1
|
Yu X, Liu J, Bauer A, Wei X, Smith S, Ning S, Wang C. Enhancing tumor endothelial permeability using MUC18-targeted gold nanorods and mild hyperthermia. J Colloid Interface Sci 2024; 676:101-109. [PMID: 39018803 DOI: 10.1016/j.jcis.2024.07.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
The Enhanced Permeability and Retention (EPR) effect, an elevated accumulation of drugs and nanoparticles in tumors versus in normal tissues, is a widely used concept in the field of cancer therapy. It assumes that the vasculature of solid tumors would possess abnormal, leaky endothelial cell barriers, allowing easy access of intravenous-delivered drugs and nanoparticles to tumor regions. However, the EPR effect is not always effective owing to the heterogeneity of tumor endothelium over time, location, and species. Herein, we introduce a unique nanoparticle-based approach, using MUC18-targeted gold nanorods coupled with mild hyperthermia, to specifically enhance tumor endothelial permeability. This improves the efficacy of traditional cancer therapy including photothermal therapy and anticancer drug delivery by increasing the transport of photo-absorbers and drugs across the tumor endothelium. Using single cell imaging tools and classic analytical approaches in molecular biology, we demonstrate that MUC18-targeted gold nanorods and mild hyperthermia enlarge the intercellular gaps of tumor endothelium by inducing circumferential actin remodeling, stress fiber formation, and cell contraction of adjacent endothelial cells. Considering MUC18 is overexpressed on a variety of tumor endothelium and cancer cells, this approach paves a new avenue to improve the efficacy of cancer therapy by actively enhancing the tumor endothelial permeability.
Collapse
Affiliation(s)
- Xiao Yu
- Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, 501 E St Joseph Street, Rapid City, South Dakota 57701, USA
| | - Jinyuan Liu
- Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, 501 E St Joseph Street, Rapid City, South Dakota 57701, USA
| | - Aaron Bauer
- Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, 501 E St Joseph Street, Rapid City, South Dakota 57701, USA
| | - Xianqing Wei
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Steve Smith
- Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, 501 E St Joseph Street, Rapid City, South Dakota 57701, USA
| | - Shipeng Ning
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China.
| | - Congzhou Wang
- Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, 501 E St Joseph Street, Rapid City, South Dakota 57701, USA.
| |
Collapse
|
2
|
Jia H, Moore M, Wadhwa M, Burns C. Human iPSC-Derived Endothelial Cells Exhibit Reduced Immunogenicity in Comparison With Human Primary Endothelial Cells. Stem Cells Int 2024; 2024:6153235. [PMID: 39687754 PMCID: PMC11649354 DOI: 10.1155/sci/6153235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/07/2024] [Indexed: 12/18/2024] Open
Abstract
Human induced pluripotent stem cell (iPSC)-derived endothelial cells (ECs) have emerged as a promising source of autologous cells with great potential to produce novel cell therapy for ischemic vascular diseases. However, their clinical application still faces numerous challenges including safety concerns such as the potential aberrant immunogenicity derived from the reprogramming process. This study investigated immunological phenotypes of iPSC-ECs by a side-by-side comparison with primary human umbilical vein ECs (HUVECs). Three types of human iPSC-ECs, NIBSC8-EC generated in house and two commercial iPSC-ECs, alongside HUVECs, were examined for surface expression of proteins of immune relevance under resting conditions and after cytokine activation. All iPSC-EC populations failed to express major histocompatibility complex (MHC) Class II on their surface following interferon-gamma (IFN-γ) treatment but showed similar basal and IFN-γ-stimulated expression levels of MHC Class I of HUVECs. Multiple iPSC-ECs also retained constitutive and tumor necrosis factor-alpha (TNF-α)-stimulated expression levels of intercellular adhesion molecule-1 (ICAM-1) like HUVECs. However, TNF-α induced a differential expression of E-selectin and vascular cell adhesion molecule-1 (VCAM-1) on iPSC-ECs. Furthermore, real-time monitoring of proliferation of human peripheral blood mononuclear cells (PBMCs) cocultured on an endothelial monolayer over 5 days showed that iPSC-ECs provoked distinct dynamics of PBMC proliferation, which was generally decreased in alloreactivity and IFN-γ-stimulated proliferation of PBMCs compared with HUVECs. Consistently, in the conventional mixed lymphocyte reaction (MLR), the proliferation of total CD3+ and CD4+ T cells after 5-day cocultures with multiple iPSC-EC populations was largely reduced compared to HUVECs. Last, multiple iPSC-EC cocultures secreted lower levels of proinflammatory cytokines than HUVEC cocultures. Collectively, iPSC-ECs manifested many similarities, but also some disparities with a generally weaker inflammatory immune response than primary ECs, indicating that iPSC-ECs may possibly exhibit hypoimmunogenicity corresponding with less risk of immune rejection in a transplant setting, which is important for safe and effective cell therapies.
