1
|
Zhang YK, Tong JB, Tan J, Yang M, Xing XY, Zeng YR, Xue Z, Tan CJ. Study on the anti-HBV activity of matrine alkaloids from Oxytropis ochrocephala by MTT, 3d-QSAR, molecular docking and molecular dynamics simulation. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025; 27:442-459. [PMID: 39297208 DOI: 10.1080/10286020.2024.2402369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 02/21/2025]
Abstract
To elucidate the structure-activity relationship of 17 matrine alkaloids from Oxytropis ochrocephala Bunge, their effect on hepatitis B surface antigen (HBsAg) secretion was studied using the MTT assay. A 3D-QSAR analysis showed a strong correlation between chemical structures and biological activities (q2 = 0.625, r2 = 0.859). Molecular docking and molecular dynamics simulations revealed that hydrogen bonding and hydrophobic interactions with hepatitis B core protein (PDB:5T2P) are key to inhibiting HBsAg secretion, suggesting potential for developing natural anti-hepatitis B drugs.
Collapse
Affiliation(s)
- Ya-Kun Zhang
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang 550025, China
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jian-Bo Tong
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jing Tan
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang 550025, China
| | - Min Yang
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang 550025, China
| | - Xiao-Yu Xing
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yan-Rong Zeng
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang 550025, China
| | - Zhan Xue
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang 550025, China
- College of Chemical Engineering, Guizhou University of Engineering Science, Bijie 551700, China
| | - Cheng-Jian Tan
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang 550025, China
| |
Collapse
|
2
|
Chen W, Zhao X, Huang Y, Lu K, Li Y, Li X, Ding H, Li X, Sun S. Solamargine acts as an antiviral by interacting to MZF1 and targeting the core promoter of the hepatitis B virus gene. Aging (Albany NY) 2024; 16:11668-11682. [PMID: 39133152 PMCID: PMC11346786 DOI: 10.18632/aging.206047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/05/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Hepatitis B virus (HBV) infection is still a serious threat to global health and can lead to a variety of liver diseases, including acute and chronic hepatitis, liver cirrhosis, liver failure, hepatocellular carcinoma (HCC), and so on. At present, there are mainly two kinds of drugs for the treatment of hepatitis B at home and abroad: interferon (IFN) and nucleoside/nucleotide analogs (NAs). In recent years, natural compounds have been considered an important source for the development of new anti-HBV drugs due to their complex structure, diverse components, high efficiency, and low toxicity. Many studies have demonstrated that Solamargine has significant anticancer activity, but the antiviral effect is rarely studied. This study aimed to verify the anti-HBV effect of Solamargine and to explore the specific mechanism. METHOD The relative expression of HBV pregenomic RNA (pgRNA) was detected by reverse transcription real-time fluorescence quantitative PCR (RT-qPCR). Northern blot and western blot were used to detect the relative expression of HBV pgRNA and target protein. PCR was used in the construction of HBV pg-promoter, ENII/BCP, and a series of gene deletion mutant fluorescent reporter vectors. The fluorescence relative expression of each mutant was detected by Renilla luciferase assay. RESULTS By binding to MZF1 (Myeloid zinc finger protein 1, MZF1), Solamargine inhibits HBV core promoter activity, reduces pregenomic RNA level, and inhibits HBV, achieving antiviral effects.
