1
|
Sanchez-Villalobos M, Campos Baños E, Martínez-Balsalobre E, Navarro-Ramirez V, Videla MAB, Pinilla M, Guillén-Navarro E, Salido-Fierrez E, Pérez-Oliva AB. Whole Blood Transcriptome Analysis in Congenital Anemia Patients. Int J Mol Sci 2024; 25:11706. [PMID: 39519257 PMCID: PMC11546763 DOI: 10.3390/ijms252111706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Congenital anemias include a broad range of disorders marked by inherent abnormalities in red blood cells. These abnormalities include enzymatic, membrane, and congenital defects in erythropoiesis, as well as hemoglobinopathies such as sickle cell disease and thalassemia. These conditions range in presentation from asymptomatic cases to those requiring frequent blood transfusions, exhibiting phenotypic heterogeneity and different degrees of severity. Despite understanding their different etiologies, all of them have a common pathophysiological origin with congenital defects of erythropoiesis. We can find different types, from congenital sideroblastic anemia (CSA), which is a bone marrow failure anemia, to hemoglobinopathies as sickle cell disease and thalassemia, with a higher prevalence and clinical impact. Recent efforts have focused on understanding erythropoiesis dysfunction in these anemias but, so far, deep gene sequencing analysis comparing all of them has not been performed. Our study used Quant 3' mRNA-Sequencing to compare transcriptomic profiles of four sickle cell disease patients, ten thalassemia patients, and one rare case of SLC25A38 CSA. Our results showed clear differentiated gene map expressions in all of them with respect to healthy controls. Our study reveals that genes related to metabolic processes, membrane genes, and erythropoiesis are upregulated with respect to healthy controls in all pathologies studied except in the SLC25A38 CSA patient, who shows a unique gene expression pattern compared to the rest of the congenital anemias studied. Our analysis is the first that compares gene expression patterns across different congenital anemias to provide a broad spectrum of genes that could have clinical relevance in these pathologies.
Collapse
Affiliation(s)
- Maria Sanchez-Villalobos
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain (E.C.B.); (M.A.B.V.)
- Hematology Service, Virgen de la Arrixaca University Hospital, 30120 Murcia, Spain
| | - Eulalia Campos Baños
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain (E.C.B.); (M.A.B.V.)
| | - Elena Martínez-Balsalobre
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain (E.C.B.); (M.A.B.V.)
| | - Veronica Navarro-Ramirez
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain (E.C.B.); (M.A.B.V.)
| | | | - Miriam Pinilla
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain (E.C.B.); (M.A.B.V.)
| | - Encarna Guillén-Navarro
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain (E.C.B.); (M.A.B.V.)
- Medical Genetics Section and Pediatrics Service, Virgen de la Arrixaca University Hospital, University of Murcia, 30120 Murcia, Spain
- CIBERER-ISCIII, 28029 Madrid, Spain
| | - Eduardo Salido-Fierrez
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain (E.C.B.); (M.A.B.V.)
- Hematology Service, Virgen de la Arrixaca University Hospital, 30120 Murcia, Spain
| | - Ana Belén Pérez-Oliva
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120 Murcia, Spain (E.C.B.); (M.A.B.V.)
| |
Collapse
|
2
|
Bhat V, Sheehan VA. Can we use biomarkers to identify those at risk of acute pain from sickle cell disease? Expert Rev Hematol 2024; 17:411-418. [PMID: 38949576 DOI: 10.1080/17474086.2024.2372322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024]
Abstract
INTRODUCTION Acute pain episodes, also known as vaso-occlusive crises (VOC), are a major symptom of sickle cell disease (SCD) and lead to frequent hospitalizations. The diagnosis of VOC can be challenging, particularly in adults with SCD, 50% of whom have chronic pain. Several potential biomarkers have been proposed for identifying individuals with VOC, including elevation above the baseline of various vascular growth factors, cytokines, and other markers of inflammation. However, none have been validated to date. AREAS COVERED We summarize prospective biomarkers for the diagnosis of acute pain in SCD, and how they may be involved in the pathophysiology of a VOC. Previous and current strategies for biomarker discovery, including the use of omics techniques, are discussed. EXPERT OPINION Implementing a multi-omics-based approach will facilitate the discovery of objective and validated biomarkers for acute pain.
Collapse
Affiliation(s)
- Varsha Bhat
- Center for Integrative Genomics, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Vivien A Sheehan
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
3
|
Narasipura EA, Fenton OS. Advances in non-viral mRNA delivery to the spleen. Biomater Sci 2024; 12:3027-3044. [PMID: 38712531 PMCID: PMC11175841 DOI: 10.1039/d4bm00038b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Developing safe and effective delivery strategies for localizing messenger RNA (mRNA) payloads to the spleen is an important goal in the field of genetic medicine. Accomplishing this goal is challenging due to the instability, size, and charge of mRNA payloads. Here, we provide an analysis of non-viral delivery technologies that have been developed to deliver mRNA payloads to the spleen. Specifically, our review begins by outlining the unique anatomy and potential targets for mRNA delivery within the spleen. Next, we describe approaches in mRNA sequence engineering that can be used to improve mRNA delivery to the spleen. Then, we describe advances in non-viral carrier systems that can package and deliver mRNA payloads to the spleen, highlighting key advances in the literature in lipid nanoparticle (LNP) and polymer nanoparticle (PNP) technology platforms. Finally, we provide commentary and outlook on how splenic mRNA delivery may afford next-generation treatments for autoimmune disorders and cancers. In undertaking this approach, our goal with this review is to both establish a fundamental understanding of drug delivery challenges associated with localizing mRNA payloads to the spleen, while also broadly highlighting the potential to use these genetic medicines to treat disease.