Collapse
Affiliation(s)
- Haiyan Jia
- Biotherapeutics and Advanced Therapies, Research and Development, Science and Research Group, Medicines and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar EN6 3QG, Hertfordshire, UK
| | - Melanie Moore
- Therapeutic Reference Materials, Standards Lifecycle, Science and Research Group, Medicines and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar EN6 3QG, Hertfordshire, UK
| | - Meenu Wadhwa
- Biotherapeutics and Advanced Therapies, Research and Development, Science and Research Group, Medicines and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar EN6 3QG, Hertfordshire, UK
| | - Chris Burns
- Biotherapeutics and Advanced Therapies, Research and Development, Science and Research Group, Medicines and Healthcare Products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar EN6 3QG, Hertfordshire, UK
| |
Collapse
|
3
|
Park J, Zhang H, Kwak HJ, Gadhe CG, Kim Y, Kim H, Noh M, Shin D, Ha SJ, Kwon YG. A novel small molecule, CU05-1189, targeting the pleckstrin homology domain of PDK1 suppresses VEGF-mediated angiogenesis and tumor growth by blocking the Akt signaling pathway. Front Pharmacol 2023; 14:1275749. [PMID: 38035024 PMCID: PMC10687218 DOI: 10.3389/fphar.2023.1275749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Inhibition of angiogenesis is considered a promising therapeutic approach for cancer treatment. Our previous genetic research showed that the use of a cell-penetrating peptide to inhibit the pleckstrin homology (PH) domain of 3-phosphoinositide-dependent kinase 1 (PDK1) was a viable approach to suppress pathological angiogenesis. Herein, we synthesized and characterized a novel small molecule, CU05-1189, based on our prior study and present evidence for the first time that this compound possesses antiangiogenic properties both in vitro and in vivo. The computational analysis showed that CU05-1189 can interact with the PH domain of PDK1, and it significantly inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration, invasion, and tube formation in human umbilical vein endothelial cells without apparent toxicity. Western blot analysis revealed that the Akt signaling pathway was specifically inhibited by CU05-1189 upon VEGF stimulation, without affecting other VEGF receptor 2 downstream molecules or cytosolic substrates of PDK1, by preventing translocation of PDK1 to the plasma membrane. We also found that CU05-1189 suppressed VEGF-mediated vascular network formation in a Matrigel plug assay. More importantly, CU05-1189 had a good pharmacokinetic profile with a bioavailability of 68%. These results led to the oral administration of CU05-1189, which resulted in reduced tumor microvessel density and growth in a xenograft mouse model. Taken together, our data suggest that CU05-1189 may have great potential and be a promising lead as a novel antiangiogenic agent for cancer treatment.
Collapse
Affiliation(s)
- Jeongeun Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Haiying Zhang
- Department of Bio Research, Curacle Co., Ltd., Seoul, Republic of Korea
| | - Hyun Jung Kwak
- Department of Strategic Planning, Curacle Co., Ltd., Seoul, Republic of Korea
| | | | - Yeomyeong Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Hyejeong Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Minyoung Noh
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Dongyun Shin
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Ariyasinghe NR, de Souza Santos R, Gross A, Aghamaleky-Sarvestany A, Kreimer S, Escopete S, Parker SJ, Sareen D. Proteomics of novel induced pluripotent stem cell-derived vascular endothelial cells reveal extensive similarity with an immortalized human endothelial cell line. Physiol Genomics 2023; 55:324-337. [PMID: 37306406 PMCID: PMC10396221 DOI: 10.1152/physiolgenomics.00166.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/13/2023] Open
Abstract
The vascular endothelium constitutes the inner lining of the blood vessel, and malfunction and injuries of the endothelium can cause cardiovascular diseases as well as other diseases including stroke, tumor growth, and chronic kidney failure. Generation of effective sources to replace injured endothelial cells (ECs) could have significant clinical impact, and somatic cell sources like peripheral or cord blood cannot credibly supply enough endothelial cell progenitors for multitude of treatments. Pluripotent stem cells are a promising source for a reliable EC supply, which have the potential to restore tissue function and treat vascular diseases. We have developed methods to differentiate induced pluripotent stem cells (iPSCs) efficiently and robustly across multiple iPSC lines into nontissue-specific pan vascular ECs (iECs) with high purity. These iECs present with canonical endothelial cell markers and exhibit measures of endothelial cell functionality with the uptake of Dil fluorescent dye-labeled acetylated low-density lipoprotein (Dil-Ac-LDL) and tube formation. Using proteomic analysis, we revealed that the iECs are more proteomically similar to established human umbilical vein ECs (HUVECs) than to iPSCs. Posttranslational modifications (PTMs) were most shared between HUVECs and iECs, and potential targets for increasing the proteomic similarity of iECs to HUVECs were identified. Here we demonstrate an efficient robust method to differentiate iPSCs into functional ECs, and for the first time provide a comprehensive protein expression profile of iECs, which indicates their similarities with a widely used immortalized HUVECs, allowing for further mechanistic studies of EC development, signaling, and metabolism for future regenerative applications.NEW & NOTEWORTHY We have developed methods to differentiate induced pluripotent stem cells (iPSCs) across multiple iPSC lines into nontissue-specific pan vascular ECs (iECs) and demonstrated the proteomic similarity of these cells to a widely used endothelial cell line (HUVECs). We also identified posttranslational modifications and targets for increasing the proteomic similarity of iECs to HUVECs. In the future, iECs can be used to study EC development, signaling, and metabolism for future regenerative applications.
Collapse
Affiliation(s)
- Nethika R Ariyasinghe
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
- Board of Governors Innovation Center, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Roberta de Souza Santos
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Andrew Gross
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Arwin Aghamaleky-Sarvestany
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Simion Kreimer
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
- Board of Governors Innovation Center, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Sean Escopete
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Sarah J Parker
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
- Board of Governors Innovation Center, Cedars-Sinai Medical Center, Los Angeles, California, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Dhruv Sareen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, Los Angeles, California, United States
- iPSC Core, Cedars-Sinai Medical Center, Los Angeles, California, United States
- Board of Governors Innovation Center, Cedars-Sinai Medical Center, Los Angeles, California, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, United States
| |
Collapse
|
5
|
Seymour AJ, Westerfield AD, Cornelius VC, Skylar-Scott MA, Heilshorn SC. Bioprinted microvasculature: progressing from structure to function. Biofabrication 2022; 14:10.1088/1758-5090/ac4fb5. [PMID: 35086069 PMCID: PMC8988885 DOI: 10.1088/1758-5090/ac4fb5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/27/2022] [Indexed: 11/12/2022]
Abstract
Three-dimensional (3D) bioprinting seeks to unlock the rapid generation of complex tissue constructs, but long-standing challenges with efficientin vitromicrovascularization must be solved before this can become a reality. Microvasculature is particularly challenging to biofabricate due to the presence of a hollow lumen, a hierarchically branched network topology, and a complex signaling milieu. All of these characteristics are required for proper microvascular-and, thus, tissue-function. While several techniques have been developed to address distinct portions of this microvascularization challenge, no single approach is capable of simultaneously recreating all three microvascular characteristics. In this review, we present a three-part framework that proposes integration of existing techniques to generate mature microvascular constructs. First, extrusion-based 3D bioprinting creates a mesoscale foundation of hollow, endothelialized channels. Second, biochemical and biophysical cues induce endothelial sprouting to create a capillary-mimetic network. Third, the construct is conditioned to enhance network maturity. Across all three of these stages, we highlight the potential for extrusion-based bioprinting to become a central technique for engineering hierarchical microvasculature. We envision that the successful biofabrication of functionally engineered microvasculature will address a critical need in tissue engineering, and propel further advances in regenerative medicine andex vivohuman tissue modeling.
