1
|
Sun YR, Lv QK, Liu JY, Wang F, Liu CF. New perspectives on the glymphatic system and the relationship between glymphatic system and neurodegenerative diseases. Neurobiol Dis 2025; 205:106791. [PMID: 39778750 DOI: 10.1016/j.nbd.2025.106791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/11/2025] Open
Abstract
Neurodegenerative diseases (ND) are characterized by the accumulation of aggregated proteins. The glymphatic system, through its rapid exchange mechanisms between cerebrospinal fluid (CSF) and interstitial fluid (ISF), facilitates the movement of metabolic substances within the brain, serving functions akin to those of the peripheral lymphatic system. This emerging waste clearance mechanism offers a novel perspective on the removal of pathological substances in ND. This article elucidates recent discoveries regarding the glymphatic system and updates relevant concepts within its model. It discusses the potential roles of the glymphatic system in ND, including Alzheimer's disease (AD), Parkinson's disease (PD), and multiple system atrophy (MSA), and proposes the glymphatic system as a novel therapeutic target for these conditions.
Collapse
Affiliation(s)
- Yan-Rui Sun
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Qian-Kun Lv
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Jun-Yi Liu
- Department of Neurology, Dushu Lake hospital affilicated to Soochow University, Suzhou, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China.
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China.
| |
Collapse
|
2
|
Li S, Wong TWL, Ng SSM. Potential and Challenges of Transcranial Photobiomodulation for the Treatment of Stroke. CNS Neurosci Ther 2024; 30:e70142. [PMID: 39692710 DOI: 10.1111/cns.70142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/30/2024] [Accepted: 11/10/2024] [Indexed: 12/19/2024] Open
Abstract
Photobiomodulation (PBM), also known as low-level laser therapy, employs red or near-infrared light emitted from a laser or light-emitting diode for the treatment of various conditions. Transcranial PBM (tPBM) is a form of PBM that is delivered to the head to improve brain health, as tPBM enhances mitochondrial function, improves antioxidant responses, reduces inflammation, offers protection from apoptosis, improves blood flow, increases cellular energy production, and promotes neurogenesis and neuroplasticity. As such, tPBM holds promise as a treatment for stroke. This review summarizes recent findings on tPBM as a treatment for stroke, presenting evidence from both animal studies and clinical trials that demonstrate its efficacy. Additionally, it discusses the potential and challenges encountered in the translation process. Furthermore, it proposes new technologies and directions for the development of light-delivery methods and emphasizes the need for extensive studies to validate and widen the application of tPBM in future treatments for stroke.
Collapse
Affiliation(s)
- Siyue Li
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Thomson W L Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Shamay S M Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| |
Collapse
|
3
|
Karagözoğlu İ, Demirkol N, Parlar Öz Ö, Keçeci G, Çetin B, Özcan M. Clinical Efficacy of Two Different Low-Level Laser Therapies for the Treatment of Trigeminal Neuralgia: A Randomized, Placebo-Controlled Trial. J Clin Med 2024; 13:6890. [PMID: 39598034 PMCID: PMC11594349 DOI: 10.3390/jcm13226890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Trigeminal neuralgia (TN) is a disease that causes severe pain that can seriously affect the quality of life. This study aimed to compare the effectiveness of two different low-level laser therapies (LLLT) as alternatives to medical treatment to reduce pain and improve the quality of life in patients with TN. Methods: A total of 45 patients were randomly divided into 3 groups. In the first group, a new-generation diode laser (GRR laser) was applied at predetermined points in the trigeminal nerve line. In the second group, a low-level neodymium-doped yttrium aluminum garnet (Nd:YAG) laser was applied along the affected nerve line. The placebo group received the same protocol with a Nd:YAG laser without the device switched on. The scores were recorded pre- and post-treatment using the Brief Pain Inventory-Facial (BPI-facial) scale. Results: A statistically significant difference was found between the pre- and post-treatment values of all four variables in the GRR laser, Nd:YAG laser, and placebo groups. When the post-treatment values were compared, statistically significant differences were found between the groups in pain frequency, pain intensity, and interference in facial-specific activities, but no differences were found in general activities. Conclusions: Both LLLTs can be considered alternative treatment modalities for TN, but the GRR laser treatment was more effective than the Nd:YAG laser treatment in reducing pain and improving the quality of life in patients with TN.
Collapse
Affiliation(s)
- İrem Karagözoğlu
- Faculty of Dentistry, Department of Prosthodontics, Gaziantep University, Gaziantep 27310, Turkey; (N.D.); (Ö.P.Ö.)
| | - Nermin Demirkol
- Faculty of Dentistry, Department of Prosthodontics, Gaziantep University, Gaziantep 27310, Turkey; (N.D.); (Ö.P.Ö.)
| | - Özge Parlar Öz
- Faculty of Dentistry, Department of Prosthodontics, Gaziantep University, Gaziantep 27310, Turkey; (N.D.); (Ö.P.Ö.)
| | - Gökçe Keçeci
- Faculty of Dentistry, Department of Prosthodontics, Kahramanmaraş Sütçü İmam University, Kahramanmaraş 46050, Turkey; (G.K.); (B.Ç.)