Collapse
Affiliation(s)
- Wenwen Chen
- Department of Gastroenterology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan 450003, China
| | - Xinrui Zhao
- Master of Chinese medicine (studies and applications of internal Chinese medicines), Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Yingli Huang
- Department of Gastroenterology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan 450003, China
| | - Kai Lu
- Xinxiang Medical University, Clinical Medicine College, Xinxiang, Henan 453000, China
| | - Yuan Li
- The Third Affiliated Hospital Affiliated of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan 450003, China
| | - Xiaofang Li
- Department of Gastroenterology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan 450003, China
| | - Hui Ding
- Department of Gastroenterology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan 450003, China
| | - Xiuling Li
- Department of Gastroenterology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan 450003, China
| | - Suofeng Sun
- Department of Gastroenterology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan 450003, China
| |
Collapse
|
3
|
Konya P, Demirtürk N. Evaluation of Tenofovir Disoproxil Fumarate Treatment in Patients with Chronic Hepatitis B. INFECTIOUS DISEASES & CLINICAL MICROBIOLOGY 2022; 4:47-54. [PMID: 38633545 PMCID: PMC11022821 DOI: 10.36519/idcm.2022.78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 02/20/2022] [Indexed: 04/19/2024]
Abstract
Objective The main purpose of chronic hepatitis B (CHB) treatment is to improve the patients' life quality and prevent the disease from progressing to cirrhosis or hepatocellular carcinoma. Continuous suppression of hepatitis B virus (HBV) DNA with nucleoside or nucleotide analogues is the most critical way to achieve this goal. This study aimed to evaluate the CHB patients retrospectively followed up with tenofovir disoproxil fumarate (TDF) treatment. Materials and Methods The study was planned as retrospective research by Afyonkarahisar Health Sciences University, Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology between January 2001 and December 2020. We evaluated all treatment-naive and treatment-experienced patients who received TDF (245 mg/day) treatment with the diagnosis of CHB. The data were obtained by reviewing the file information registered in the hospital automation system. HBsAg, Anti-HBs, HBeAg, Anti-HBe, HBV DNA, aspartate aminotransferase (AST), alanine aminotransferase (ALT) values of the patients were evaluated at 1st, 3rd, 6th, 12th months, and 6-month follow-ups throughout the treatment. Virological (HBV-DNA of < 50 IU/ml), biochemical (decrease below 40 IU/Ml in patients with pre-treatment value of ALT >40 IU/ml) and serological (Anti-HBe seroconversion in HBeAg positives and HBsAg negative and anti-HBs seroconversion in all patients) responses were examined. Adverse effects were also assessed during the treatment. Results Data from 131 patients who received TDF treatment were evaluated. Virological responses were determined as 78.6%, 81.3%, 94.2%, and 100% in the patients at 24th week, 48th week, 4th year, and 8th year, respectively. While there was no Anti-HBs seroconversion in any patients in four years of the treatment, it was observed at a rate of 10.5% in the eighth year. We did not determine any significant adverse effects requiring discontinuation of the treatment in the long-term follow-up of 131 patients under TDF treatment. Conclusion As a result of our study, TDF was an effective and well-tolerated choice for CHB treatment.
Collapse
Affiliation(s)
- Petek Konya
- Department of Infectious Disease and Clinical Microbiology, Afyonkarahisar Health Sciences University School of Medicine, Afyonkarahisar, Turkey
| | - Neşe Demirtürk
- Department of Infectious Disease and Clinical Microbiology, Afyonkarahisar Health Sciences University School of Medicine, Afyonkarahisar, Turkey
| |
Collapse
|
4
|
Antiviral Therapy with Entecavir following Antituberculosis Therapy Alleviates Liver Injury and Restores Innate Immunity in Tuberculosis Patients Coinfected with Hepatitis B Virus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2884151. [PMID: 34764998 PMCID: PMC8577919 DOI: 10.1155/2021/2884151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/13/2021] [Indexed: 11/18/2022]
Abstract