Collapse
Affiliation(s)
- Alexis J. Seymour
- Department of Bioengineering, Stanford University, 443 Via Ortega, Shriram Center Room 119, Stanford, CA 94305, USA
| | - Ashley D. Westerfield
- Department of Bioengineering, Stanford University, 443 Via Ortega, Shriram Center Room 119, Stanford, CA 94305, USA
| | - Vincent C. Cornelius
- Department of Bioengineering, Stanford University, 443 Via Ortega, Shriram Center Room 119, Stanford, CA 94305, USA
| | - Mark A. Skylar-Scott
- Department of Bioengineering, Stanford University, 443 Via Ortega, Shriram Center Room 119, Stanford, CA 94305, USA
| | - Sarah C. Heilshorn
- Department of Materials Science & Engineering, Stanford University, 476 Lomita Mall, McCullough Room 246, Stanford, CA 94305, USA
| |
Collapse
|
6
|
Mehlferber MM, Jeffery ED, Saquing J, Jordan BT, Sheynkman L, Murali M, Genet G, Acharya BR, Hirschi KK, Sheynkman GM. Characterization of protein isoform diversity in human umbilical vein endothelial cells via long-read proteogenomics. RNA Biol 2022; 19:1228-1243. [PMID: 36457147 PMCID: PMC9721438 DOI: 10.1080/15476286.2022.2141938] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/26/2022] [Indexed: 12/04/2022] Open
Abstract
Endothelial cells (ECs) comprise the lumenal lining of all blood vessels and are critical for the functioning of the cardiovascular system. Their phenotypes can be modulated by alternative splicing of RNA to produce distinct protein isoforms. To characterize the RNA and protein isoform landscape within ECs, we applied a long read proteogenomics approach to analyse human umbilical vein endothelial cells (HUVECs). Transcripts delineated from PacBio sequencing serve as the basis for a sample-specific protein database used for downstream mass-spectrometry (MS) analysis to infer protein isoform expression. We detected 53,863 transcript isoforms from 10,426 genes, with 22,195 of those transcripts being novel. Furthermore, the predominant isoform in HUVECs does not correspond with the accepted "reference isoform" 25% of the time, with vascular pathway-related genes among this group. We found 2,597 protein isoforms supported through unique peptides, with an additional 2,280 isoforms nominated upon incorporation of long-read transcript evidence. We characterized a novel alternative acceptor for endothelial-related gene CDH5, suggesting potential changes in its associated signalling pathways. Finally, we identified novel protein isoforms arising from a diversity of RNA splicing mechanisms supported by uniquely mapped novel peptides. Our results represent a high-resolution atlas of known and novel isoforms of potential relevance to endothelial phenotypes and function.[Figure: see text].
Collapse
Affiliation(s)
- Madison M. Mehlferber
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Erin D. Jeffery
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Jamie Saquing
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Ben T. Jordan
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Leon Sheynkman
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Mayank Murali
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Gael Genet
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Bipul R. Acharya
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, the University of Manchester, UK
| | - Karen K. Hirschi
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Gloria M. Sheynkman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
7
|
Krause BJ. Novel insights for the role of nitric oxide in placental vascular function during and beyond pregnancy. J Cell Physiol 2021; 236:7984-7999. [PMID: 34121195 DOI: 10.1002/jcp.30470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 01/02/2023]
Abstract
More than 30 years have passed since endothelial nitric oxide synthesis was described using the umbilical artery and vein endothelium. That seminal report set the cornerstone for unveiling the molecular aspects of endothelial function. In parallel, the understanding of placental physiology has gained growing interest, due to its crucial role in intrauterine development, with considerable long-term health consequences. This review discusses the evidence for nitric oxide (NO) as a critical player of placental development and function, with a special focus on endothelial nitric oxide synthase (eNOS) vascular effects. Also, the regulation of eNOS-dependent vascular responses in normal pregnancy and pregnancy-related diseases and their impact on prenatal and postnatal vascular health are discussed. Recent and compelling evidence has reinforced that eNOS regulation results from a complex network of processes, with novel data concerning mechanisms such as mechano-sensing, epigenetic, posttranslational modifications, and the expression of NO- and l-arginine-related pathways. In this regard, most of these mechanisms are expressed in an arterial-venous-specific manner and reflect traits of the fetal systemic circulation. Several studies using umbilical endothelial cells are not aimed to understand placental function but general endothelial function, reinforcing the influence of the placenta on general knowledge in physiology.
