12/19/2022] Open
Abstract
When the human genome was sequenced, it came as a surprise that it contains “only” 21,306 protein-coding genes. However, complexity and diversity are multiplied by alternative splicing, non-protein-coding transcripts, or post-translational modifications (PTMs) on proteome level. Here, we discuss how the multi-tasking potential of proteins can substantially enhance the complexity of the proteome further, while at the same time offering mechanisms for the fine-regulation of cell responses. Discoveries over the past two decades have led to the identification of “surprising” and previously unrecognized functionalities of long known cytokines, inflammatory mediators, and intracellular proteins that have established novel molecular networks in physiology, inflammation, and cardiovascular disease. In this mini-review, we focus on alarmins and atypical chemokines such as high-mobility group box protein-1 (HMGB-1) and macrophage migration-inhibitory factor (MIF)-type proteins that are prototypical examples of these classes, featuring a remarkable multitasking potential that allows for an elaborate fine-tuning of molecular networks in the extra- and intracellular space that may eventually give rise to novel “task”-based precision medicine intervention strategies.
Collapse
Affiliation(s)
- Aphrodite Kapurniotu
- Division of Peptide Biochemistry, Technische Universität München, Freising, Germany
| | - Ozgun Gokce
- System Neuroscience Laboratory, Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany
| | - Jürgen Bernhagen
- Department of Vascular Biology, Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany.,Munich Heart Alliance, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
14
|
HMBG1 as a Driver of Inflammatory and Immune Processes in the Pathogenesis of Ocular Diseases. J Ophthalmol 2018; 2018:5195290. [PMID: 30473885 PMCID: PMC6220384 DOI: 10.1155/2018/5195290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/14/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022] Open
Abstract
High-mobility group box 1 (HMGB1) is a nuclear protein that can also act as an extracellular trigger of inflammation, proliferation, and migration in eye diseases. It induces signaling pathways by binding to the receptor for advanced glycation end products (RAGE) and Toll-like receptors (TLRs) 2, 4, and 9. This proinflammatory activity is considered to be important in the pathogenesis of a wide range of ocular diseases resulting from hemodynamic changes, presence of neovascular endothelial cells, secretion of intraocular immune factors or inflammation, and apoptosis of retinal cell layers. Further work is needed to elucidate in detail how HMGB1 contributes to ocular disease and how its damaging activity can be modulated. In this review, we summarize current knowledge on HMGB1 as a ligand that can evoke inflammation and immune responses in ocular diseases.
Collapse
|
15
|
Italiani P, Manca ML, Angelotti F, Melillo D, Pratesi F, Puxeddu I, Boraschi D, Migliorini P. IL-1 family cytokines and soluble receptors in systemic lupus erythematosus. Arthritis Res Ther 2018; 20:27. [PMID: 29422069 PMCID: PMC5806463 DOI: 10.1186/s13075-018-1525-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 01/22/2018] [Indexed: 12/13/2022] Open
Abstract
Background Dysregulated production of cytokines has a critical role in systemic lupus. The aim of this work is to identify, by a comprehensive analysis of IL-1 family cytokines and receptors in serum, correlation between cytokines/receptors’ levels and the clinical and serological features of the disease. Methods A full clinical evaluation was performed in 74 patients with systemic lupus erythematosus (SLE). C3, C4, anti-dsDNA and anti-C1q antibodies were measured. Cytokines of the IL-1 family (IL-1α, IL-1β, IL-33, IL-18), soluble receptors (sIL-1R1, sIL-1R2, sIL-1R3, ST2/sIL-1R4) and antagonists (IL-1Ra, IL-18 binding protein (IL-18BP)) were measured in serum by multiarray ELISA. Free IL-18 was calculated as the amount of IL-18 not inhibited by IL-18BP. Data were analysed by non-parametric tests and by multivariate analysis, using partial least squares (PLS) models. Results Total IL-18, IL-18BP, sIL-1R4 and IL-1Ra levels were higher in SLE vs. controls. Total and free IL-18 and sIL-1R4 were higher in patients with active vs. inactive disease and correlated with ECLAM, anti-C1q and anti-dsDNA antibodies. sIL-1R2 was higher in patients with inactive disease, was negatively correlated with ECLAM and anti-C1q antibodies and was positively correlated with C3 levels. PLS identified sIL-1R4, sIL-1R2 and anti-dsDNA as variables distinguishing patients with active from those with inactive disease; sIL-1R4, IL-18BP and anti-dsDNA identified patients with active nephritis; sIL-1R4, C3, IL-18 and free IL-18 identified patients with haematological involvement. Conclusion The data support the use of IL-18, sIL-1R2 and sIL-1R4 as biomarkers of disease activity and organ involvement, and suggest that failure in the inhibition of IL-1 activation may be a critical event in the active stages of SLE.