Collapse
Affiliation(s)
- Eshan A Narasipura
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Owen S Fenton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
4
|
Khurana K, Mahajan S, Acharya S, Kumar S, Toshniwal S. Clinical Biomarkers of Acute Vaso-Occlusive Sickle Cell Crisis. Cureus 2024; 16:e56389. [PMID: 38633967 PMCID: PMC11022002 DOI: 10.7759/cureus.56389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/17/2024] [Indexed: 04/19/2024] Open
Abstract
It is known that an inherited blood condition called sickle cell disease (SCD) is a result of one gene. A number of blood and urine biomarkers have been determined in association with lab and clinical history for SCD patients. SCD has numerous interacting pathways associated with it, which have been identified by biomarkers. These mechanisms consist of some examples, such as endothelial vasodilation response, hypercoagulability, hemolysis, inflammation, oxidative stress, vascular dysfunction, and reperfusion injury among others. To effectively manage SCD, a comprehensive panel of validated blood and urine biomarkers must be established. Despite its monogenic inheritance, the complex nature of the SCD phenotype has impeded progress in its treatment. However, significant strides have been made in clinical biotechnology, paving the way for potential breakthroughs. In SCD, a panel of verified blood and urine biomarkers must be established, however. Despite monogenic inheritance, the great complexity of the SCD phenotype has hindered progress in its management. With few exceptions, clinical biomarkers of illness severity have been found through epidemiological investigations; nevertheless, systematic integration of these biomarkers into clinical treatment algorithms has not occurred. Furthermore, sickle cell crisis, the primary acute consequence of SCD, has been difficult to diagnose with the biomarkers now in use. Inadequate care and a lack of appropriate outcome measures for clinical research are the consequences of these diagnostic constraints. A new chapter in SCD customized treatment has begun with recent advancements in molecular and imaging diagnostics. Strategies in precision medicine are especially relevant now that molecular therapies are within reach. The significance of biochemical indicators linked to clinical manifestation and sub-phenotype identification in SCD is reviewed in this research.
Collapse
Affiliation(s)
- Kashish Khurana
- Department of Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Satish Mahajan
- Department of Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sourya Acharya
- Department of Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sunil Kumar
- Department of Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Saket Toshniwal
- Department of Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
5
|
Lance EI, Faulcon LM, Fu Z, Yang J, Whyte-Stewart D, Strouse JJ, Barron-Casella E, Jones K, Van Eyk JE, Casella JF, Everett AD. Proteomic discovery in sickle cell disease: Elevated neurogranin levels in children with sickle cell disease. Proteomics Clin Appl 2021; 15:e2100003. [PMID: 33915030 PMCID: PMC8666096 DOI: 10.1002/prca.202100003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/06/2021] [Accepted: 04/26/2021] [Indexed: 01/12/2023]
Abstract
PURPOSE Sickle cell disease (SCD) is an inherited hemoglobinopathy that causes stroke and silent cerebral infarct (SCI). Our aim was to identify markers of brain injury in SCD. EXPERIMENTAL DESIGN Plasma proteomes were analyzed using a sequential separation approach of hemoglobin (Hb) and top abundant plasma protein depletion, followed by reverse phase separation of intact proteins, trypsin digestion, and tandem mass spectrometry. We compared plasma proteomes of children with SCD with and without SCI in the Silent Cerebral Infarct Multi-Center Clinical Trial (SIT Trial) to age-matched, healthy non-SCD controls. RESULTS From the SCD group, 1172 proteins were identified. Twenty-five percent (289/1172) were solely in the SCI group. Twenty-five proteins with enriched expression in the human brain were identified in the SCD group. Neurogranin (NRGN) was the most abundant brain-enriched protein in plasma of children with SCD. Using a NRGN sandwich immunoassay and SIT Trial samples, median NRGN levels were higher at study entry in children with SCD (0.28 ng/mL, N = 100) compared to control participants (0.12 ng/mL, N = 25, p < 0.0004). CONCLUSIONS AND CLINICAL RELEVANCE NRGN levels are elevated in children with SCD. NRGN and other brain-enriched plasma proteins identified in plasma of children with SCD may provide biochemical evidence of neurological injury.