Collapse
Affiliation(s)
- Bernardo J Krause
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| |
Collapse
|
8
|
Vega-Tapia F, Peñaloza E, Krause BJ. Specific arterio-venous transcriptomic and ncRNA-RNA interactions in human umbilical endothelial cells: A meta-analysis. iScience 2021; 24:102675. [PMID: 34222842 PMCID: PMC8243012 DOI: 10.1016/j.isci.2021.102675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/21/2021] [Accepted: 05/27/2021] [Indexed: 01/06/2023] Open
Abstract
Whether arterial-venous differences of primary endothelial cells commonly used for vascular research are preserved in vitro remains under debate. To address this issue, a meta-analysis of Affymetrix transcriptomic data sets from human umbilical artery (HUAECs) and vein (HUVEC) endothelial cells was performed. The meta-analysis showed 2,742 transcripts differentially expressed (false discovery rate <0.05), of which 78% were downregulated in HUVECs. Comparisons with RNA-seq data sets showed high levels of agreement and correlation (p < 0.0001), identifying 84 arterial-venous identity markers. Functional analysis revealed enrichment of key vascular processes in HUAECs/HUVECs, including nitric oxide- (NO) and hypoxia-related genes, as well as differences in miRNA- and ncRNA-mRNA interaction profiles. A proof of concept of these findings in primary cells exposed to hypoxia in vitro and in vivo confirmed the arterial-venous differences in NO-related genes and miRNAs. Altogether, these data defined a cross-platform arterial-venous transcript profile for cultured HUAEC-HUVEC and support a preserved identity involving key vascular pathways post-transcriptionally regulated in vitro. Transcriptional differences among HUAEC and HUVEC are preserved in culture These differences occur even after correcting for experimental conditions The heterogenous regulation affects NO- and hypoxia-related genes Cell-specific ncRNA/mRNA interactions are found
Collapse
Affiliation(s)
- Fabian Vega-Tapia
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Avenida Libertador Bernardo O'Higgins 611, Rancagua, Chile
| | - Estefania Peñaloza
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Avenida Libertador Bernardo O'Higgins 611, Rancagua, Chile
| | - Bernardo J Krause
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Avenida Libertador Bernardo O'Higgins 611, Rancagua, Chile
| |
Collapse
|
9
|
Effects of SpoIVA on the formation of spores and crystal protein in Bacillus thuringiensis. Microbiol Res 2020; 239:126523. [PMID: 32575022 DOI: 10.1016/j.micres.2020.126523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 11/20/2022]
Abstract
In addition to forming spores, Bacillus thuringiensis (Bt) 4.0718 can produce toxins, insecticidal crystal protein (ICP) and vegetative insecticidal protein (Vip). The Bt spoIVA was successfully knocked out by gene recombination and was shown to inhibit sporulation. The mutant strain also exhibited significantly decreased growth and crystal formation, which inhibited spore formation and partially reduced the rate of crystal synthesis. The 50 % lethal concentrations (LC50) values of Bt 4.0718, replacement, complementation and multi-copy mutant strains against the fourth larval stage of H. armigera was determined as 5.422, 6.776, 6.223 and 5.018 μg/mL, respectively. A total of 1814 proteins were identified through isobaric tags for relative and absolute protein (iTRAQ), with 41 and 54 up and downregulated proteins observed. Gene ontology enrichment analysis showed that differentially expressed proteins were primarily involved in the biological process and molecular function. Quantitative real-time PCR analysis confirmed that 9 differential expressed genes exhibited a positive correlation between changes at transcriptional and translational levels. The results of this study provide a basis for further studies of the metabolic regulatory network of spores and crystal protein formation. Moreover, they can be used to ecologically safe insecticide of farmland production because the constructed Bt spoIVA mutants did not produce spores.Provides new ideas for the targeted improvement and application of environmentally friendly spore-free strains.
Collapse
|
10
|
Cefis M, Quirié A, Pernet N, Marie C, Garnier P, Prigent-Tessier A. Brain-derived neurotrophic factor is a full endothelium-derived factor in rats. Vascul Pharmacol 2020; 128-129:106674. [PMID: 32179157 DOI: 10.1016/j.vph.2020.106674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/07/2020] [Accepted: 03/12/2020] [Indexed: 02/06/2023]
Abstract
Most of what is known on vascular brain-derived neurotrophic factor (BDNF) derived from experiments on cultured endothelial cells. Therefore, the present study compared BDNF levels/localization in artery (aorta) vs vein (vena cava) from a same territory in rats either sedentary (SED) or exposed to treadmill exercise (EX) as a mean to stimulate endogenous endothelial nitric oxide (NO) production. In SED rats, for both artery and vein, BDNF was strongly expressed by endothelial cells, while only a faint and scattered expression was observed throughout the media. Endothelial and muscular BDNF staining as vascular BDNF protein levels were however higher in artery than in vein, while BDNF mRNA levels did not differ between vessels. Irrespective of the vessels, EX resulted in an increase (+50%) in BDNF protein levels with no change in BDNF mRNA levels, a selective endothelial BDNF overexpression (x4) and an increase in vascular levels of tropomyosin related kinase B receptors (TrkB) phosphorylated at tyrosine 816 (p-TrkBTyr816). Endothelial expressions of BDNF and p-TrkBTyr816 were positively associated when SED and EX rats were simultaneously examined. The results incite to consider endothelial BDNF as a full and NO-dependent endothelium-derived factor that exerts autocrine effects.
Collapse
Affiliation(s)
- Marina Cefis
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences de Santé, F-21000 Dijon, France
| | - Aurore Quirié
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences de Santé, F-21000 Dijon, France
| | - Nicolas Pernet
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences de Santé, F-21000 Dijon, France
| | - Christine Marie
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences de Santé, F-21000 Dijon, France.
| | - Philippe Garnier
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences de Santé, F-21000 Dijon, France; Département Génie Biologique, IUT, F-21000 Dijon, France
| | - Anne Prigent-Tessier
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences de Santé, F-21000 Dijon, France
| |
Collapse
|
11
|
Topography elicits distinct phenotypes and functions in human primary and stem cell derived endothelial cells. Biomaterials 2020; 234:119747. [PMID: 31951971 DOI: 10.1016/j.biomaterials.2019.119747] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 11/25/2019] [Accepted: 12/25/2019] [Indexed: 12/20/2022]
Abstract
The effective deployment of arterial (AECs), venous (VECs) and stem cell-derived endothelial cells (PSC-ECs) in clinical applications requires understanding of their distinctive phenotypic and functional characteristics, including their responses to microenvironmental cues. Efforts to mimic the in-vivo vascular basement membrane milieu have led to the design and fabrication of nano- and micro-topographical substrates. Although the basement membrane architectures of arteries and veins are different, investigations into the effects of substrate topographies have so far focused on generic EC characteristics. Thus, topographical modulation of arterial- or venous-specific EC phenotype and function remains unknown. Here, we comprehensively evaluated the effects of 16 unique topographies on primary AECs, VECs and human PSC-ECs using a Multi Architectural (MARC) Chip. Gratings and micro-lenses augmented venous-specific phenotypes and depressed arterial functions in VECs; while AECs did not respond consistently to topography. PSC-ECs exhibited phenotypic and functional maturation towards an arterial subtype with increased angiogenic potential, NOTCH1 and Ac-LDL expression on gratings. Specific topographies could elicit different phenotypic and functional changes, despite similar morphological response in different ECs, demonstrating no direct correlation between the two responses.