Collapse
Affiliation(s)
- Paola Italiani
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Maria Laura Manca
- Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesca Angelotti
- Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Daniela Melillo
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Federico Pratesi
- Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ilaria Puxeddu
- Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Diana Boraschi
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Paola Migliorini
- Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| |
Collapse
|
16
|
Interleukin-33 levels are elevated in chronic allograft dysfunction of kidney transplant recipients and promotes epithelial to mesenchymal transition of human kidney (HK-2) cells. Gene 2017; 644:113-121. [PMID: 29122645 DOI: 10.1016/j.gene.2017.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 09/03/2017] [Accepted: 11/02/2017] [Indexed: 12/23/2022]
Abstract
This study is aimed to investigate the potential role of interleukin (IL)-33 in transplanted kidney interstitial fibrosis and the associated mechanism. Serum IL-33 levels were detected using an enzyme-linked immunosorbent assay (ELISA) in healthy volunteers, stable kidney transplantation recipients (KTRs) (stable), KTRs with acute rejection (AR), and KTRs with chronic allograft dysfunction (CAD) (CAD). Immunohistochemical (IHC) staining, Western blotting, and quantitative real-time PCR (qRT-PCR) were used to detect the expression of IL-33 in human kidney tissues obtained from control and CAD patients. In addition, human kidney (HK)-2 cells were treated with human IL-33 at different doses or intervals, and the markers of epithelial to mesenchymal transition (EMT) were assessed by the presence of proteins and mRNA extracted from these cells using Western blotting and qRT-PCR. Cell motility and migration were evaluated with a cell motility and migration assay. The mechanism involved in EMT induced by IL-33 was investigated by Western blot. Finally, fibronectin, E-cadherin, and α-SMA expression, as well as the level of activity in the MAPK signaling pathway in the kidney tissues from the control and CAD group were also detected using a Western blot and an IHC staining assay. The intensity of fibrosis was substantially higher in the CAD group. IL-33 was significantly upregulated in the CAD patients compared to the control group. In vitro, IL-33 could induce EMT in a dose-dependent and time-dependent manner and promoted both the cellular motility and migration capabilities of HK-2 cells. Moreover, the p38 MAPK signaling pathway might be involved in the pathogenesis of EMT induced by IL-33, which was consistent with the in vivo results of the kidney specimens from the control and CAD patients. IL-33 was upregulated in CAD patients and could promote EMT of HK-2 cells.
Collapse
|
17
|
Sato S, Yanagawa Y, Hiraide S, Iizuka K. Cyclic AMP signaling enhances lipopolysaccharide sensitivity and interleukin-33 production in RAW264.7 macrophages. Microbiol Immunol 2017; 60:382-9. [PMID: 27059942 DOI: 10.1111/1348-0421.12381] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/17/2016] [Accepted: 04/01/2016] [Indexed: 12/28/2022]
Abstract
While it has been suggested that IL-33 plays pathogenic roles in various disorders, the factors that stimulate IL-33 production are poorly characterized. In the present study, the effect of cyclic adenosine monophosphate (cAMP) signaling on IL-33 production in RAW264.7 macrophages in response to various doses of LPS was examined. High-dose LPS treatment induced IL-33 and TNF protein production in RAW264.7 macrophages. In contrast, low-dose LPS failed to induce IL-33 production while significantly inducing TNF production. In the presence of the membrane-permeable cAMP analog 8-Br-cAMP, low-dose LPS induced vigorous IL-33 production. This phenomenon was consistent with amounts of mRNA. Similarly, the cAMP-increasing agent adrenaline also enhanced the sensitivity of RAW264.7 macrophages to LPS as demonstrated by IL-33 production. The protein kinase A (PKA) inhibitor H89 blocked the effects of 8-Br-cAMP and adrenaline on IL-33 production, suggesting that PKA is involved in IL-33 induction. Taken together, cAMP-mediated signaling pathway appears to enhance the sensitivity of RAW264.7 macrophages to LPS with respect to IL-33 production. Our findings suggest that stress events and the subsequent secretion of adrenaline enhance macrophage production via IL-33; this process may be associated with the pathogenesis of various disorders involving IL-33.