| | - Beste Çetin
- Faculty of Dentistry, Department of Prosthodontics, Kahramanmaraş Sütçü İmam University, Kahramanmaraş 46050, Turkey; (G.K.); (B.Ç.)
| | - Mutlu Özcan
- Clinic of Masticatory Disorders and Dental Biomaterials, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland;
| |
Collapse
|
4
|
Zeng J, Wang C, Chai Y, Lei D, Wang Q. Can transcranial photobiomodulation improve cognitive function in TBI patients? A systematic review. Front Psychol 2024; 15:1378570. [PMID: 38952831 PMCID: PMC11215173 DOI: 10.3389/fpsyg.2024.1378570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/20/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction Transcranial photobiomodulation (tPBM) is a non-invasive neuromodulation technology which has become a promising therapy for treating many brain diseases. Although it has been confirmed in studies targeting neurological diseases including Alzheimer's and Parkinson's that tPBM can improve cognitive function, the effectiveness of interventions targeting TBI patients remains to be determined. This systematic review examines the cognitive outcomes of clinical trials concerning tPBM in the treatment of traumatic brain injury (TBI). Methods We conducted a systematic literature review, following the PRISMA guidelines. The PubMed, Web of Science, Scopus, EMBASE, and Cochrane Library databases were searched before October 31, 2023. Results The initial search retrieved 131 articles, and a total of 6 studies were finally included for full text-analysis after applying inclusion and exclusion criteria. Conclusion Results showed improvements in cognition for patients with chronic TBI after tPBM intervention. The mechanism may be that tPBM increases the volume of total cortical gray matter (GM), subcortical GM, and thalamic, improves cerebral blood flow (CBF), functional connectivity (FC), and cerebral oxygenation, improving brain function. However, due to the significant heterogeneity in application, we cannot summarize the optimal parameters for tPBM treatment of TBI. In addition, there is currently a lack of RCT studies in this field. Therefore, given this encouraging but uncertain finding, it is necessary to conduct randomized controlled clinical trials to further determine the role of tPBM in cognitive rehabilitation of TBI patients.
Collapse
Affiliation(s)
- Jia Zeng
- School of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing, China
| | - Chen Wang
- School of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing, China
| | - Yuan Chai
- Xinyang Central Hospital, Xinyang, China
| | - Danyun Lei
- Department of Physical Education, Xinyang University, Xinyang, China
| | - Qiuli Wang
- Independent Researcher, Xinyang, Henan Province, China
| |
Collapse
|
5
|
Nairuz T, Sangwoo-Cho, Lee JH. Photobiomodulation Therapy on Brain: Pioneering an Innovative Approach to Revolutionize Cognitive Dynamics. Cells 2024; 13:966. [PMID: 38891098 PMCID: PMC11171912 DOI: 10.3390/cells13110966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Photobiomodulation (PBM) therapy on the brain employs red to near-infrared (NIR) light to treat various neurological and psychological disorders. The mechanism involves the activation of cytochrome c oxidase in the mitochondrial respiratory chain, thereby enhancing ATP synthesis. Additionally, light absorption by ion channels triggers the release of calcium ions, instigating the activation of transcription factors and subsequent gene expression. This cascade of events not only augments neuronal metabolic capacity but also orchestrates anti-oxidant, anti-inflammatory, and anti-apoptotic responses, fostering neurogenesis and synaptogenesis. It shows promise for treating conditions like dementia, stroke, brain trauma, Parkinson's disease, and depression, even enhancing cognitive functions in healthy individuals and eliciting growing interest within the medical community. However, delivering sufficient light to the brain through transcranial approaches poses a significant challenge due to its limited penetration into tissue, prompting an exploration of alternative delivery methods such as intracranial and intranasal approaches. This comprehensive review aims to explore the mechanisms through which PBM exerts its effects on the brain and provide a summary of notable preclinical investigations and clinical trials conducted on various brain disorders, highlighting PBM's potential as a therapeutic modality capable of effectively impeding disease progression within the organism-a task often elusive with conventional pharmacological interventions.
Collapse
Affiliation(s)
| | | | - Jong-Ha Lee
- Department of Biomedical Engineering, Keimyung University, Daegu 42601, Republic of Korea; (T.N.); (S.-C.)
| |
Collapse
|
6
|
Dewey CW, Rishniw M, Brunke MW, Gerardi J, Sakovitch K. Transcranial photobiomodulation therapy improves cognitive test scores in dogs with presumptive canine cognitive dysfunction: A case series of five dogs. Open Vet J 2024; 14:1167-1171. [PMID: 38938435 PMCID: PMC11199766 DOI: 10.5455/ovj.2024.v14.i5.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/22/2024] [Indexed: 06/29/2024] Open
Abstract
Background Canine cognitive dysfunction (CCD) is considered the canine version of human Alzheimer's disease (AD). As with AD, CCD is a multifactorial and progressive neurodegenerative disorder for which effective treatment options are continuously being sought. Transcranial photobiomodulation (tPBMT) or transcranial laser therapy has shown promise as a treatment for cognitive impairment in rodent AD investigations and several human AD clinical trials. Aim The purpose of this prospective case series was to evaluate the effect of tPBMT on cognitive scores when applied to senior dogs with CCD over a 60-day period. Methods Five senior (>9-year-old) dogs with moderate (16-33) to severe (>33) cognitive scores were enrolled. Owners were instructed on the use of a Class IM laser device and administered a specific dose of laser energy transcranially to both sides of the patient's head, three times per week for one month and two times per week for a second month. No additional therapeutic measures aimed at enhancing cognitive ability were permitted during the 60-day evaluation time. Baseline cognitive scores were compared with scores obtained at 30- and 60-days post-treatment. Results Cognitive scores showed improvement in 4/5 dogs at 30 days (27.6% reduction) and all dogs at 60 days (43.4% reduction). There were no adverse effects attributable to tPBMT. Conclusion Results of our small case series suggest that tPBMT may improve cognitive scores in dogs with moderate to severe CCD by 30 days of application and the improvement is sustained at 60 days. Further studies are needed to ascertain optimal tPBMT protocols for CCD.