Collapse
Affiliation(s)
- Eboni I. Lance
- Department of Neurodevelopmental Medicine, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Zongming Fu
- Division of Pediatric Hematology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jun Yang
- Division of Pediatric Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Donna Whyte-Stewart
- Division of Pediatric Hematology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John J. Strouse
- Division of Pediatric Hematology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Division of Hematology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Emily Barron-Casella
- Division of Pediatric Hematology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kimberly Jones
- Division of Pediatric Hematology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer E. Van Eyk
- Division of Cardiology, Department of Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - James F. Casella
- Division of Pediatric Hematology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Allen D. Everett
- Division of Pediatric Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Yasara N, Premawardhena A, Mettananda S. A comprehensive review of hydroxyurea for β-haemoglobinopathies: the role revisited during COVID-19 pandemic. Orphanet J Rare Dis 2021; 16:114. [PMID: 33648529 PMCID: PMC7919989 DOI: 10.1186/s13023-021-01757-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
Background Hydroxyurea is one of the earliest drugs that showed promise in the management of haemoglobinopathies that include β-thalassaemia and sickle cell disease. Despite this, many aspects of hydroxyurea are either unknown or understudied; specifically, its usefulness in β-thalassaemia major and haemoglobin E β-thalassaemia is unclear. However, during COVID-19 pandemic, it has become a valuable adjunct to transfusion therapy in patients with β-haemoglobinopathies. In this review, we aim to explore the available in vitro and in vivo mechanistic data and the clinical utility of hydroxyurea in β-haemoglobinopathies with a special emphasis on its usefulness during the COVID-19 pandemic. Main body Hydroxyurea is an S-phase-specific drug that reversibly inhibits ribonucleoside diphosphate reductase enzyme which catalyses an essential step in the DNA biosynthesis. In human erythroid cells, it induces the expression of γ-globin, a fetal globin gene that is suppressed after birth. Through several molecular pathways described in this review, hydroxyurea exerts many favourable effects on the haemoglobin content, red blood cell indices, ineffective erythropoiesis, and blood rheology in patients with β-haemoglobinopathies. Currently, it is recommended for sickle cell disease and non-transfusion dependent β-thalassaemia. A number of clinical trials are ongoing to evaluate its usefulness in transfusion dependent β-thalassaemia. During the COVID-19 pandemic, it was widely used as an adjunct to transfusion therapy due to limitations in the availability of blood and logistical disturbances. Thus, it has become clear that hydroxyurea could play a remarkable role in reducing transfusion requirements of patients with haemoglobinopathies, especially when donor blood is a limited resource. Conclusion Hydroxyurea is a well-tolerated oral drug which has been in use for many decades. Through its actions of reversible inhibition of ribonucleoside diphosphate reductase enzyme and fetal haemoglobin induction, it exerts many favourable effects on patients with β-haemoglobinopathies. It is currently approved for the treatment of sickle cell disease and non-transfusion dependent β-thalassaemia. Also, there are various observations to suggest that hydroxyurea is an important adjunct in the treatment of transfusion dependent β-thalassaemia which should be confirmed by randomised clinical trials.
Collapse
Affiliation(s)
- Nirmani Yasara
- Department of Paediatrics, Faculty of Medicine, University of Kelaniya, Thalagolla Road, Ragama, 11010, Sri Lanka
| | - Anuja Premawardhena
- Department of Medicine, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka.,Colombo North Teaching Hospital, Ragama, Sri Lanka
| | - Sachith Mettananda
- Department of Paediatrics, Faculty of Medicine, University of Kelaniya, Thalagolla Road, Ragama, 11010, Sri Lanka. .,Colombo North Teaching Hospital, Ragama, Sri Lanka.
| |
Collapse
|
7
|
Giraud T, Bouguet-Bonnet S, Marchal P, Pickaert G, Averlant-Petit MC, Stefan L. Improving and fine-tuning the properties of peptide-based hydrogels via incorporation of peptide nucleic acids. NANOSCALE 2020; 12:19905-19917. [PMID: 32985645 DOI: 10.1039/d0nr03483e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Peptide self-assemblies have attracted intense research interest over the last few decades thanks to their implications in key biological processes (e.g., amyloid formation) and their use in biotechnological and (bio)material fields. In particular, peptide-based hydrogels have been highly considered as high potential supramolecular materials in the biomedical domain and open new horizons in terms of applications. To further understand their self-assembly mechanisms and to optimize their properties, several strategies have been proposed with the modification of the constituting amino acid chains via, per se, the introduction of d-amino acids, halogenated amino acids, pseudopeptide bonds, or other chemical moieties. In this context, we report herein on the incorporation of DNA-nucleobases into their peptide nucleic acid (PNA) forms to develop a new series of hybrid nucleopeptides. Thus, depending on the nature of the nucleobase (i.e., thymine, cytosine, adenine or guanine), the physicochemical and mechanical properties of the resulting hydrogels can be significantly improved and fine-tuned with, for instance, drastic enhancements of both the gel stiffness (up to 70-fold) and the gel resistance to external stress (up to 40-fold), and the generation of both thermo-reversible and uncommon red-edge excitation shift (REES) properties. To decipher the actual role of each PNA moiety in the self-assembly processes, the induced modifications from the molecular to the macroscopic scales are studied thanks to the multiscale approach based on a large panel of analytical techniques (i.e., rheology, NMR relaxometry, TEM, thioflavin T assays, FTIR, CD, fluorescence, NMR chemical shift index). Thus, such a strategy provides new opportunities to adapt and fit hydrogel properties to the intended ones and pushes back the limits of supramolecular materials.