Collapse
Affiliation(s)
- Shizuka Sato
- Department of Pharmacology, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa 1757, Ishikari-Tobetsu 061-0293, Japan
| | - Yoshiki Yanagawa
- Department of Pharmacology, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa 1757, Ishikari-Tobetsu 061-0293, Japan
| | - Sachiko Hiraide
- Department of Pharmacology, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa 1757, Ishikari-Tobetsu 061-0293, Japan
| | - Kenji Iizuka
- Department of Pharmacology, School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa 1757, Ishikari-Tobetsu 061-0293, Japan
| |
Collapse
|
18
|
Emerging Roles of IL-33/ST2 Axis in Renal Diseases. Int J Mol Sci 2017; 18:ijms18040783. [PMID: 28387719 PMCID: PMC5412367 DOI: 10.3390/ijms18040783] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 03/29/2017] [Accepted: 04/05/2017] [Indexed: 12/16/2022] Open
Abstract
Renal diseases, including acute kidney injury (AKI) and chronic kidney disease (CKD), have a great impact on health care systems worldwide. Similar to cardiovascular diseases, renal diseases are inflammatory diseases involving a variety of cytokines. Primary causes of renal injury include ischemia, uremic toxins, bacteremia, or nephrotoxicity. Inflammation represents an important component following kidney injury. Interleukin (IL)-33 is a member of the IL-1 cytokine family, which is widely expressed in epithelial barrier tissues and endothelial cells, and mediates both tissue inflammation and repair responses. IL-33 is released as a nuclear alarmin in response to tissue damage and triggers innate and adaptive immune responses by binding to its receptor, suppression of tumorigenicity 2 (ST2). Recent evidence from clinical and experimental animal studies indicates that the IL-33/ST2 axis is involved in the pathogenesis of CKD, renal graft injury, systemic lupus nephritis, and AKI. In this review, we discuss the pathological and tissue reparative roles of the IL-33/ST2 pathway in different types of renal diseases.
Collapse
|
19
|
Bu X, Zhang T, Wang C, Ren T, Wen Z. IL-33 reflects dynamics of disease activity in patients with autoimmune hemolytic anemia by regulating autoantibody production. J Transl Med 2015; 13:381. [PMID: 26675669 PMCID: PMC4681137 DOI: 10.1186/s12967-015-0745-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 11/30/2015] [Indexed: 12/21/2022] Open
Abstract
Background
Autoimmune hemolytic anemia (AIHA), a life-threatening anemia with rapid onset, is caused by autoantibody directed to self red blood cells (RBCs). Currently, mechanisms underlying AIHA pathogenesis are largely undefined. Here we explored the correlation of IL-33 with AIHA disease activity and evaluated IL-33 based therapeutics in AIHA treatment. Methods Thirty patients diagnosed with AIHA of warm-type autoantibodies without treatment were enrolled and followed up for 6 months. Levels of cytokines including IL-33, IL-4, IL-6 and IL-13 was determined with ELISA. AIHA disease activity was presented by levels of reticulocyte count, hemoglobin and lactate dehydrogenase. Serum RBC-bound IgG autoantibody was detected using anti-IgG antibody with flow cytometry. To evaluate the effect of IL-33 blockade on AIHA development, groups of B6 mice were immunized with rat RBCs plus recombinant IL-33 protein or IL-33 neutralizing antibody respectively and detected for levels of anti-RBC antibody, frequency of reticulocytes and destruction of transfused syngeneic mouse RBCs. Results Serum level of IL-33 was higher in AIHA patients compared with healthy individuals. Of interest, serum IL-33 was positively correlated with AIHA disease activity and sensitive to their changes in AIHA patients under clinical management. Mechanistically, IL-33 could promote the production of anti-RBC autoantibody. Serum IL-33 was closely associated with serum anti-RBC autoantibody and sensitive to their changes in AIHA patients. Accordingly, blockade of IL-33 interfered with AIHA incidence and ameliorated disease activity. Vice vasa, enforced IL-33 promoted AIHA incidence and disease activity. Conclusions IL-33 was a potential biomarker for monitoring disease activity and therapeutic response in AIHA patients. Targeting IL-33 was a promising strategy for controlling autoantibody production in AIHA patients. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0745-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiangmao Bu
- Department of Clinical Laboratory, Qingdao Women & Children Hospital, Qingdao, 266034, Shandong, China.