Collapse
Affiliation(s)
- Curtis Wells Dewey
- Elemental Pet Vets, PLLC, Freeville, New York, USA
- Department of Veterinary Clinical Sciences, Long Island University College of Veterinary Medicine, New York, USA
| | - Mark Rishniw
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Matthew Warren Brunke
- Elemental Pet Vets, PLLC, Freeville, New York, USA
- Veterinary Referral Associates, Gaithersburg, Maryland, USA
| | - Joyce Gerardi
- Synergy Integrative Veterinary Clinic, New Bern, North Carolina, USA
| | | |
Collapse
|
7
|
Lutfy RH, Salam SA, Mohammed HS, Shakweer MM, Essawy AE. Photomodulatory effects in the hypothalamus of sleep-deprived young and aged rats. Behav Brain Res 2024; 458:114731. [PMID: 37898350 DOI: 10.1016/j.bbr.2023.114731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Insufficient sleep is associated with impaired hypothalamic activity and declined attentional performance. In this study, alterations in the hypothalamus of REM sleep-deprived (SD) young and aged rats, and the modulatory effect of near-infrared (NIR) laser were investigated. Forty-eight male Wistar rats (24 young at 2 months and 24 senile at 14 months) were divided into three groups: the control, the SD group subjected to 72 hr of sleep deprivation, and the transcranial-NIR laser-treated (TLT) group subjected to SD for 72 hr and irradiated with 830 nm laser. The hypothalamic levels of oxidative stress, inflammatory biomarkers, antioxidant enzymes, mitochondrial cytochrome C oxidase (CCO), apoptotic markers (BAX, BCL-2), and neuronal survival-associated genes (BDNF, GLP-1) were evaluated. Furthermore, the hypothalamic tissue alterations were analyzed via histological examination. The results revealed that TLT treatment has enhanced the antioxidant status, prevented oxidative insults, suppressed neuroinflammation, regulated CCO activity, reduced apoptotic markers, and tuned the survival genes (BDNF & GLP-1) in hypothalamic tissue of SD young and aged rats. Microscopically, TLT treatment has ameliorated the SD-induced alterations and restored the normal histological features of hypothalamus tissue. Moreover, the obtained data showed that SD and NIR laser therapy are age-dependent. Altogether, our findings emphasize the age-dependent adverse effects of SD on the hypothalamus and suggest the use of low-laser NIR radiation as a potential non-invasive and therapeutic approach against SD-induced adverse effects in young and aged animals.
Collapse
Affiliation(s)
- Radwa H Lutfy
- Zoology Department, Faculty of Science, Alexandria University, Egypt; School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | | | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Marwa M Shakweer
- Department of Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Department of Pathology, Faculty of Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | - Amina E Essawy
- Zoology Department, Faculty of Science, Alexandria University, Egypt
| |
Collapse
|
8
|
Chamkouri H, Liu Q, Zhang Y, Chen C, Chen L. Brain photobiomodulation therapy on neurological and psychological diseases. JOURNAL OF BIOPHOTONICS 2024; 17:e202300145. [PMID: 37403428 DOI: 10.1002/jbio.202300145] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/06/2023]
Abstract
Photobiomodulation (PBM) therapy is an innovative treatment for neurological and psychological conditions. Complex IV of the mitochondrial respiratory chain can be stimulated by red light, which increases ATP synthesis. In addition, the ion channels' light absorption causes the release of Ca2+, which activates transcription factors and changes gene expression. Neuronal metabolism is improved by brain PBM therapy, which also promotes synaptogenesis and neurogenesis as well as anti-inflammatory. Its depression-treating potential is attracting attention for other conditions, including Parkinson's disease and dementia. Giving enough dosage for optimum stimulation using the transcranial PBM technique is challenging because of the rapidly increasing attenuation of light transmission in tissue. Different strategies like intranasal and intracranial light delivery systems have been proposed to overcome this restriction. The most recent preclinical and clinical data on the effectiveness of brain PBM therapy are studied in this review article.