Collapse
|
12
|
Human Umbilical Vein Endothelial Cells (HUVECs) Co-Culture with Osteogenic Cells: From Molecular Communication to Engineering Prevascularised Bone Grafts. J Clin Med 2019; 8:jcm8101602. [PMID: 31623330 PMCID: PMC6832897 DOI: 10.3390/jcm8101602] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/12/2019] [Accepted: 09/23/2019] [Indexed: 12/21/2022] Open
Abstract
The repair of bone defects caused by trauma, infection or tumor resection is a major clinical orthopedic challenge. The application of bone grafts in orthopedic procedures is associated with a problem of inadequate vascularization in the initial phase after implantation. Meanwhile, the survival of cells within the implanted graft and its integration with the host tissue is strongly dependent on nutrient and gaseous exchange, as well as waste product removal, which are effectuated by blood microcirculation. In the bone tissue, the vasculature also delivers the calcium and phosphate indispensable for the mineralization process. The critical role of vascularization for bone healing and function, led the researchers to the idea of generating a capillary-like network within the bone graft in vitro, which could allow increasing the cell survival and graft integration with a host tissue. New strategies for engineering pre-vascularized bone grafts, that apply the co-culture of endothelial and bone-forming cells, have recently gained interest. However, engineering of metabolically active graft, containing two types of cells requires deep understanding of the underlying mechanisms of interaction between these cells. The present review focuses on the best-characterized endothelial cells-human umbilical vein endothelial cells (HUVECs)-attempting to estimate whether the co-culture approach, using these cells, could bring us closer to development and possible clinical application of prevascularized bone grafts.
Collapse
|
13
|
Jiménez-Torres JA, Virumbrales-Muñoz M, Sung KE, Lee MH, Abel EJ, Beebe DJ. Patient-specific organotypic blood vessels as an in vitro model for anti-angiogenic drug response testing in renal cell carcinoma. EBioMedicine 2019; 42:408-419. [PMID: 30902740 PMCID: PMC6491391 DOI: 10.1016/j.ebiom.2019.03.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/05/2019] [Accepted: 03/11/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Anti-angiogenic treatment failure is often attributed to drug resistance, unsuccessful drug delivery, and tumor heterogeneity. Recent studies have speculated that anti-angiogenic treatments may fail due to characteristics inherent to tumor-associated blood vessels. Tumor-associated blood vessels are phenotypically different from their normal counterparts, having defective or permeable endothelial monolayers, abnormal sprouts, and abnormal vessel hierarchy. Therefore, to predict the efficacy of anti-angiogenic therapies in an individual patient, in vitro models that mirror individual patient's tumor vascular biology and response to anti-angiogenic treatment are needed. METHODS We used a microfluidic in vitro organotypic model to create patient-specific biomimetic blood vessels from primary patient-specific tumor endothelial cells (TEnCs) and normal endothelial cells (NEnC). We assessed number of sprouts and vessel organization via microscopy imaging and image analysis. We characterized NEnC and TEnC vessel secretions via multiplex bead-based ELISA. FINDINGS Using this model, we found that TEnC vessels exhibited more angiogenic sprouts than NEnC vessels. We also found a more disorganized and gap-filled endothelial monolayer. NEnCs and TEnC vessels exhibited heterogeneous functional drug responses across the five patients screened, as described in the clinic. INTERPRETATION Our model recapitulated hallmarks of TEnCs and NEnCs found in vivo and captured the functional and structural differences between TEnC and NEnC vessels. This model enables a platform for therapeutic drug screening and assessing patient-specific responses with great potential to inform personalized medicine approaches. FUNDING NIH grants R01 EB010039, R33 CA225281, R01CA186134 University of Wisconsin Carbone Cancer Center (CA014520), and University of Wisconsin Hematology training grant T32 HL07899.
Collapse
Affiliation(s)
- José A Jiménez-Torres
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1451 Engineering Dr., Madison, WI 53706, United States of America; University of Wisconsin Carbone Cancer Center, Wisconsin Institutes for Medical Research, 1111 Highland Ave., Madison, WI 53705, United States of America
| | - María Virumbrales-Muñoz
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1451 Engineering Dr., Madison, WI 53706, United States of America; University of Wisconsin Carbone Cancer Center, Wisconsin Institutes for Medical Research, 1111 Highland Ave., Madison, WI 53705, United States of America
| | - Kyung E Sung
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, The U.S. Food and Drug Administration, Silver Spring, MD 20993, United States of America
| | - Moon Hee Lee
- Department of Urology, University of Wisconsin, School of Medicine and Public Health, 1111 Highland Ave., Madison, 53705, WI, United States of America
| | - E Jason Abel
- Department of Urology, University of Wisconsin, School of Medicine and Public Health, 1111 Highland Ave., Madison, 53705, WI, United States of America
| | - David J Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1451 Engineering Dr., Madison, WI 53706, United States of America; University of Wisconsin Carbone Cancer Center, Wisconsin Institutes for Medical Research, 1111 Highland Ave., Madison, WI 53705, United States of America; Department of Pathology and Laboratory Medicine, University of Wisconsin, 1111 Highland Ave., Madison, 53705, WI, United States of America.