Objective Coinfection of tuberculosis (TB) and viral hepatitis may increase the risk of antituberculosis treatment-induced hepatotoxicity, which is regarded as a common cause of termination of the first-line antituberculosis drugs. The study aimed at investigating the protective effects of antiviral therapy on the liver and innate immunity in patients with TB-HBV coinfection. Methods A total of 100 patients with TB-HBV coinfection were recruited and split into antituberculosis and antiviral groups, 50 per group, according to odd or even date of hospital admission from December 2019 to October 2020. The patients in the anti-TB group received antituberculosis therapy, and those in the antiviral group received antiviral therapy. The clinical effectiveness; HBV-DNA negative conversion rate; liver function assessment involving alanine aminotransferase (ALT), aspartate aminotransferase (AST), and total bilirubin (TBIL); immune function evaluation including CD4+, CD8+, CD4+/CD8+, and CD3+ T cells; inflammatory cytokines containing tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interferon-γ (IFN-γ); and intestinal microflora including bifidobacterium, lactobacillus, enterobacterium, enterococcus, and clostridium were main outcome measures after treatment. Results It was found that the total response rate in the antiviral group was significantly higher than the anti-TB group after treatment (χ 2 = 3.157, P=0.017). There was a significant difference in HBV-DNA negative conversion rates between the antiviral group and anti-TB group (82% vs. 58%, χ 2 = 6.384, P=0.001). The ALT, AST, and TBIL in the two groups were all increased after treatment (P < 0.05), but the antiviral group indicated a rise of the above indices compared to the anti-TB group (P < 0.05). The two groups showed a rise on the concentration of CD3+, CD4+, and CD4+/CD8+ T cells and a decline on the CD8+ T cells after treatment (P < 0.05), but these changes in the antiviral group were more evident to those in the anti-TB group (P < 0.05). There was an increase on the IFN-γ level and decrease on the TNF-α and IL-6 levels in both groups after treatment (P < 0.05), but the antiviral group revealed a higher level of IFN-γ with lower levels of TNF-α and IL-6 compared to the anti-TB group (P < 0.05). After treatment, the number of bifidobacteria and lactobacilli was increased, and the number of enterobacteria, enterococci, and clostridium were decreased in the two groups (P < 0.05), while these changes in the antiviral group were more remarkable compared to the anti-TB group (P < 0.05). There was no significant difference in the incidence of adverse reactions between the two groups (χ2 = 0.267, P=0.731). Conclusion Antiviral therapy for tuberculosis-HBV coinfected patients could inhibit HBV replication, providing protection against liver damage, improving innate immunity, and balancing intestinal microflora.
Collapse
|
5
|
Watanabe T, Inoue T, Tanaka Y. Hepatitis B Core-Related Antigen and New Therapies for Hepatitis B. Microorganisms 2021; 9:2083. [PMID: 34683404 PMCID: PMC8537336 DOI: 10.3390/microorganisms9102083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
The hepatitis B core-related antigen (HBcrAg) is an unprecedented novel HBV biomarker that plays an essential role in reflecting covalently closed circular DNA (cccDNA) in chronic hepatitis B (CHB) because its levels correlate with intrahepatic cccDNA and serum HBV DNA. In this review, we describe the clinical application of serum HBcrAg in CHB patients, with a particular focus on new therapies targeting intrahepatic HBV replication. (1) HBcrAg can be detected in clinical cases where serum HBV DNA is undetectable during anti-HBV therapy. (2) A highly sensitive HBcrAg assay (iTACT-HBcrAg) may be useful for monitoring HBV reactivation, as an alternative to HBV DNA. (3) Decreased HBcrAg levels have been significantly associated with promising outcomes in CHB patients, reducing the risk of progression or recurrence of hepatocellular carcinoma. Additionally, we focus on and discuss several drugs in development that target HBV replication, and monitoring HBcrAg may be useful for determining the therapeutic efficacies of such novel drugs. In conclusion, HBcrAg, especially when measured by the recently developed iTACT-HBcrAg assay, may be the most appropriate surrogate marker, over other HBV biomarkers, to predict disease progression and treatment response in CHB patients.