| | - Tenglong Zhang
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, 266071, Shandong, China.
| | - Chunhong Wang
- Department of Respiratory Medicine, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| | - Tao Ren
- Department of Respiratory Medicine, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| | - Zhenke Wen
- Institute of Immunobiology, Shanghai Medical College of Fudan University, Shanghai, 200032, China. .,Division of Immunology and Rheumatology, Stanford University School of Medicine, 269 Campus Drive West, Stanford, CA, 94305, USA.
| |
Collapse
|
20
|
Yang F, Zhu P, Duan L, Yang L, Wang J. IL‑33 and kidney disease (Review). Mol Med Rep 2015; 13:3-8. [PMID: 26548720 DOI: 10.3892/mmr.2015.4516] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 10/06/2015] [Indexed: 11/06/2022] Open
Abstract
Interleukin (IL)-33, is a novel member of the IL-1 superfamily, and act as a dual-function molecule as a nuclear factor and cytokine. The expression of IL-33 can be detected in several tissues and cells in humans and in mice. In addition to the conventional secretion approach for cytokines, full-length IL-33 can also be released into the extracellular space following cell damage or mechanical injury. IL-33 mediates its biological effects by interacting with the receptors, suppression of tumorigenicity 2 (ST2) and IL-1 receptor accessory protein, activating intracellular molecules in the nuclear factor-κB and mitogen-activated protein kinase signaling pathways, which drive the production of type 2 cytokines, including IL-4, IL-5 and IL-3, from polarized T helper 2 cells. Increasing evidence indicates that IL-33 is important in chronic kidney disease, and may be involved in the progression of renal fibrosis associated with systemic lupus erythematosus and renal graft damage. In addition, IL-33 contributes to acute kidney injury. In the present review, the biology of IL-33, and the association of IL-33 with kidney diseases are discussed.