| |
Collapse
|
14
|
Banarjee R, Sharma A, Bai S, Deshmukh A, Kulkarni M. Proteomic study of endothelial dysfunction induced by AGEs and its possible role in diabetic cardiovascular complications. J Proteomics 2018; 187:69-79. [DOI: 10.1016/j.jprot.2018.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 06/12/2018] [Accepted: 06/15/2018] [Indexed: 12/30/2022]
|
15
|
Lin Y, Gil CH, Yoder MC. Differentiation, Evaluation, and Application of Human Induced Pluripotent Stem Cell-Derived Endothelial Cells. Arterioscler Thromb Vasc Biol 2017; 37:2014-2025. [PMID: 29025705 DOI: 10.1161/atvbaha.117.309962] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022]
Abstract
The emergence of induced pluripotent stem cell (iPSC) technology paves the way to generate large numbers of patient-specific endothelial cells (ECs) that can be potentially delivered for regenerative medicine in patients with cardiovascular disease. In the last decade, numerous protocols that differentiate EC from iPSC have been developed by many groups. In this review, we will discuss several common strategies that have been optimized for human iPSC-EC differentiation and subsequent studies that have evaluated the potential of human iPSC-EC as a cell therapy or as a tool in disease modeling. In addition, we will emphasize the importance of using in vivo vessel-forming ability and in vitro clonogenic colony-forming potential as a gold standard with which to evaluate the quality of human iPSC-EC derived from various protocols.
Collapse
Affiliation(s)
- Yang Lin
- From the Department of Pediatrics, Herman B. Wells Center for Pediatric Research (Y.L., C.-H.G., M.C.Y.) and Department of Biochemistry and Molecular Biology (Y.L., M.C.Y.), Indiana University School of Medicine, Indianapolis
| | - Chang-Hyun Gil
- From the Department of Pediatrics, Herman B. Wells Center for Pediatric Research (Y.L., C.-H.G., M.C.Y.) and Department of Biochemistry and Molecular Biology (Y.L., M.C.Y.), Indiana University School of Medicine, Indianapolis
| | - Mervin C Yoder
- From the Department of Pediatrics, Herman B. Wells Center for Pediatric Research (Y.L., C.-H.G., M.C.Y.) and Department of Biochemistry and Molecular Biology (Y.L., M.C.Y.), Indiana University School of Medicine, Indianapolis.
| |
Collapse
|
16
|
Azimzadeh O, Tapio S. Proteomics landscape of radiation-induced cardiovascular disease: somewhere over the paradigm. Expert Rev Proteomics 2017; 14:987-996. [PMID: 28976223 DOI: 10.1080/14789450.2017.1388743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Epidemiological studies clearly show that thoracic or whole body exposure to ionizing radiation increases the risk of cardiac morbidity and mortality. Radiation-induced cardiovascular disease (CVD) has been intensively studied during the last ten years but the underlying molecular mechanisms are still poorly understood. Areas covered: Heart proteomics is a powerful tool holding promise for the future research. The central focus of this review is to compare proteomics data on radiation-induced CVD with data arising from proteomics of healthy and diseased cardiac tissue in general. In this context we highlight common and unique features of radiation-related and other heart pathologies. Future prospects and challenges of the field are discussed. Expert commentary: Data from comprehensive cardiac proteomics have deepened the knowledge of molecular mechanisms involved in radiation-induced cardiac dysfunction. State-of-the-art proteomics has the potential to identify novel diagnostic and therapeutic markers of this disease.
Collapse
Affiliation(s)
- Omid Azimzadeh
- a Institute of Radiation Biology , Helmholtz Zentrum München, German Research Center for Environmental Health GmbH , Neuherberg , Germany
| | - Soile Tapio
- a Institute of Radiation Biology , Helmholtz Zentrum München, German Research Center for Environmental Health GmbH , Neuherberg , Germany
| |
Collapse
|
17
|
Connor DE, Chaitanya GV, Chittiboina P, McCarthy P, Scott LK, Schrott L, Minagar A, Nanda A, Alexander JS. Variations in the cerebrospinal fluid proteome following traumatic brain injury and subarachnoid hemorrhage. PATHOPHYSIOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR PATHOPHYSIOLOGY 2017; 24:169-183. [PMID: 28549769 PMCID: PMC7303909 DOI: 10.1016/j.pathophys.2017.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 04/06/2017] [Accepted: 04/28/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Proteomic analysis of cerebrospinal fluid (CSF) has shown great promise in identifying potential markers of injury in neurodegenerative diseases [1-13]. Here we compared CSF proteomes in healthy individuals, with patients diagnosed with traumatic brain injury (TBI) and subarachnoid hemorrhage (SAH) in order to characterize molecular biomarkers which might identify these different clinical states and describe different molecular mechanisms active in each disease state. METHODS Patients presenting to the Neurosurgery service at the Louisiana State University Hospital-Shreveport with an admitting diagnosis of TBI or SAH were prospectively enrolled. Patients undergoing CSF sampling for diagnostic procedures were also enrolled as controls. CSF aliquots were subjected to 2-dimensional gel electrophoresis (2D GE) and spot percentage densities analyzed. Increased or decreased spot expression (compared to controls) was defined in terms of in spot percentages, with spots showing consistent expression change across TBI or SAH specimens being followed up by Matrix-Assisted Laser Desorption/Ionization mass spectrometry (MALDI-MS). Polypeptide masses generated were matched to known standards using a search of the NCBI and/or GenPept databases for protein matches. Eight hundred fifteen separately identifiable polypeptide migration spots were identified on 2D GE gels. MALDI-MS successfully identified 13 of 22 selected 2D GE spots as recognizable polypeptides. RESULTS Statistically significant changes were noted in the expression of fibrinogen, carbonic anhydrase-I (CA-I), peroxiredoxin-2 (Prx-2), both α and β chains of hemoglobin, serotransferrin (Tf) and N-terminal haptoglobin (Hp) in TBI and SAH specimens, as compared to controls. The greatest mean fold change among all specimens was seen in CA-I and Hp at 30.7 and -25.7, respectively. TBI specimens trended toward greater mean increases in CA-I and Prx-2 and greater mean decreases in Hp and Tf. CONCLUSIONS Consistent CSF elevation of CA-I and Prx-2 with concurrent depletion of Hp and Tf may represent a useful combination of biomarkers for the prediction of severity and prognosis following brain injury.