Collapse
Affiliation(s)
- Takehisa Watanabe
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan;
| | - Takako Inoue
- Department of Clinical Laboratory Medicine, Nagoya City University Hospital, Nagoya 467-8602, Japan;
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan;
| |
Collapse
|
6
|
Higuera-de-la-Tijera F, Castro-Narro GE, Velarde-Ruiz Velasco JA, Cerda-Reyes E, Moreno-Alcántar R, Aiza-Haddad I, Castillo-Barradas M, Cisneros-Garza LE, Dehesa-Violante M, Flores-Calderón J, González-Huezo MS, Márquez-Guillén E, Muñóz-Espinosa LE, Pérez-Hernández JL, Ramos-Gómez MV, Sierra-Madero J, Sánchez-Ávila JF, Torre-Delgadillo A, Torres R, Marín-López ER, Kershenobich D, Wolpert-Barraza E. Asociación Mexicana de Hepatología A.C. Clinical guideline on hepatitis B. REVISTA DE GASTROENTEROLOGIA DE MEXICO (ENGLISH) 2021; 86:403-432. [PMID: 34483073 DOI: 10.1016/j.rgmxen.2021.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/14/2021] [Indexed: 12/24/2022]
Abstract
Hepatitis B virus (HBV) infection continues to be a worldwide public health problem. In Mexico, at least three million adults are estimated to have acquired hepatitis B (total hepatitis B core antibody [anti-HBc]-positive), and of those, 300,000 active carriers (hepatitis B surface antigen [HBsAg]-positive) could require treatment. Because HBV is preventable through vaccination, its universal application should be emphasized. HBV infection is a major risk factor for developing hepatocellular carcinoma. Semi-annual liver ultrasound and serum alpha-fetoprotein testing favor early detection of that cancer and should be carried out in all patients with chronic HBV infection, regardless of the presence of advanced fibrosis or cirrhosis. Currently, nucleoside/nucleotide analogues that have a high barrier to resistance are the first-line therapies.
Collapse
Affiliation(s)
- F Higuera-de-la-Tijera
- Departamento de Gastroenterología, Hospital General de México "Dr. Eduardo Liceaga", Mexico City, Mexico
| | - G E Castro-Narro
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico.
| | - J A Velarde-Ruiz Velasco
- Departamento de Gastroenterología, Hospital Civil de Guadalajara "Fray Antonio Alcalde", Guadalajara, Jalisco, Mexico
| | - E Cerda-Reyes
- Departamento de Gastroenterología, Hospital Central Militar, Mexico City, Mexico
| | - R Moreno-Alcántar
- Departamento de Gastroenterología, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, IMSS, Mexico City, Mexico
| | - I Aiza-Haddad
- Clínica de Enfermedades Hepáticas, Hospital Ángeles Lomas, Mexico City, Mexico
| | - M Castillo-Barradas
- Departamento de Gastroenterología, Hospital de Especialidades del Centro Médico Nacional "La Raza", IMSS, Mexico City, Mexico
| | - L E Cisneros-Garza
- Centro de Enfermedades Hepáticas, Hospital San José, Nuevo León, Monterrey, Mexico
| | - M Dehesa-Violante
- Fundación Mexicana para la Salud Hepática A.C. (FUNDHEPA), Mexico City, Mexico
| | - J Flores-Calderón
- Departamento de Gastroenterología, Hospital de Pediatría del Centro Médico Nacional Siglo XXI, IMSS, Mexico City, Mexico
| | - M S González-Huezo
- Servicio de Gastroenterología y Endoscopia Gastrointestinal, ISSSEMYM, Metepec, Estado de México, Mexico
| | - E Márquez-Guillén
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - L E Muñóz-Espinosa
- Clínica de Hígado, Departamento de Medicina Interna, Hospital Universitario "Dr. José E. González", Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | - J L Pérez-Hernández
- Departamento de Gastroenterología, Hospital General de México "Dr. Eduardo Liceaga", Mexico City, Mexico
| | - M V Ramos-Gómez