Collapse
Affiliation(s)
- Hossein Chamkouri
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, China
| | - Qi Liu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, China
| | - Yuqin Zhang
- Department of Neurology, Anhui No. 2 Provincial People's Hospital, Hefei, China
| | - Changchun Chen
- Department of Neurology, Anhui No. 2 Provincial People's Hospital, Hefei, China
| | - Lei Chen
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, China
- Intelligent manufacturing institute of HFUT, Hefei, China
| |
Collapse
|
9
|
Semyachkina-Glushkovskaya O, Penzel T, Poluektov M, Fedosov I, Tzoy M, Terskov A, Blokhina I, Sidorov V, Kurths J. Phototherapy of Alzheimer's Disease: Photostimulation of Brain Lymphatics during Sleep: A Systematic Review. Int J Mol Sci 2023; 24:10946. [PMID: 37446135 DOI: 10.3390/ijms241310946] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The global number of people with Alzheimer's disease (AD) doubles every 5 years. It has been established that unless an effective treatment for AD is found, the incidence of AD will triple by 2060. However, pharmacological therapies for AD have failed to show effectiveness and safety. Therefore, the search for alternative methods for treating AD is an urgent problem in medicine. The lymphatic drainage and removal system of the brain (LDRSB) plays an important role in resistance to the progression of AD. The development of methods for augmentation of the LDRSB functions may contribute to progress in AD therapy. Photobiomodulation (PBM) is considered to be a non-pharmacological and safe approach for AD therapy. Here, we highlight the most recent and relevant studies of PBM for AD. We focus on emerging evidence that indicates the potential benefits of PBM during sleep for modulation of natural activation of the LDRSB at nighttime, providing effective removal of metabolites, including amyloid-β, from the brain, leading to reduced progression of AD. Our review creates a new niche in the therapy of brain diseases during sleep and sheds light on the development of smart sleep technologies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Oxana Semyachkina-Glushkovskaya
- Department of Physics, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Thomas Penzel
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
- Interdisziplinäres Schlafmedizinisches Zentrum, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Mikhail Poluektov
- Department of Nervous Diseases, Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya 2, Building 4, 119435 Moscow, Russia
| | - Ivan Fedosov
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Maria Tzoy
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Andrey Terskov
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Inna Blokhina
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
| | - Viktor Sidorov
- Company "Lazma" for Research and Production Enterprise of Laser Medical Equipment, Kuusinena Str. 11, 123308 Moscow, Russia
| | - Jürgen Kurths
- Department of Physics, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia
- Department of Complexity Science, Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
| |
Collapse
|
10
|
Mohammed HS, Khadrawy YA. Antidepressant and antioxidant effects of transcranial irradiation with 830-nm low-power laser in an animal model of depression. Lasers Med Sci 2021; 37:1615-1623. [PMID: 34487275 DOI: 10.1007/s10103-021-03410-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
The present study aimed at investigating the antidepressant and antioxidant actions of near-infrared (NIR) laser at a wavelength of 830 nm and power of 100 mW which applied transcranially on an animal model of depression induced by repeated doses of reserpine (0.2 mg/kg). Thirty male Wistar adult rats were divided into three groups: rat model of depression; rat model of depression irradiated with laser for 14 days after induction of depression; and the control group that was given the drug vehicle and sham-exposed to the laser. Forced swimming test (FST) was used to verify the induction of animal model of depression and to screen the effect of antidepressant effect of low-level laser at the end of the experiment. Monoamine level, oxidative stress markers, and activities of acetylcholinesterase (AchE) and monoamine oxidase (MAO) were determined in the cortex and hippocampus of the rat brain. Reserpine resulted in depletion of monoamines and elevation in the oxidative stress markers and change in the enzymatic activities measured in both brain areas. Laser irradiation has an inhibitory action on the monoamine oxidase (MAO) in the cortex and hippocampus leading to elevation of the monoamine levels and attenuation of the oxidative stress in the studied areas. FST has emphasized the antidepressant effect of the utilized laser irradiation parameters on the behavioral level. The present findings provide evidence for the antidepressant and antioxidant actions of NIR low-power laser in the rat model of depression. Accordingly, low-laser irradiation may be presented as a potential candidate modality for depression treatment.
Collapse
Affiliation(s)
- Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Yasser A Khadrawy
- Medical Physiology Department, National Research Center, Giza, Egypt
| |
Collapse
|
11
|
Salehpour F, Khademi M, Hamblin MR. Photobiomodulation Therapy for Dementia: A Systematic Review of Pre-Clinical and Clinical Studies. J Alzheimers Dis 2021; 83:1431-1452. [PMID: 33935090 DOI: 10.3233/jad-210029] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Photobiomodulation (PBM) involves the use of red and/or near-infrared light from lasers or LEDs to improve a wide range of medical disorders. Transcranial PBM, sometimes accompanied by intranasal PBM, has been tested to improve many brain disorders, including dementia. OBJECTIVE To conduct a systematic review according to PRISMA guidelines of pre-clinical and clinical studies reporting the use of PBM, which were considered relevant to dementia. METHODS Literature was searched between 1967 and 2020 using a range of keywords relevant to PBM and dementia. The light source and wavelength(s), output power, irradiance, irradiation time, fluence or total energy (dose), operation mode (continuous or pulsed) irradiation, approach and site, number of treatment sessions, as well as study outcome(s) were extracted. RESULTS Out of 10,473 initial articles, 36 studies met the inclusion criteria. Nine articles reported in vitro studies, 17 articles reported studies in animal models of dementia, and 10 studies were conducted in dementia patients. All of the included studies reported positive results. The clinical studies were limited by the small number of patients, lack of placebo controls in some instances, and only a few used objective neuroimaging methods. CONCLUSION The preliminary evidence of clinical benefit, the lack of any adverse effects, and the remarkable ease of use, suggest larger clinical trials should be conducted as soon as possible.