Collapse
Affiliation(s)
- David E Connor
- Baptist Health Neurosurgery Arkansas, Little Rock, AR, United States.
| | - Ganta V Chaitanya
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States.
| | - Prashant Chittiboina
- Surgical Neurology Branch, National Institute of Neurological Diseases and Stroke, Bethesda, MD, United States.
| | - Paul McCarthy
- Department of Medicine, Sect. of Nephrology, University of Maryland, Baltimore, MD, United States.
| | - L Keith Scott
- Department of Critical Care Medicine, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| | - Lisa Schrott
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| | - Alireza Minagar
- Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| | - Anil Nanda
- Department of Neurosurgery, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| | - J Steven Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| |
Collapse
|
18
|
Hauser S, Jung F, Pietzsch J. Human Endothelial Cell Models in Biomaterial Research. Trends Biotechnol 2016; 35:265-277. [PMID: 27789063 DOI: 10.1016/j.tibtech.2016.09.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/15/2016] [Accepted: 09/28/2016] [Indexed: 01/05/2023]
Abstract
Endothelial cell (EC) models have evolved as important tools in biomaterial research due to ubiquitously occurring interactions between implanted materials and the endothelium. However, screening the available literature has revealed a gap between material scientists and physiologists in terms of their understanding of these biomaterial-endothelium interactions and their relative importance. Consequently, EC models are often applied in nonphysiological experimental setups, or too extensive conclusions are drawn from their results. The question arises whether this might be one reason why, among the many potential biomaterials, only a few have found their way into the clinic. In this review, we provide an overview of established EC models and possible selection criteria to enable researchers to determine the most reliable and relevant EC model to use.
Collapse
Affiliation(s)
- Sandra Hauser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Friedrich Jung
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany; Helmholtz Virtual Institute 'Multifunctional Biomaterials for Medicine', Teltow, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department Radiopharmaceutical and Chemical Biology, Dresden, Germany; Technische Universität Dresden, Department of Chemistry and Food Chemistry, Dresden, Germany.
| |
Collapse
|
19
|
Caniuguir A, Krause BJ, Hernandez C, Uauy R, Casanello P. Markers of early endothelial dysfunction in intrauterine growth restriction-derived human umbilical vein endothelial cells revealed by 2D-DIGE and mass spectrometry analyses. Placenta 2016; 41:14-26. [PMID: 27208404 DOI: 10.1016/j.placenta.2016.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 02/20/2016] [Accepted: 02/24/2016] [Indexed: 10/22/2022]
Abstract
Intrauterine growth restriction (IUGR) associates with fetal and placental vascular dysfunction, and increased cardiovascular risk later on life. We hypothesize that endothelial cells derived from IUGR umbilical veins present significant changes in the proteome which could be involved in the endothelial dysfunction associated to this conditions. To address this the proteome profile of human umbilical endothelial cells (HUVEC) isolated from control and IUGR pregnancies was compared by 2D-Differential In Gel Electrophoresis (DIGE) and further protein identification by MALDI-TOF MS. Using 2D-DIGE 124 spots were identified as differentially expressed between control and IUGR HUVEC, considering a cut-off of 2 fold change, which represented ∼10% of the total spots detected. Further identification by MALDI-TOF MS and in silico clustering of the proteins showed that those differentially expressed proteins between control and IUGR HUVEC were mainly related with cytoskeleton organization, proteasome degradation, oxidative stress response, mRNA processing, chaperones and vascular function. Finally Principal Component analysis of the identified proteins showed that differentially expressed proteins allow distinguishing between control and IUGR HUVEC based on their proteomic profile. This study demonstrates for the first time that IUGR-derived HUVEC maintained in primary culture conditions present an altered proteome profile, which could reflect an abnormal programming of endothelial function in this fetal condition.
Collapse
Affiliation(s)
- Andres Caniuguir
- Division of Obstetrics & Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Division of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bernardo J Krause
- Division of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cherie Hernandez
- Division of Obstetrics & Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Division of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ricardo Uauy
- Division of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paola Casanello
- Division of Obstetrics & Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Division of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
20
|
Systems biology of ion channels and transporters in tumor angiogenesis: An omics view. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2647-56. [DOI: 10.1016/j.bbamem.2014.10.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/09/2014] [Accepted: 10/20/2014] [Indexed: 01/19/2023]
|
21
|
Zheng Y, Cretoiu D, Yan G, Cretoiu SM, Popescu LM, Fang H, Wang X. Protein profiling of human lung telocytes and microvascular endothelial cells using iTRAQ quantitative proteomics. J Cell Mol Med 2015; 18:1035-59. [PMID: 25059386 PMCID: PMC4508144 DOI: 10.1111/jcmm.12350] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/23/2014] [Indexed: 01/26/2023] Open
Abstract
Telocytes (TCs) are described as a particular type of cells of the interstitial space (www.telocytes.com). Their main characteristics are the very long telopodes with alternating podoms and podomers. Recently, we performed a comparative proteomic analysis of human lung TCs with fibroblasts, demonstrating that TCs are clearly a distinct cell type. Therefore, the present study aims to reinforce this idea by comparing lung TCs with endothelial cells (ECs), since TCs and ECs share immunopositivity for CD34. We applied isobaric tag for relative and absolute quantification (iTRAQ) combined with automated 2-D nano-ESI LC-MS/MS to analyse proteins extracted from TCs and ECs in primary cell cultures. In total, 1609 proteins were identified in cell cultures. 98 proteins (the 5th day), and 82 proteins (10th day) were confidently quantified (screened by two-sample t-test, P < 0.05) as up- or down-regulated (fold change >2). We found that in TCs there are 38 up-regulated proteins at the 5th day and 26 up-regulated proteins at the 10th day. Bioinformatics analysis using Panther revealed that the 38 proteins associated with TCs represented cellular functions such as intercellular communication (via vesicle mediated transport) and structure morphogenesis, being mainly cytoskeletal proteins and oxidoreductases. In addition, we found 60 up-regulated proteins in ECs e.g.: cell surface glycoprotein MUC18 (15.54-fold) and von Willebrand factor (5.74-fold). The 26 up-regulated proteins in TCs at 10th day, were also analysed and confirmed the same major cellular functions, while the 56 down-regulated proteins confirmed again their specificity for ECs. In conclusion, we report here the first extensive comparison of proteins from TCs and ECs using a quantitative proteomics approach. Our data show that TCs are completely different from ECs. Protein expression profile showed that TCs play specific roles in intercellular communication and intercellular signalling. Moreover, they might inhibit the oxidative stress and cellular ageing and may have pro-proliferative effects through the inhibition of apoptosis. The group of proteins identified in this study needs to be explored further for the role in pathogenesis of lung disease.