- Departamento de Gastroenterología, Centro Médico Nacional "20 de Noviembre", ISSSTE, Mexico City, Mexico
| | - J Sierra-Madero
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - J F Sánchez-Ávila
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - A Torre-Delgadillo
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - R Torres
- Hospital de Infectología del Centro Médico Nacional "La Raza", IMSS, Mexico City, Mexico
| | | | - D Kershenobich
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | | |
Collapse
|
7
|
Higuera-de-la-Tijera F, Castro-Narro GE, Velarde-Ruiz Velasco JA, Cerda-Reyes E, Moreno-Alcántar R, Aiza-Haddad I, Castillo-Barradas M, Cisneros-Garza LE, Dehesa-Violante M, Flores-Calderón J, González-Huezo MS, Márquez-Guillén E, Muñóz-Espinosa LE, Pérez-Hernández JL, Ramos-Gómez MV, Sierra-Madero J, Sánchez-Ávila JF, Torre-Delgadillo A, Torres R, Marín-López ER, Kershenobich D, Wolpert-Barraza E. Asociación Mexicana de Hepatología A.C. Clinical guideline on hepatitis B. REVISTA DE GASTROENTEROLOGIA DE MEXICO (ENGLISH) 2021; 86:S0375-0906(21)00061-6. [PMID: 34384668 DOI: 10.1016/j.rgmx.2021.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) infection continues to be a worldwide public health problem. In Mexico, at least three million adults are estimated to have acquired hepatitis B (total hepatitis B core antibody [anti-HBc]-positive), and of those, 300,000 active carriers (hepatitis B surface antigen [HBsAg]-positive) could require treatment. Because HBV is preventable through vaccination, its universal application should be emphasized. HBV infection is a major risk factor for developing hepatocellular carcinoma. Semi-annual liver ultrasound and serum alpha-fetoprotein testing favor early detection of that cancer and should be carried out in all patients with chronic HBV infection, regardless of the presence of advanced fibrosis or cirrhosis. Currently, nucleoside/nucleotide analogues that have a high barrier to resistance are the first-line therapies.
Collapse
Affiliation(s)
- F Higuera-de-la-Tijera
- Departamento de Gastroenterología, Hospital General de México «Dr. Eduardo Liceaga», Ciudad de México, México
| | - G E Castro-Narro
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición «Salvador Zubirán», Ciudad de México, México.
| | - J A Velarde-Ruiz Velasco
- Departamento de Gastroenterología, Hospital Civil de Guadalajara «Fray Antonio Alcalde», Guadalajara, Jalisco, México
| | - E Cerda-Reyes
- Departamento de Gastroenterología, Hospital Central Militar, Ciudad de México, México
| | - R Moreno-Alcántar
- Departamento de Gastroenterología, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México, México
| | - I Aiza-Haddad
- Clínica de Enfermedades Hepáticas, Hospital Ángeles Lomas, Ciudad de México, México
| | - M Castillo-Barradas
- Departamento de Gastroenterología, Hospital de Especialidades del Centro Médico Nacional «La Raza», IMSS, Ciudad de México, México
| | - L E Cisneros-Garza
- Centro de Enfermedades Hepáticas, Hospital San José, Nuevo León, Monterrey, México
| | - M Dehesa-Violante
- Fundación Mexicana para la Salud Hepática A.C. (FUNDHEPA), Ciudad de México, México
| | - J Flores-Calderón
- Departamento de Gastroenterología, Hospital de Pediatría del Centro Médico Nacional Siglo XXI, IMSS, Ciudad de México, México
| | - M S González-Huezo
- Servicio de Gastroenterología y Endoscopia Gastrointestinal, ISSSEMYM, Metepec, Estado de México, México
| | - E Márquez-Guillén
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición «Salvador Zubirán», Ciudad de México, México
| | - L E Muñóz-Espinosa