Collapse
Affiliation(s)
- Tristan Giraud
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
| | | | | | | | | | | |
Collapse
|
8
|
Sabuncuoğlu S, Öztaş Y, Yalcinkaya A, Ünal S, Baydar T, Girgin G. The increased neopterin content in turkish pediatric patients with sickle cell anemia. Ann Hematol 2019; 99:41-47. [PMID: 31760485 DOI: 10.1007/s00277-019-03817-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/05/2019] [Indexed: 11/25/2022]
Abstract
In the present study, the possible activation of cellular immunity in SCD patients was investigated. As immune activation parameters, neopterin concentrations and kynurenine/tryptophan ratio for tryptophan degradation in 35 pediatric patients with sickle cell disease (31 HbSS and 4 HbSß) were determined. Our results have shown that neopterin levels (both urinary and serum) are increased in pediatric patients with sickle cell disease. The increase in neopterin concentration was accompanied by significantly increased biopterin, kynurenine concentration and kynurenine/tryptophan ratio. The mechanism of immune activation and the effects of inflammatory mediators in sickle cell disease are poorly understood, especially in terms of cell-mediated immunity. Further in-vivo and in-vitro studies are required to illuminate the association between neopterin levels and neutrophil activation in sickle cell disease.
Collapse
Affiliation(s)
- Suna Sabuncuoğlu
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, 06100 Sihhiye-, Ankara, Turkey
| | - Yeşim Öztaş
- Faculty of Medicine, Department of Biochemistry, Hacettepe University, Sihhiye-, Ankara, Turkey
| | - Ahmet Yalcinkaya
- Faculty of Medicine, Department of Biochemistry, Hacettepe University, Sihhiye-, Ankara, Turkey
| | - Selma Ünal
- Faculty of Medicine, Department of Pediatrics, Mersin University, Mersin, Turkey
| | - Terken Baydar
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, 06100 Sihhiye-, Ankara, Turkey
| | - Gözde Girgin
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, 06100 Sihhiye-, Ankara, Turkey.
| |
Collapse
|
9
|
Garneau AP, Slimani S, Tremblay LE, Fiola MJ, Marcoux AA, Isenring P. K +-Cl - cotransporter 1 (KCC1): a housekeeping membrane protein that plays key supplemental roles in hematopoietic and cancer cells. J Hematol Oncol 2019; 12:74. [PMID: 31296230 PMCID: PMC6624878 DOI: 10.1186/s13045-019-0766-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/30/2019] [Indexed: 01/04/2023] Open
Abstract
During the 1970s, a Na+-independent, ouabain-insensitive, N-ethylmaleimide-stimulated K+-Cl- cotransport mechanism was identified in red blood cells for the first time and in a variety of cell types afterward. During and just after the mid-1990s, three closely related isoforms were shown to account for this mechanism. They were termed K+-Cl- cotransporter 1 (KCC1), KCC3, and KCC4 according to the nomenclature of Gillen et al. (1996) who had been the first research group to uncover the molecular identity of a KCC, that is, of KCC1 in rabbit kidney. Since then, KCC1 has been found to be the most widely distributed KCC isoform and considered to act as a housekeeping membrane protein. It has perhaps received less attention than the other isoforms for this reason, but as will be discussed in the following review, there is probably more to KCC1 than meets the eye. In particular, the so-called housekeeping gene also appears to play crucial and specific roles in normal as well as pathological hematopoietic and in cancer cells.
Collapse
Affiliation(s)
- A P Garneau
- From the Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), G1R 2J6, Canada
- Cardiometabolic Axis, School of Kinesiology and Physical Activity Sciences, University of Montréal, 900, rue Saint-Denis, Montréal (Qc), H2X 0A9, Canada
| | - S Slimani
- From the Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), G1R 2J6, Canada
| | - L E Tremblay
- From the Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), G1R 2J6, Canada
| | - M J Fiola
- From the Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), G1R 2J6, Canada
| | - A A Marcoux
- From the Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), G1R 2J6, Canada
| | - P Isenring
- From the Nephrology Research Group, Department of Medicine, Laval University, 11, côte du Palais, Québec (Qc), G1R 2J6, Canada.
- L'Hôtel-Dieu de Québec Institution, 10, rue McMahon, Québec (Qc), G1R 2J6, Canada.
| |
Collapse
|
10
|
Ovchynnikova E, Aglialoro F, von Lindern M, van den Akker E. The Shape Shifting Story of Reticulocyte Maturation. Front Physiol 2018; 9:829. [PMID: 30050448 PMCID: PMC6050374 DOI: 10.3389/fphys.2018.00829] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022] Open
Abstract
The final steps of erythropoiesis involve unique cellular processes including enucleation and reorganization of membrane proteins and the cytoskeleton to produce biconcave erythrocytes. Surprisingly this process is still poorly understood. In vitro erythropoiesis protocols currently produce reticulocytes rather than biconcave erythrocytes. In addition, immortalized lines and iPSC-derived erythroid cell suffer from low enucleation and suboptimal final maturation potential. In light of the increasing prospect to use in vitro produced erythrocytes as (personalized) transfusion products or as therapeutic delivery agents, the mechanisms driving this last step of erythropoiesis are in dire need of resolving. Here we review the elusive last steps of reticulocyte maturation with an emphasis on protein sorting during the defining steps of reticulocyte formation during enucleation and maturation.