Collapse
Affiliation(s)
- Feifei Yang
- Department of Nephrology, The First College of Clinical Medical Science, Three Gorges University, Yichang, Hubei 443003, P.R. China
| | - Ping Zhu
- Department of Nephrology, The First College of Clinical Medical Science, Three Gorges University, Yichang, Hubei 443003, P.R. China
| | - Lihua Duan
- Department of Rheumatology and Clinical Immunology, The First Hospital of Xiamen University, Xiamen, Fujian 361000, P.R. China
| | - Lin Yang
- Department of Nephrology, The First College of Clinical Medical Science, Three Gorges University, Yichang, Hubei 443003, P.R. China
| | - Jiajun Wang
- Department of Immunology, The First College of Clinical Medical Science, Three Gorges University, Yichang, Hubei 443003, P.R. China
| |
Collapse
|
21
|
Theoharides TC, Petra AI, Taracanova A, Panagiotidou S, Conti P. Targeting IL-33 in autoimmunity and inflammation. J Pharmacol Exp Ther 2015; 354:24-31. [PMID: 25906776 DOI: 10.1124/jpet.114.222505] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/22/2015] [Indexed: 12/22/2022] Open
Abstract
Interleukin-33 (IL-33) belongs to the IL-1 family of cytokines. Whereas IL-1 is processed and released by live immune cells in response to infection or other triggers, IL-33 is mostly released as a danger signal ("alarmin") from damaged cells. IL-33 may also be processed and released from activated mast cells (MCs) with subsequent autocrine and paracrine actions. IL-33 augments the stimulatory effects of IgE and substance P on MCs but can also trigger release of cytokines from MCs on its own. Blood IL-33 levels are increased in asthma, atopic dermatitis, multiple sclerosis, rheumatoid arthritis, and Sjögren's syndrome. However, prolonged elevation of IL-33 downregulates FcεRI and may be protective in atherosclerosis, suggesting different roles in immune-regulated diseases. Even though neutralizing IL-33, knocking-down its receptor, or using its soluble "decoy" receptor has resulted in anti-inflammatory effects, there appear to be different outcomes in different tissues. Hence, selective regulation of IL-33 synthesis, release, and signaling may be required to provide effective treatment options.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Integrative Physiology and Pathobiology (T.C.T., A.I.P., A.T., S.P.), Graduate Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences (T.C.T., A.T.), Department of Internal Medicine (T.C.T.), Tufts University School of Medicine, and Tufts Medical Center (T.C.T.), Boston, Massachusetts; and Immunology Division, Graduate Medical School, University of Chieti-Pescara, Chieti, Italy (P.C.)
| | - Anastasia I Petra
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Integrative Physiology and Pathobiology (T.C.T., A.I.P., A.T., S.P.), Graduate Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences (T.C.T., A.T.), Department of Internal Medicine (T.C.T.), Tufts University School of Medicine, and Tufts Medical Center (T.C.T.), Boston, Massachusetts; and Immunology Division, Graduate Medical School, University of Chieti-Pescara, Chieti, Italy (P.C.)
| | - Alexandra Taracanova
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Integrative Physiology and Pathobiology (T.C.T., A.I.P., A.T., S.P.), Graduate Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences (T.C.T., A.T.), Department of Internal Medicine (T.C.T.), Tufts University School of Medicine, and Tufts Medical Center (T.C.T.), Boston, Massachusetts; and Immunology Division, Graduate Medical School, University of Chieti-Pescara, Chieti, Italy (P.C.)
| | - Smaro Panagiotidou
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Integrative Physiology and Pathobiology (T.C.T., A.I.P., A.T., S.P.), Graduate Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences (T.C.T., A.T.), Department of Internal Medicine (T.C.T.), Tufts University School of Medicine, and Tufts Medical Center (T.C.T.), Boston, Massachusetts; and Immunology Division, Graduate Medical School, University of Chieti-Pescara, Chieti, Italy (P.C.)
| | - Pio Conti
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Integrative Physiology and Pathobiology (T.C.T., A.I.P., A.T., S.P.), Graduate Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences (T.C.T., A.T.), Department of Internal Medicine (T.C.T.), Tufts University School of Medicine, and Tufts Medical Center (T.C.T.), Boston, Massachusetts; and Immunology Division, Graduate Medical School, University of Chieti-Pescara, Chieti, Italy (P.C.)
| |
Collapse
|
22
|
Bessa J, Meyer CA, de Vera Mudry MC, Schlicht S, Smith SH, Iglesias A, Cote-Sierra J. Altered subcellular localization of IL-33 leads to non-resolving lethal inflammation. J Autoimmun 2014; 55:33-41. [DOI: 10.1016/j.jaut.2014.02.012] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/24/2014] [Accepted: 02/26/2014] [Indexed: 01/21/2023]
|
23
|
Hu Z, Wang XY, Gong L, Wu GJ, Peng XB. Expression of high mobility group box 1 protein in ulcerative colitis. Shijie Huaren Xiaohua Zazhi 2014; 22:3239-3244. [DOI: 10.11569/wcjd.v22.i22.3239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory condition of the colon which involves a complex interplay of genetic, immunological and environmental factors. The precise pathogenesis of UC remains unclear till now. The high mobility group box 1 (HMGB1) protein is a nuclear non-histone DNA-binding protein that is present within the nuclei of almost all eukaryotic cells. Recent studies indicate that HMGB1 can be released into the extracellular milieu and mediate inflammatory response, thereby contributing to the pathogenesis of numerous infectious and noninfectious, inflammatory and autoimmune diseases, as well as cancers. Many studies have indicated that HMGB1 is involved in the development of UC. The present paper gives an overview of HMGB1 and UC.