- Clínica de Hígado, Departamento de Medicina Interna, Hospital Universitario «Dr. José E. González», Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - J L Pérez-Hernández
- Departamento de Gastroenterología, Hospital General de México «Dr. Eduardo Liceaga», Ciudad de México, México
| | - M V Ramos-Gómez
- Departamento de Gastroenterología, Centro Médico Nacional «20 de Noviembre», ISSSTE, Ciudad de México, México
| | - J Sierra-Madero
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición «Salvador Zubirán», Ciudad de México, México
| | - J F Sánchez-Ávila
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ciudad de México, México
| | - A Torre-Delgadillo
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición «Salvador Zubirán», Ciudad de México, México
| | - R Torres
- Hospital de Infectología del Centro Médico Nacional «La Raza», IMSS, Ciudad de México, México
| | | | - D Kershenobich
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición «Salvador Zubirán», Ciudad de México, México
| | | |
Collapse
|
8
|
Gu J, Yu G, Zhang X, Zhang S, Cai H, Ye C, Yang Y, Li D, Tong Z, Shen H, Chen H, Ding F, Lai X, Liu J, Xu M, Wu W. Cross-sectional retrospective analysis of clinical characteristics of chronic hepatitis B patients with oral antiviral treatment in eastern China. Virol J 2021; 18:19. [PMID: 33441170 PMCID: PMC7805123 DOI: 10.1186/s12985-021-01491-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In China, more than 20 million patients with chronic hepatitis B need antiviral treatment. Side effects of antiviral treatment such as renal complications can be problematic, particularly in an aging population. METHODS The data were retrospectively extracted from the hospital medical charts of five centers in eastern China from January 1 to December 31, 2018. RESULTS A total of 8309 patients with CHB was enrolled in this study. The median age of the patients was 46 years. The prevalence of diabetes mellitus, hypertension, and hepatic cirrhosis was respectively 3.49%, 4.42%, and 23.72%. The prevalence of these comorbidities increased with age (P < 0.001). Of the patients with CHB, 5332 had complete renal function results. Among them, patients with an estimated glomerular filtration rate of < 60 mL/min/1.73m2 accounted for 4.14%, and those with proteinuria for 8.33%. According to the definition of chronic kidney disease, the proportion of patients with chronic kidney disease was 11.37%. The prevalence of chronic kidney disease increased with age (P < 0.001). In a multivariate analysis, age group [odds ratio (OR) = 2.387], diabetes mellitus (OR = 1.486), hypertension (OR = 2.557), hepatic cirrhosis (OR = 1.295), and a history of exposure to adefovir dipivoxil (OR = 1.644) were significantly associated with CKD (P < 0.05). Among patients with CKD, 17.66% (107/606) had a history of lamivudine exposure, and 34.65% (210/606) had a history of nucleotide analogue exposure CONCLUSION: The management of Chinese patients with CHB should take into consideration age, previous medication history, and renal impairment.
Collapse
Affiliation(s)
- Jueqing Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, 310031, CN, China
| | - Guodong Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, 310031, CN, China
| | - Xiaoli Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, 310031, CN, China
| | - Shanyan Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, 310031, CN, China
| | - Huan Cai
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, 310031, CN, China
| | - Chanyuan Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, 310031, CN, China
| | - Yida Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, 310031, CN, China.