Collapse
Affiliation(s)
- Farzad Salehpour
- College for Light Medicine and Photobiomodulation, Starnberg, Germany.,ProNeuroLIGHT LLC, Phoenix, AZ, USA
| | - Mahsa Khademi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
12
|
Ramezani F, Neshasteh-Riz A, Ghadaksaz A, Fazeli SM, Janzadeh A, Hamblin MR. Mechanistic aspects of photobiomodulation therapy in the nervous system. Lasers Med Sci 2021; 37:11-18. [PMID: 33624187 DOI: 10.1007/s10103-021-03277-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 02/15/2021] [Indexed: 12/12/2022]
Abstract
Photobiomodulation therapy (PBMT) previously known as low-level laser therapy (LLLT) has been used for over 30 years, to treat neurological diseases. Low-powered lasers are commonly used for clinical applications, although recently LEDs have become popular. Due to the growing application of this type of laser in brain and neural-related diseases, this review focuses on the mechanisms of laser action. The most important points to consider include the photon absorption by intracellular structures; the effect on the oxidative state of cells; and the effect on the expression of proteins involved in oxidative stress, inflammation, pain, and neuronal growth.
Collapse
Affiliation(s)
- Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Science, Tehran, Iran
| | - Ali Neshasteh-Riz
- Radiation Biology Research Center, Iran University of Medical Science, Tehran, Iran
| | - Alireza Ghadaksaz
- Department of Biophysics, Medical School, University of Pécs, Pécs, 7622, Hungary.,Szentágothai Research Centre, University of Pécs, Pécs, 7622, Hungary
| | - Seyedalireza Moghadas Fazeli
- Occupational Medicine Research Center (OMRC), Iran University of Medical Sciences, Tehran, Iran.,International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Atousa Janzadeh
- Radiation Biology Research Center, Iran University of Medical Science, Tehran, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| |
Collapse
|
13
|
Gutiérrez-Menéndez A, Marcos-Nistal M, Méndez M, Arias JL. Photobiomodulation as a promising new tool in the management of psychological disorders: A systematic review. Neurosci Biobehav Rev 2020; 119:242-254. [PMID: 33069687 DOI: 10.1016/j.neubiorev.2020.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/21/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022]
Abstract
Photobiomodulation is a brain modulation technique that has become a promising treatment for multiple pathologies. This systematic review collects studies up to 2019 about the beneficial effects of photobiomodulation as a therapy for treating psychological disorders and a tool for modulating cognitive processes. This technique is mostly used for the treatment of depression and stress, as well as to study its effects on psychological variables in healthy subjects. Despite the lack of parameters used, photobiomodulation seems to achieve enough brain penetration to produce beneficial effects in healthy subjects and patients with multiple pathologies. The best parameters are the wavelengths of 810 nm for the treatment of depression and 1064 nm for cognitive enhancement, along with a scalp irradiance of 250 mW/cm2 and a scalp yield of 60 J/cm2. It weekly application on the bilateral prefrontal area and the default mode network seems to be ideal for the maintenance of the effects. Photobiomodulation could be used as an effective and safe therapy for the treatment of multiple psychological pathologies.
Collapse
Affiliation(s)
- Alba Gutiérrez-Menéndez
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, s/n, E-33003, Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain.
| | - Marta Marcos-Nistal
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, s/n, E-33003, Oviedo, Spain
| | - Marta Méndez
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, s/n, E-33003, Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain
| | - Jorge L Arias
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Plaza Feijóo, s/n, E-33003, Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain
| |
Collapse
|
14
|
Ibarra AMC, Biasotto-Gonzalez DA, Kohatsu EYI, de Oliveira SSI, Bussadori SK, Tanganeli JPC. Photobiomodulation on trigeminal neuralgia: systematic review. Lasers Med Sci 2020; 36:715-722. [PMID: 33219445 DOI: 10.1007/s10103-020-03198-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/13/2020] [Indexed: 01/22/2023]
Abstract
Trigeminal neuralgia is a recurrent episode of facial pain, that may be associated with other conditions such as multiple sclerosis, neoplasms, and nerve compromises or may occur due to an unknown cause. The available treatments are pharmacotherapy or surgery; however, both are susceptible to develop side effects. Photobiomodulation could be a promising alternative therapy for trigeminal neuralgia. A systematic review of literature was carried out using the PRISMA protocol, in the PubMed/MEDLINE, Embase, and Web of Science databases. Risk of bias by ROB 2.0 protocol was performed in included studies. Initially, 20 identified articles were collected varying between the years of 1983-2018, from which 6 were included. A total of 193 patients were evaluated; photobiomodulation was compared to conventional therapies, TENS, and therapy combinations with pharmacotherapy. The overall risk of bias was low, with some concerns in the randomization and double-blinding process; moreover, there are few reports in the literature. Photobiomodulation appears to be as effective as conventional therapies, being a coadjutant therapeutic opportunity for the treatment of trigeminal neuralgia.