Collapse
Affiliation(s)
- Yonghua Zheng
- Fudan University Center for Clinical Bioinformatics, Zhongshan Hospital, Fudan University School of Medicine, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Qiu H, Jiang JL, Liu M, Huang X, Ding SJ, Wang L. Quantitative phosphoproteomics analysis reveals broad regulatory role of heparan sulfate on endothelial signaling. Mol Cell Proteomics 2013; 12:2160-73. [PMID: 23649490 DOI: 10.1074/mcp.m112.026609] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparan sulfate (HS) is a linear, abundant, highly sulfated polysaccharide that expresses in the vasculature. Recent genetic studies documented that HS critically modulates various endothelial cell functions. However, elucidation of the underlying molecular mechanism has been challenging because of the presence of a large number of HS-binding ligands found in the examined experimental conditions. In this report, we used quantitative phosphoproteomics to examine the global HS-dependent signaling by comparing wild type and HS-deficient endothelial cells that were cultured in a serum-containing medium. A total of 7222 phosphopeptides, corresponding to 1179 proteins, were identified. Functional correlation analysis identified 25 HS-dependent functional networks, and the top five are related to cell morphology, cellular assembly and organization, cellular function and maintenance, cell-to-cell communication, inflammatory response and disorder, cell growth and proliferation, cell movement, and cellular survival and death. This is consistent with cell function studies showing that HS deficiency altered endothelial cell growth and mobility. Mining for the underlying molecular mechanisms further revealed that HS modulates signaling pathways critically related to cell adhesion, migration, and coagulation, including ILK, integrin, actin cytoskeleton organization, tight junction and thrombin signaling. Intriguingly, this analysis unexpectedly determined that the top HS-dependent signaling is the IGF-1 signaling pathway, which has not been known to be modulated by HS. In-depth analysis of growth factor signaling identified 22 HS-dependent growth factor/cytokine/growth hormone signaling pathways, including those both previously known, such as HGF and VEGF, and those unknown, such as IGF-1, erythropoietin, angiopoietin/Tie, IL-17A and growth hormones. Twelve of the identified 22 growth factor/cytokine/growth hormone signaling pathways, including IGF-1 and angiopoietin/Tie signaling, were alternatively confirmed in phospho-receptor tyrosine kinase array analysis. In summary, our SILAC-based quantitative phosphoproteomic analysis confirmed previous findings and also uncovered novel HS-dependent functional networks and signaling, revealing a much broader regulatory role of HS on endothelial signaling.
Collapse
Affiliation(s)
- Hong Qiu
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | |
Collapse
|
23
|
Rodríguez-Suárez E, Whetton AD. The application of quantification techniques in proteomics for biomedical research. MASS SPECTROMETRY REVIEWS 2013; 32:1-26. [PMID: 22847841 DOI: 10.1002/mas.21347] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 02/09/2012] [Accepted: 02/10/2012] [Indexed: 06/01/2023]
Abstract
The systematic analysis of biological processes requires an understanding of the quantitative expression patterns of proteins, their interacting partners and their subcellular localization. This information was formerly difficult to accrue as the relative quantification of proteins relied on antibody-based methods and other approaches with low throughput. The advent of soft ionization techniques in mass spectrometry plus advances in separation technologies has aligned protein systems biology with messenger RNA, DNA, and microarray technologies to provide data on systems as opposed to singular protein entities. Another aspect of quantitative proteomics that increases its importance for the coming few years is the significant technical developments underway both for high pressure liquid chromatography and mass spectrum devices. Hence, robustness, reproducibility and mass accuracy are still improving with every new generation of instruments. Nonetheless, the methods employed require validation and comparison to design fit for purpose experiments in advanced protein analyses. This review considers the newly developed systematic protein investigation methods and their value from the standpoint that relative or absolute protein quantification is required de rigueur in biomedical research.
Collapse
|
24
|
Patella F, Rainaldi G. MicroRNAs mediate metabolic stresses and angiogenesis. Cell Mol Life Sci 2012; 69:1049-65. [PMID: 21842412 PMCID: PMC11115142 DOI: 10.1007/s00018-011-0775-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/28/2011] [Accepted: 07/14/2011] [Indexed: 01/06/2023]
Abstract
MicroRNAs are short endogenous RNA molecules that are able to regulate (mainly inhibiting) gene expression at the post-transcriptional level. The MicroRNA expression profile is cell-specific, but it is sensitive to perturbations produced by stresses and diseases. Endothelial cells subjected to metabolic stresses, such as calorie restriction, nutrients excess (glucose, cholesterol, lipids) and hypoxia may alter their functionality. This is predictive for the development of pathologies like atherosclerosis, diabetes, and hypertension. Moreover, cancer cells can activate a resting endothelium by secreting pro-angiogenic factors, in order to promote neoangiogenesis, which is essential for tumor growth. Endothelial altered phenotype is mirrored by altered mRNA, microRNA, and protein expression, with a microRNA being able to control pathways by regulating the expression of multiple mRNAs. In this review we will consider the involvement of microRNAs in modulating the response of endothelial cells to metabolic stresses and their role in promoting or halting angiogenesis.
Collapse
|