Collapse
Affiliation(s)
- Elina Ovchynnikova
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Francesca Aglialoro
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Marieke von Lindern
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Emile van den Akker
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
11
|
Soupene E, Larkin SK, Kuypers FA. Featured Article: Depletion of HDL 3 high density lipoprotein and altered functionality of HDL 2 in blood from sickle cell patients. Exp Biol Med (Maywood) 2017; 242:1244-1253. [PMID: 28436274 DOI: 10.1177/1535370217706966] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In sickle cell disease (SCD), alterations of cholesterol metabolism is in part related to abnormal levels and activity of plasma proteins such as lecithin cholesterol acyltransferase (LCAT), and apolipoprotein A-I (ApoA-I). In addition, the size distribution of ApoA-I high density lipoproteins (HDL) differs from normal blood. The ratio of the amount of HDL2 particle relative to the smaller higher density pre-β HDL (HDL3) particle was shifted toward HDL2. This lipoprotein imbalance is exacerbated during acute vaso-occlusive episodes (VOE) as the relative levels of HDL3 decrease. HDL3 deficiency in SCD plasma was found to relate to a slower ApoA-I exchange rate, which suggests an impaired ABCA1-mediated cholesterol efflux in SCD. HDL2 isolated from SCD plasma displayed an antioxidant capacity normally associated with HDL3, providing evidence for a change in function of HDL2 in SCD as compared to HDL2 in normal plasma. Although SCD plasma is depleted in HDL3, this altered capacity of HDL2 could account for the lack of difference in pro-inflammatory HDL levels in SCD as compared to normal. Exposure of human umbilical vein endothelial cells to HDL2 isolated from SCD plasma resulted in higher mRNA levels of the acute phase protein long pentraxin 3 (PTX3) as compared to incubation with HDL2 from control plasma. Addition of the heme-scavenger hemopexin protein prevented increased expression of PTX3 in sickle HDL2-treated cells. These findings suggest that ApoA-I lipoprotein composition and functions are altered in SCD plasma, and that whole blood transfusion may be considered as a blood replacement therapy in SCD. Impact statement Our study adds to the growing evidence that the dysfunctional red blood cell (RBC) in sickle cell disease (SCD) affects the plasma environment, which contributes significantly in the vasculopathy that defines the disease. Remodeling of anti-inflammatory high density lipoprotein (HDL) to pro-inflammatory entities can occur during the acute phase response. SCD plasma is depleted of the pre-β particle (HDL3), which is essential for stimulation of reverse cholesterol from macrophages, and the function of the larger HDL2 particle is altered. These dysfunctions are exacerbated during vaso-occlusive episodes. Interaction of lipoproteins with endothelium increases formation of inflammatory mediators, a process counteracted by the heme-scavenger hemopexin. This links hemolysis to lipoprotein-mediated inflammation in SCD, and hemopexin treatment could be considered. The use of RBC concentrates in transfusion therapy of SCD patients underestimates the importance of the dysfunctional plasma compartment, and transfusion of whole blood or plasma may be warranted.
Collapse
Affiliation(s)
- Eric Soupene
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Sandra K Larkin
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Frans A Kuypers
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| |
Collapse
|
12
|
Klei TRL, Meinderts SM, van den Berg TK, van Bruggen R. From the Cradle to the Grave: The Role of Macrophages in Erythropoiesis and Erythrophagocytosis. Front Immunol 2017; 8:73. [PMID: 28210260 PMCID: PMC5288342 DOI: 10.3389/fimmu.2017.00073] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/17/2017] [Indexed: 12/13/2022] Open
Abstract
Erythropoiesis is a highly regulated process where sequential events ensure the proper differentiation of hematopoietic stem cells into, ultimately, red blood cells (RBCs). Macrophages in the bone marrow play an important role in hematopoiesis by providing signals that induce differentiation and proliferation of the earliest committed erythroid progenitors. Subsequent differentiation toward the erythroblast stage is accompanied by the formation of so-called erythroblastic islands where a central macrophage provides further cues to induce erythroblast differentiation, expansion, and hemoglobinization. Finally, erythroblasts extrude their nuclei that are phagocytosed by macrophages whereas the reticulocytes are released into the circulation. While in circulation, RBCs slowly accumulate damage that is repaired by macrophages of the spleen. Finally, after 120 days of circulation, senescent RBCs are removed from the circulation by splenic and liver macrophages. Macrophages are thus important for RBCs throughout their lifespan. Finally, in a range of diseases, the delicate interplay between macrophages and both developing and mature RBCs is disturbed. Here, we review the current knowledge on the contribution of macrophages to erythropoiesis and erythrophagocytosis in health and disease.