Collapse
Affiliation(s)
- Ana Melissa Ccopa Ibarra
- Biophotonics Applied to Health Sciences, Nove de Julho University, UNINOVE, Avenida Rua Vergueiro, 235/249-Liberdade, São Paulo, SP, 01504-001, Brazil.
| | - Daniela Aparecida Biasotto-Gonzalez
- Biophotonics Applied to Health Sciences, Nove de Julho University, UNINOVE, Avenida Rua Vergueiro, 235/249-Liberdade, São Paulo, SP, 01504-001, Brazil
| | - Edna Yoshiko Ide Kohatsu
- TMD and Orofacial Pain Clinical Department, Nove de Julho University - UNINOVE, São Paulo, SP, Brazil
| | | | - Sandra Kalil Bussadori
- Biophotonics Applied to Health Sciences, Nove de Julho University, UNINOVE, Avenida Rua Vergueiro, 235/249-Liberdade, São Paulo, SP, 01504-001, Brazil
| | - João Paulo Colesanti Tanganeli
- Biophotonics Applied to Health Sciences, Nove de Julho University, UNINOVE, Avenida Rua Vergueiro, 235/249-Liberdade, São Paulo, SP, 01504-001, Brazil
| |
Collapse
|
15
|
Fekete Z, Horváth ÁC, Zátonyi A. Infrared neuromodulation:a neuroengineering perspective. J Neural Eng 2020; 17:051003. [PMID: 33055373 DOI: 10.1088/1741-2552/abb3b2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Infrared neuromodulation (INM) is a branch of photobiomodulation that offers direct or indirect control of cellular activity through elevation of temperature in a spatially confined region of the target tissue. Research on INM started about 15 ago and is gradually attracting the attention of the neuroscience community, as numerous experimental studies have provided firm evidence on the safe and reproducible excitation and inhibition of neuronal firing in both in vitro and in vivo conditions. However, its biophysical mechanism is not fully understood and several engineered interfaces have been created to investigate infrared stimulation in both the peripheral and central nervous system. In this review, recent applications and present knowledge on the effects of INM on cellular activity are summarized, and an overview of the technical approaches to deliver infrared light to cells and to interrogate the optically evoked response is provided. The micro- and nanoengineered interfaces used to investigate the influence of INM are described in detail.
Collapse
Affiliation(s)
- Z Fekete
- Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, Budapest 1083, Hungary. Author to whom any correspondence should be addressed
| | | | | |
Collapse
|
16
|
Tomal W, Ortyl J. Water-Soluble Photoinitiators in Biomedical Applications. Polymers (Basel) 2020; 12:E1073. [PMID: 32392892 PMCID: PMC7285382 DOI: 10.3390/polym12051073] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/02/2020] [Accepted: 05/03/2020] [Indexed: 12/25/2022] Open
Abstract
Light-initiated polymerization processes are currently an important tool in various industrial fields. The advancement of technology has resulted in the use of photopolymerization in various biomedical applications, such as the production of 3D hydrogel structures, the encapsulation of cells, and in drug delivery systems. The use of photopolymerization processes requires an appropriate initiating system that, in biomedical applications, must meet additional criteria such as high water solubility, non-toxicity to cells, and compatibility with visible low-power light sources. This article is a literature review on those compounds that act as photoinitiators of photopolymerization processes in biomedical applications. The division of initiators according to the method of photoinitiation was described and the related mechanisms were discussed. Examples from each group of photoinitiators are presented, and their benefits, limitations, and applications are outlined.
Collapse
Affiliation(s)
- Wiktoria Tomal
- Faculty of Chemical Engineering and Technology, Krakow University of Technology, Warszawska 24, 31-155 Krakow, Poland;
| | - Joanna Ortyl
- Faculty of Chemical Engineering and Technology, Krakow University of Technology, Warszawska 24, 31-155 Krakow, Poland;
- Photo HiTech Ltd., Bobrzyńskiego 14, 30-348 Krakow, Poland
| |
Collapse
|
17
|
Photobiomodulation Mediates Neuroprotection against Blue Light Induced Retinal Photoreceptor Degeneration. Int J Mol Sci 2020; 21:ijms21072370. [PMID: 32235464 PMCID: PMC7177783 DOI: 10.3390/ijms21072370] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/21/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
Potent neuroprotective effects of photobiomodulation with 670 nm red light (RL) have been demonstrated in several models of retinal disease. RL improves mitochondrial metabolism, reduces retinal inflammation and oxidative cell stress, showing its ability to enhance visual function. However, the current knowledge is limited to the main hypothesis that the respiratory chain complex IV, cytochrome c oxidase, serves as the primary target of RL. Here, we demonstrate a comprehensive cellular, molecular, and functional characterization of neuroprotective effects of 670 nm RL and 810 nm near-infrared light (NIRL) on blue light damaged murine primary photoreceptors. We show that respiratory chain complexes I and II are additional PBM targets, besides complex IV, leading to enhanced mitochondrial energy metabolism. Accordingly, our study identified mitochondria related RL- and NIRL-triggered defense mechanisms promoting photoreceptor neuroprotection. The observed improvement of mitochondrial and extramitochondrial respiration in both inner and outer segments is linked with reduced oxidative stress including its cellular consequences and reduced mitochondria-induced apoptosis. Analysis of regulatory mechanisms using gene expression analysis identified upregulation α-crystallins that indicate enhanced production of proteins with protective functions that point to the rescued mitochondrial function. The results support the hypothesis that energy metabolism is a major target for retinal light therapy.