| | - Dezhou Li
- Department of Infectious Diseases, Ningbo No 2 Hospital, Ningbo, China
| | - Zhaowei Tong
- Department of Infectious Diseases, Huzhou Central Hospital, Huzhou, China
| | - Huajiang Shen
- Department of Infectious Diseases, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Huazhong Chen
- Department of Infectious Diseases, WenZhou Medical College Affiliated Taizhou Hospital, Wenzhou, China
| | - Feng Ding
- Department of Infectious Diseases, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Xijie Lai
- Department of Infectious Diseases, Ningbo No 2 Hospital, Ningbo, China
| | - Junyan Liu
- Department of Infectious Diseases, WenZhou Medical College Affiliated Taizhou Hospital, Wenzhou, China
| | - Meiling Xu
- Department of Infectious Diseases, Huzhou Central Hospital, Huzhou, China
| | - Weiti Wu
- Department of Infectious Diseases, WenZhou Medical College Affiliated Taizhou Hospital, Wenzhou, China
| |
Collapse
|
9
|
Elkhalifa D, Al-Hashimi I, Al Moustafa AE, Khalil A. A comprehensive review on the antiviral activities of chalcones. J Drug Target 2020; 29:403-419. [PMID: 33232192 DOI: 10.1080/1061186x.2020.1853759] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Some viral outbreaks have plagued the world since antiquity, including the most recent COVID-19 pandemic. The continuous spread and emergence of new viral diseases have urged the discovery of novel treatment options that can overcome the limitations of currently marketed antiviral drugs. Chalcones are natural open chain flavonoids that are found in various plants and can be synthesised in labs. Several studies have shown that these small organic molecules exert a number of pharmacological activities, including antiviral, anti-inflammatory, antimicrobial and anticancer. The purpose of this review is to provide a summary of the antiviral activities of chalcones and their derivatives on a set of human viral infections and their potential for targeting the most recent COVID-19 disease. Accordingly, we herein review chalcones activities on the following human viruses: Middle East respiratory syndrome coronavirus, severe acute respiratory syndrome coronavirus, human immunodeficiency, influenza, human rhinovirus, herpes simplex, dengue, human cytomegalovirus, hepatitis B and C, Rift Valley fever and Venezuelan equine encephalitis. We hope that this review will pave the way for the design and development of potentially potent and broad-spectrum chalcone based antiviral drugs.
Collapse
Affiliation(s)
- Dana Elkhalifa
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar.,Department of Pharmacy, Aspetar Orthopedic and Sports Medicine Hospital, Doha, Qatar
| | | | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical Research Centre, Qatar University, Doha, Qatar.,Oncology Department, McGill University, Montreal, Quebec, Canada.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Ashraf Khalil
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
10
|
Kotecha S, Williams TJ. Extending the criteria for acceptable organ donors: balancing the risks. Med J Aust 2019; 211:402-403. [DOI: 10.5694/mja2.50370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Qian L, Fan H, Ju Y, Chen L, Li X, Ye X, Luo Y, Li C, Meng S. A peptide-based inhibitor of gp96 suppresses HBsAg expression and HBV replication by upregulation of p53. J Gen Virol 2019; 100:1241-1252. [PMID: 31204972 DOI: 10.1099/jgv.0.001289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In hepatitis B virus (HBV) infection, the virus produces redundant hepatitis B surface antigen (HBsAg) that plays a key role in driving T-cell tolerance and viral persistence. However, currently available anti-HBV agents have no direct effect on HBsAg transcription and protein expression. In this study, we designed a heat shock protein gp96 inhibitor p37 with the cell penetrating peptide PTD (protein transduction domain of trans-activator of transcription), which mediated p37 internalization into hepatocytes. PTD-p37 effectively suppressed HBsAg expression and viral replication both in vitro and in vivo. We further provide evidence that PTD-p37 suppressed HBV enhancer/promoter activity via p53 upregulation. Moreover, PTD-p37 had antiviral activity against a lamivudine-resistant HBV strain. Considering that suppression of HBsAg expression is a major goal for treatment of HBV infection, our results provide a basis for developing a new therapeutic approaches targeting host factors against viral expression.