Collapse
Affiliation(s)
- Thomas R L Klei
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, University of Amsterdam , Amsterdam , Netherlands
| | - Sanne M Meinderts
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, University of Amsterdam , Amsterdam , Netherlands
| | - Timo K van den Berg
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, University of Amsterdam , Amsterdam , Netherlands
| | - Robin van Bruggen
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, University of Amsterdam , Amsterdam , Netherlands
| |
Collapse
|
13
|
Soupene E, Borja MS, Borda M, Larkin SK, Kuypers FA. Featured Article: Alterations of lecithin cholesterol acyltransferase activity and apolipoprotein A-I functionality in human sickle blood. Exp Biol Med (Maywood) 2016; 241:1933-1942. [PMID: 27354333 DOI: 10.1177/1535370216657447] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/04/2016] [Indexed: 01/25/2023] Open
Abstract
In sickle cell disease (SCD) cholesterol metabolism appears dysfunctional as evidenced by abnormal plasma cholesterol content in a subpopulation of SCD patients. Specific activity of the high density lipoprotein (HDL)-bound lecithin cholesterol acyltransferase (LCAT) enzyme, which catalyzes esterification of cholesterol, and generates lysoPC (LPC) was significantly lower in sickle plasma compared to normal. Inhibitory amounts of LPC were present in sickle plasma, and the red blood cell (RBC) lysophosphatidylcholine acyltransferase (LPCAT), essential for the removal of LPC, displayed a broad range of activity. The functionality of sickle HDL appeared to be altered as evidenced by a decreased HDL-Apolipoprotein A-I exchange in sickle plasma as compared to control. Increased levels of oxidized proteins including ApoA-I were detected in sickle plasma. In vitro incubation of sickle plasma with washed erythrocytes affected the ApoA-I-exchange supporting the view that the RBC blood compartment can affect cholesterol metabolism in plasma. HDL functionality appeared to decrease during acute vaso-occlusive episodes in sickle patients and was associated with an increase of secretory PLA2, a marker for increased inflammation. Simvastatin treatment to improve the anti-inflammatory function of HDL did not ameliorate HDL-ApoA-I exchange in sickle patients. Thus, the cumulative effect of an inflammatory and highly oxidative environment in sickle blood contributes to a decrease in cholesterol esterification and HDL function, related to hypocholesterolemia in SCD.
Collapse
Affiliation(s)
- Eric Soupene
- Children's Hospital Oakland Research Institute, Oakland, California 94609, USA
| | - Mark S Borja
- Children's Hospital Oakland Research Institute, Oakland, California 94609, USA
| | - Mauricio Borda
- Children's Hospital Oakland Research Institute, Oakland, California 94609, USA
| | - Sandra K Larkin
- Children's Hospital Oakland Research Institute, Oakland, California 94609, USA
| | - Frans A Kuypers
- Children's Hospital Oakland Research Institute, Oakland, California 94609, USA
| |
Collapse
|
14
|
Renella R. Clinically-oriented proteomic investigation of sickle cell disease: Opportunities and challenges. Proteomics Clin Appl 2016; 10:816-30. [DOI: 10.1002/prca.201500133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/05/2016] [Accepted: 05/02/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Raffaele Renella
- Department of Pediatrics; Centre Hospitalier Universitaire Vaudois; Lausanne Switzerland
| |
Collapse
|
15
|
Goodman SR, Pace BS, Hansen KC, D'alessandro A, Xia Y, Daescu O, Glatt SJ. Minireview: Multiomic candidate biomarkers for clinical manifestations of sickle cell severity: Early steps to precision medicine. Exp Biol Med (Maywood) 2016; 241:772-81. [PMID: 27022133 DOI: 10.1177/1535370216640150] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In this review, we provide a description of those candidate biomarkers which have been demonstrated by multiple-omics approaches to vary in correlation with specific clinical manifestations of sickle cell severity. We believe that future clinical analyses of severity phenotype will require a multiomic analysis, or an omics stack approach, which includes integrated interactomics. It will also require the analysis of big data sets. These candidate biomarkers, whether they are individual or panels of functionally linked markers, will require future validation in large prospective and retrospective clinical studies. Once validated, the hope is that informative biomarkers will be used for the identification of individuals most likely to experience severe complications, and thereby be applied for the design of patient-specific therapeutic approaches and response to treatment. This would be the beginning of precision medicine for sickle cell disease.