Collapse
|
18
|
Hipskind SG, Grover FL, Fort TR, Helffenstein D, Burke TJ, Quint SA, Bussiere G, Stone M, Hurtado T. Pulsed Transcranial Red/Near-Infrared Light Therapy Using Light-Emitting Diodes Improves Cerebral Blood Flow and Cognitive Function in Veterans with Chronic Traumatic Brain Injury: A Case Series. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2020; 37:77-84. [PMID: 31050928 PMCID: PMC6390875 DOI: 10.1089/photob.2018.4489] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Objective: This study explored the outcome of applying red/near-infrared light therapy using light-emitting diodes (LEDs) pulsed with three different frequencies transcranially to treat traumatic brain injury (TBI) in Veterans. Background: Photobiomodulation therapy (PBMT) using LEDs has been shown to have positive effects on TBI in humans and animal models. Materials and methods: Twelve symptomatic military Veterans diagnosed with chronic TBI >18 months post-trauma received pulsed transcranial PBMT (tPBMT) using two neoprene therapy pads containing 220 infrared and 180 red LEDs, generating a power output of 3.3 W and an average power density of 6.4 mW/cm2 for 20 min, thrice per week over 6 weeks. Outcome measures included standardized neuropsychological test scores and qualitative and quantitative single photon emission computed tomography (SPECT) measures of regional cerebral blood flow (rCBF). Results: Pulsed tPBMT significantly improved neuropsychological scores in 6 of 15 subscales (40.0%; p < 0.05; two tailed). SPECT analysis showed increase in rCBF in 8 of 12 (66.7%) study participants. Quantitative SPECT analysis revealed a significant increase in rCBF in this subgroup of study participants and a significant difference between pre-treatment and post-treatment gamma ray counts per cubic centimeter [t = 3.77, df = 7, p = 0.007, 95% confidence interval (95,543.21–21,931.82)]. This is the first study to report quantitative SPECT analysis of rCBF in regions of interest following pulsed tPBMT with LEDs in TBI. Conclusions: Pulsed tPBMT using LEDs shows promise in improving cognitive function and rCBF several years after TBI. Larger, controlled studies are indicated.
Collapse
Affiliation(s)
- S Gregory Hipskind
- 1 Brain Injury Consulting, LLC, Department of Brain Research, Addison, Texas.,2 InLight Medical, Medical Advisory Department, Addison, Texas
| | - Fred L Grover
- 3 Revolutionary MD, Department of Medical Research, Denver, Colorado
| | - T Richard Fort
- 4 CereScan Corporation, Department of Imaging Research, Littleton, Colorado
| | - Dennis Helffenstein
- 5 Colorado Neuropsychological Associates, Testing Department, Englewood, Colorado
| | - Thomas J Burke
- 6 University of Colorado School of Medicine, Department of Physiology (Retired), Aurora, Colorado
| | - Shane A Quint
- 4 CereScan Corporation, Department of Imaging Research, Littleton, Colorado
| | - Garrett Bussiere
- 4 CereScan Corporation, Department of Imaging Research, Littleton, Colorado
| | - Michael Stone
- 7 Veterans Administration Hospital, Department of Radiology, Las Vegas, Nevada
| | - Timothy Hurtado
- 8 Penrose-St. Francis Health Services, Emergency Department, Colorado Springs, Colorado
| |
Collapse
|
19
|
Enengl J, Hamblin MR, Dungel P. Photobiomodulation for Alzheimer's Disease: Translating Basic Research to Clinical Application. J Alzheimers Dis 2020; 75:1073-1082. [PMID: 32390621 PMCID: PMC7369090 DOI: 10.3233/jad-191210] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2020] [Indexed: 12/30/2022]
Abstract
One of the challenges in translating new therapeutic approaches to the patient bedside lies in bridging the gap between scientists who are conducting basic laboratory research and medical practitioners who are not exposed to highly specialized journals. This review covers the literature on photobiomodulation therapy as a novel approach to prevent and treat Alzheimer's disease, aiming to bridge that gap by gathering together the terms and technical specifications into a single concise suggestion for a treatment protocol. In light of the predicted doubling in the number of people affected by dementia and Alzheimer's disease within the next 30 years, a treatment option which has already shown promising results in cell culture studies and animal models, and whose safety has already been proven in humans, must not be left in the dark. This review covers the mechanistic action of photobiomodulation therapy against Alzheimer's disease at a cellular level. Safe and effective doses have been found in animal models, and the first human case studies have provided reasons to undertake large-scale clinical trials. A brief discussion of the minimally effective and maximum tolerated dose concludes this review, and provides the basis for a successful translation from bench to bedside.