Collapse
|
24
|
Rodríguez-Cerdeira C, Lopez-Bárcenas A, Sánchez-Blanco B, Arenas R. The role of IL-33 in host response to Candida albicans. ScientificWorldJournal 2014; 2014:340690. [PMID: 25136658 PMCID: PMC4130336 DOI: 10.1155/2014/340690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Interleukin (IL) 33 is a recently identified pleiotropic cytokine that influences the activity of multiple cell types and orchestrates complex innate and adaptive immune responses. METHODS We performed an extensive review of the literature published between 2005 and 2013 on IL-33 and related cytokines, their functions, and their regulation of the immune system following Candida albicans colonization. Our literature review included cross-references from retrieved articles and specific data from our own studies. RESULTS IL-33 (IL-1F11) is a recently identified member of the IL-1 family of cytokines. Accumulating evidence suggests a pivotal role of the IL-33/ST2 axis in host immune defense against fungal pathogens, including C. albicans. IL-33 induces a Th2-type inflammatory response and activates both innate and adaptive immunity. Studies in animal models have shown that Th2 inflammatory responses have a beneficial role in immunity against gastrointestinal and systemic infections by Candida spp. CONCLUSIONS This review summarizes the most important clinical studies and case reports describing the beneficial role of IL-33 in immunity and host defense mechanisms against pathogenic fungi. The finding that the IL-33/ST2 axis is involved in therapeutic target has implications for the prevention and treatment of inflammatory diseases, including acute or chronic candidiasis.
Collapse
Affiliation(s)
- C. Rodríguez-Cerdeira
- Department of Dermatology, Hospital do Meixoeiro (CHUVI) and University of Vigo, C/Meixoeiro S/N, Vigo, 36200 Galicia, Spain
| | - A. Lopez-Bárcenas
- Department of Dermatology, Hospital General Dr. Manuel Gea González, Calzada de Tlalpan 4800, Tlalpan, 14000 México City, DF, Mexico
| | - B. Sánchez-Blanco
- Department of Emergency, CHUVI, Hospital do Meixoeiro (CHUVI), C/Meixoeiro S/N, Vigo, 36200 Galicia, Spain
| | - R. Arenas
- Department of Dermatology (Section of Mycology), Hospital General Dr. Manuel Gea González, Calzada de Tlalpan 4800, Tlalpan, 14000 México City, DF, Mexico
| |
Collapse
|
25
|
Lu B, Wang C, Wang M, Li W, Chen F, Tracey KJ, Wang H. Molecular mechanism and therapeutic modulation of high mobility group box 1 release and action: an updated review. Expert Rev Clin Immunol 2014; 10:713-27. [PMID: 24746113 DOI: 10.1586/1744666x.2014.909730] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
High mobility group box 1 (HMGB1) is an evolutionarily conserved protein, and is constitutively expressed in virtually all types of cells. Infection and injury converge on common inflammatory responses that are mediated by HMGB1 secreted from immunologically activated immune cells or passively released from pathologically damaged cells. Herein we review the emerging molecular mechanisms underlying the regulation of pathogen-associated molecular patterns (PAMPs)-induced HMGB1 secretion, and summarize many HMGB1-targeting therapeutic strategies for the treatment of infection- and injury-elicited inflammatory diseases. It may well be possible to develop strategies that specifically attenuate damage-associated molecular patterns (DAMPs)-mediated inflammatory responses without compromising the PAMPs-mediated innate immunity for the clinical management of infection- and injury-elicited inflammatory diseases.
Collapse
Affiliation(s)
- Ben Lu
- Department of Hematology, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China
| | | | | | | | | | | | | |
Collapse
|