Collapse
Affiliation(s)
- Steven R Goodman
- Department of Pediatrics and Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Betty S Pace
- Department of Pediatrics, Augusta University, Augusta, GA 30912, USA
| | - Kirk C Hansen
- Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80202, USA
| | - Angelo D'alessandro
- Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80202, USA
| | - Yang Xia
- Biochemistry and Molecular Biology Department, University of Texas at Houston, TX 77030, USA
| | - Ovidiu Daescu
- University of Texas at Dallas, Richardson, TX 75080, USA
| | - Stephen J Glatt
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
16
|
Colvin KL, Yeager ME. Proteomics of pulmonary hypertension: could personalized profiles lead to personalized medicine? Proteomics Clin Appl 2015; 9:111-20. [PMID: 25408474 DOI: 10.1002/prca.201400157] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/13/2014] [Accepted: 11/13/2014] [Indexed: 12/12/2022]
Abstract
Pulmonary hypertension (PH) is a fatal syndrome that arises from a multifactorial and complex background, is characterized by increased pulmonary vascular resistance and right heart afterload, and often leads to cor pulmonale. Over the past decades, remarkable progress has been made in reducing patient symptoms and delaying the progression of the disease. Unfortunately, PH remains a disease with no cure. The substantial heterogeneity of PH continues to be a major limitation to the development of newer and more efficacious therapies. New advances in our understanding of the biological pathways leading to such a complex pathogenesis will require the identification of the important proteins and protein networks that differ between a healthy lung (or right ventricle) and a remodeled lung in an individual with PH. In this article, we present the case for the increased use of proteomics--the study of proteins and protein networks--as a discovery tool for key proteins and protein networks operational in the PH lung. We review recent applications of proteomics in PH, and summarize the biological pathways identified. Finally, we attempt to presage what the future will bring with regard to proteomics in PH and offer our perspectives on the prospects of developing personalized proteomics and custom-tailored therapies.
Collapse
Affiliation(s)
- Kelley L Colvin
- Department of Pediatrics-Critical Care, University of Colorado Denver, Aurora, CO, USA; Cardiovascular Pulmonary Research, University of Colorado Denver, Aurora, CO, USA; Department of Bioengineering, University of Colorado Denver, Aurora, CO, USA; Linda Crnic Institute for Down Syndrome, University of Colorado Denver, Aurora, CO, USA
| | | |
Collapse
|
17
|
Lance EI, Casella JF, Everett AD, Barron-Casella E. Proteomic and biomarker studies and neurological complications of pediatric sickle cell disease. Proteomics Clin Appl 2014; 8:813-27. [PMID: 25290359 DOI: 10.1002/prca.201400069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/20/2014] [Accepted: 09/30/2014] [Indexed: 01/27/2023]
Abstract
Biomarker analysis and proteomic discovery in pediatric sickle cell disease has the potential to lead to important discoveries and improve care. The aim of this review article is to describe proteomic and biomarker articles involving neurological and developmental complications in this population. A systematic review was conducted to identify relevant research publications. Articles were selected for children under the age of 21 years with the most common subtypes of sickle cell disease. Included articles focused on growth factors (platelet-derived growth factor), intra and extracellular brain proteins (glial fibrillary acidic protein, brain-derived neurotrophic factor), and inflammatory and coagulation markers (interleukin-1β, l-selectin, thrombospondin-1, erythrocyte, and platelet-derived microparticles). Positive findings include increases in plasma brain-derived neurotrophic factor and platelet-derived growth factor with elevated transcranial Dopplers velocities, increases in platelet-derived growth factor isoform AA with overt stroke, and increases in glial fibrillary acidic protein with acute brain injury. These promising potential neuro-biomarkers provide insight into pathophysiologic processes and clinical events, but their clinical utility is yet to be established. Additional proteomics research is needed, including broad-based proteomic discovery of plasma constituents and blood cell proteins, as well as urine and cerebrospinal fluid components, before, during and after neurological and developmental complications.
Collapse
Affiliation(s)
- Eboni I Lance
- Department of Neurology, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Neurology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pediatrics, Division of Hematology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
18
|
Alaarg A, Schiffelers RM, van Solinge WW, van Wijk R. Red blood cell vesiculation in hereditary hemolytic anemia. Front Physiol 2013; 4:365. [PMID: 24379786 PMCID: PMC3862113 DOI: 10.3389/fphys.2013.00365] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/25/2013] [Indexed: 12/14/2022] Open
Abstract
Hereditary hemolytic anemia encompasses a heterogeneous group of anemias characterized by decreased red blood cell survival because of inherited membrane, enzyme, or hemoglobin disorders. Affected red blood cells are more fragile, less deformable, and more susceptible to shear stress and oxidative damage, and show increased vesiculation. Red blood cells, as essentially all cells, constitutively release phospholipid extracellular vesicles in vivo and in vitro in a process known as vesiculation. These extracellular vesicles comprise a heterogeneous group of vesicles of different sizes and intracellular origins. They are described in literature as exosomes if they originate from multi-vesicular bodies, or as microvesicles when formed by a one-step budding process directly from the plasma membrane. Extracellular vesicles contain a multitude of bioactive molecules that are implicated in intercellular communication and in different biological and pathophysiological processes. Mature red blood cells release in principle only microvesicles. In hereditary hemolytic anemias, the underlying molecular defect affects and determines red blood cell vesiculation, resulting in shedding microvesicles of different compositions and concentrations. Despite extensive research into red blood cell biochemistry and physiology, little is known about red cell deformability and vesiculation in hereditary hemolytic anemias, and the associated pathophysiological role is incompletely assessed. In this review, we discuss recent progress in understanding extracellular vesicles biology, with focus on red blood cell vesiculation. Also, we review recent scientific findings on the molecular defects of hereditary hemolytic anemias, and their correlation with red blood cell deformability and vesiculation. Integrating bio-analytical findings on abnormalities of red blood cells and their microvesicles will be critical for a better understanding of the pathophysiology of hereditary hemolytic anemias.