Collapse
Affiliation(s)
- Liyuan Qian
- Beijing Key Laboratory of Environmental and Viral Oncology, College of life Science and Bio-Engineering, Beijing University of Technology, Beijing, PR China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, PR China
| | - Hongxia Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, PR China
| | - Ying Ju
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, PR China
| | - Lizhao Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, PR China
| | - Xin Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, PR China
| | - Xin Ye
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, PR China
| | - Yunjing Luo
- Beijing Key Laboratory of Environmental and Viral Oncology, College of life Science and Bio-Engineering, Beijing University of Technology, Beijing, PR China
| | - Changfei Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, PR China
| | - Songdong Meng
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, PR China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, PR China
| |
Collapse
|
12
|
Inoue T, Tanaka Y. The Role of Hepatitis B Core-Related Antigen. Genes (Basel) 2019; 10:357. [PMID: 31075974 PMCID: PMC6562807 DOI: 10.3390/genes10050357] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) cannot be completely eliminated from infected hepatocytes due to the existence of intrahepatic covalently closed circular DNA (cccDNA). Serological biomarkers reflect intrahepatic viral replicative activity as non-invasive alternatives to liver biopsy. Hepatitis B core-related antigen (HBcrAg) is a novel biomarker that has an important role in chronic hepatitis B (CHB), because it correlates with serum HBV DNA and intrahepatic cccDNA. In clinical cases with undetectable serum HBV DNA or loss of HBsAg, HBcrAg still can be detected and the decrease in HBcrAg levels is significantly associated with promising outcomes for CHB patients. HBcrAg can predict spontaneous or treatment-induced hepatitis B envelope antigen (HBeAg) seroconversion, persistent responses before and after cessation of nucleos(t)ide analogues, potential HBV reactivation, HBV reinfection after liver transplantation, and risk of hepatocellular carcinoma progression or recurrence. In this review, the clinical applications of HBcrAg in CHB patients based on its virological features are described. Furthermore, new potential therapeutic anti-HBV agents that affect intrahepatic cccDNA are under development, and the monitoring of HBcrAg might be useful to judge therapeutic effects. In conclusion, HBcrAg might be a suitable surrogate marker beyond other HBV markers to predict the disease progression and treatment responses of CHB patients.
Collapse
Affiliation(s)
- Takako Inoue
- Department of Clinical Laboratory Medicine, Nagoya City University Hospital, Nagoya 467-8602, Japan.
| | - Yasuhito Tanaka
- Department of Clinical Laboratory Medicine, Nagoya City University Hospital, Nagoya 467-8602, Japan.
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan.
| |
Collapse
|
13
|
Han Q, Hou Z, Yin C, Zhang C, Zhang J. 5'-triphosphate siRNA targeting HBx elicits a potent anti-HBV immune response in pAAV-HBV transfected mice. Antiviral Res 2018; 161:36-45. [PMID: 30448255 DOI: 10.1016/j.antiviral.2018.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 10/02/2018] [Accepted: 11/14/2018] [Indexed: 12/19/2022]
Abstract
RNA with 5'-triphosphate (3p-RNA) is recognized by RNA sensor RIG-I (retinoic acid-inducible gene I protein). Previously, we reported that small interfering RNA targeting HBx (3p-siHBx) could confer potent anti-hepatitis B virus (HBV) efficacy via HBx silencing and RIG-I activation. However, the characteristics of innate and adaptive immunity especially exhaustion profiles in the liver microenvironment in response to 3p-siHBx therapy have not been fully elucidated. Here, we observed that 3p-siHBx more significantly inhibited HBV replication in vivo. 3p-siHBx enhanced natural killer (NK) cell activation with KLRG1 and CD69 upregulation and interferon (IFN)-γ secretion. 3p-siHBx significantly reversed the exhaustion phenotype of CD8+ T cells, and augmented CD8+ T cell activation and function. Importantly, 3p-siHBx disrupted the differentiation of myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg), accompanied by the reduction of the immunosuppressive cytokines interleukin (IL)-10 and transforming growth factor (TGF)-β. 3p-siHBx also enhanced dendritic cell maturation. Further investigation showed that RIG-I was involved in 3p-siHBx-induced IFN-α, IFN-β, and IFN-λ production. Moreover, RIG-I activation in HBV+ hepatocytes would improve the recruitment of CD8+ T cells and NK cells. These results reveal that 3p-siHBx therapy can improve the immune microenvironment in HBV-carrier liver and inhibit HBV replication, indicating the potential utility of RIG-I ligands as molecular adjuvants for viral vaccines or candidate drugs.
Collapse
Affiliation(s)
- Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan 250012, China
| | - Zhaohua Hou
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), 19 Keyuan Road, Jinan 250014, China
| | - Chunlai Yin
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan 250012, China
| | - Cai Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan 250012, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua West Road, Jinan 250012, China.
| |
Collapse
|