Collapse
Affiliation(s)
- Amr Alaarg
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht Utrecht, Netherlands ; Department of Pharmaceutical Sciences, Utrecht University Utrecht, Netherlands
| | - Raymond M Schiffelers
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht Utrecht, Netherlands ; Department of Pharmaceutical Sciences, Utrecht University Utrecht, Netherlands
| | - Wouter W van Solinge
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht Utrecht, Netherlands
| | - Richard van Wijk
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht Utrecht, Netherlands
| |
Collapse
|
19
|
Basu A, Saha S, Karmakar S, Chakravarty S, Banerjee D, Dash BP, Chakrabarti A. 2D DIGE based proteomics study of erythrocyte cytosol in sickle cell disease: Altered proteostasis and oxidative stress. Proteomics 2013; 13:3233-42. [DOI: 10.1002/pmic.201300177] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/08/2013] [Accepted: 08/09/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Avik Basu
- Biophysics and Structural Genomics Division; Saha Institute of Nuclear Physics; Bidhannagar Kolkata India
| | - Sutapa Saha
- Biophysics and Structural Genomics Division; Saha Institute of Nuclear Physics; Bidhannagar Kolkata India
| | - Shilpita Karmakar
- Biophysics and Structural Genomics Division; Saha Institute of Nuclear Physics; Bidhannagar Kolkata India
| | | | - Debasis Banerjee
- Hematology Unit; Ramakrishna Mission Seva Prathisthan; Kolkata India
| | - Bisnu Prasad Dash
- P.G. Department of Biosciences and Biotechnology; Fakir Mohan University; Nuapadhi, Mitrapur Orissa India
| | - Abhijit Chakrabarti
- Biophysics and Structural Genomics Division; Saha Institute of Nuclear Physics; Bidhannagar Kolkata India
| |
Collapse
|
20
|
Goodman SR, Daescu O, Kakhniashvili DG, Zivanic M. The proteomics and interactomics of human erythrocytes. Exp Biol Med (Maywood) 2013; 238:509-18. [DOI: 10.1177/1535370213488474] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In this minireview, we focus on advances in our knowledge of the human erythrocyte proteome and interactome that have occurred since our seminal review on the topic published in 2007. As will be explained, the number of unique proteins has grown from 751 in 2007 to 2289 as of today. We describe how proteomics and interactomics tools have been used to probe critical protein changes in disorders impacting the blood. The primary example used is the work done on sickle cell disease where biomarkers of severity have been identified, protein changes in the erythrocyte membranes identified, pharmacoproteomic impact of hydroxyurea studied and interactomics used to identify erythrocyte protein changes that are predicted to have the greatest impact on protein interaction networks.
Collapse
Affiliation(s)
- Steven R Goodman
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Ovidiu Daescu
- Department of Computer Science, University of Texas at Dallas, Richardson, TX 75080, USA
| | - David G Kakhniashvili
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Marko Zivanic
- Department of Computer Science, University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
21
|
Gee BE. Biologic complexity in sickle cell disease: implications for developing targeted therapeutics. ScientificWorldJournal 2013; 2013:694146. [PMID: 23589705 PMCID: PMC3621302 DOI: 10.1155/2013/694146] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 01/29/2013] [Indexed: 01/01/2023] Open
Abstract
Current therapy for sickle cell disease (SCD) is limited to supportive treatment of complications, red blood cell transfusions, hydroxyurea, and stem cell transplantation. Difficulty in the translation of mechanistically based therapies may be the result of a reductionist approach focused on individual pathways, without having demonstrated their relative contribution to SCD complications. Many pathophysiologic processes in SCD are likely to interact simultaneously to contribute to acute vaso-occlusion or chronic vasculopathy. Applying concepts of systems biology and network medicine, models were developed to show relationships between the primary defect of sickle hemoglobin (Hb S) polymerization and the outcomes of acute pain and chronic vasculopathy. Pathophysiologic processes such as inflammation and oxidative stress are downstream by-products of Hb S polymerization, transduced through secondary pathways of hemolysis and vaso-occlusion. Pain, a common clinical trials endpoint, is also complex and may be influenced by factors outside of sickle cell polymerization and vascular occlusion. Future sickle cell research needs to better address the biologic complexity of both sickle cell disease and pain. The relevance of individual pathways to important sickle cell outcomes needs to be demonstrated in vivo before investing in expensive and labor-intensive clinical trials.
Collapse
Affiliation(s)
- Beatrice E Gee
- Department of Pediatrics, Cardiovascular Research Institute, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA 30310-1495, USA.
| |
Collapse
|
22
|
|