Collapse
Affiliation(s)
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Peter Dungel
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| |
Collapse
|
20
|
Hipskind SG, Grover FL, Fort TR, Helffenstein D, Burke TJ, Quint SA, Bussiere G, Stone M, Hurtado T. Pulsed Transcranial Red/Near-Infrared Light Therapy Using Light-Emitting Diodes Improves Cerebral Blood Flow and Cognitive Function in Veterans with Chronic Traumatic Brain Injury: A Case Series. Photomed Laser Surg 2018:pho.2018.4489. [PMID: 30418082 DOI: 10.1089/pho.2018.4489] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE This study explored the outcome of applying red/near-infrared light therapy using light-emitting diodes (LEDs) pulsed with three different frequencies transcranially to treat traumatic brain injury (TBI) in Veterans. BACKGROUND Photobiomodulation therapy (PBMT) using LEDs has been shown to have positive effects on TBI in humans and animal models. MATERIALS AND METHODS Twelve symptomatic military Veterans diagnosed with chronic TBI >18 months post-trauma received pulsed transcranial PBMT (tPBMT) using two neoprene therapy pads containing 220 infrared and 180 red LEDs, generating a power output of 3.3 W and an average power density of 6.4 mW/cm2 for 20 min, thrice per week over 6 weeks. Outcome measures included standardized neuropsychological test scores and qualitative and quantitative single photon emission computed tomography (SPECT) measures of regional cerebral blood flow (rCBF). RESULTS Pulsed tPBMT significantly improved neuropsychological scores in 6 of 15 subscales (40.0%; p < 0.05; two tailed). SPECT analysis showed increase in rCBF in 8 of 12 (66.7%) study participants. Quantitative SPECT analysis revealed a significant increase in rCBF in this subgroup of study participants and a significant difference between pre-treatment and post-treatment gamma ray counts per cubic centimeter [t = 3.77, df = 7, p = 0.007, 95% confidence interval (95,543.21-21,931.82)]. This is the first study to report quantitative SPECT analysis of rCBF in regions of interest following pulsed tPBMT with LEDs in TBI. CONCLUSIONS Pulsed tPBMT using LEDs shows promise in improving cognitive function and rCBF several years after TBI. Larger, controlled studies are indicated.
Collapse
Affiliation(s)
- S Gregory Hipskind
- 1 Brain Injury Consulting, LLC , Department of Brain Research, Addison, Texas
- 2 InLight Medical , Medical Advisory Department, Addison, Texas
| | - Fred L Grover
- 3 Revolutionary MD , Department of Medical Research, Denver, Colorado
| | - T Richard Fort
- 4 CereScan Corporation , Department of Imaging Research, Littleton, Colorado
| | - Dennis Helffenstein
- 5 Colorado Neuropsychological Associates , Testing Department, Englewood, Colorado
| | - Thomas J Burke
- 6 University of Colorado School of Medicine, Department of Physiology (Retired) , Aurora, Colorado
| | - Shane A Quint
- 4 CereScan Corporation , Department of Imaging Research, Littleton, Colorado
| | - Garrett Bussiere
- 4 CereScan Corporation , Department of Imaging Research, Littleton, Colorado
| | - Michael Stone
- 7 Veterans Administration Hospital , Department of Radiology, Las Vegas, Nevada
| | - Timothy Hurtado
- 8 Penrose-St. Francis Health Services , Emergency Department, Colorado Springs, Colorado
| |
Collapse
|
21
|
Dos Santos JGRP, Paiva WS, Teixeira MJ. Transcranial light-emitting diode therapy for neuropsychological improvement after traumatic brain injury: a new perspective for diffuse axonal lesion management. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2018; 11:139-146. [PMID: 29731669 PMCID: PMC5927185 DOI: 10.2147/mder.s155356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The cost of traumatic brain injury (TBI) for public health policies is undeniable today. Even patients who suffer from mild TBI may persist with cognitive symptoms weeks after the accident. Most of them show no lesion in computed tomography or conventional magnetic resonance imaging, but microstructural white matter abnormalities (diffuse axonal lesion) can be found in diffusion tensor imaging. Different brain networks work together to form an important part of the cognition process, and they can be affected by TBI. The default mode network (DMN) plays an important central role in normal brain activities, presenting greater relative deactivation during more cognitively demanding tasks. After deactivation, it allows a distinct network to activate. This network (the central executive network) acts mainly during tasks involving executive functions. The salience network is another network necessary for normal executive function, and its activation leads to deactivation of the DMN. The use of red or near-infrared (NIR) light to stimulate or regenerate tissue is known as photobiomodulation. It was discovered that NIR (wavelength 800-900 nm) and red (wavelength 600 nm) light-emitting diodes (LEDs) are able to penetrate through scalp and skull and have the potential to improve the subnormal, cellular activity of compromised brain tissue. Based on this, different experimental and clinical studies were done to test LED therapy for TBI, and promising results were found. It leads us to consider developing different approaches to maximize the positive effects of this therapy and improve the quality of life of TBI patients.
Collapse
Affiliation(s)
| | - Wellingson Silva Paiva
- Department of Neurological Surgery, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Manoel Jacobsen Teixeira
- Department of Neurological Surgery, University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|
22
|
Brain Photobiomodulation Therapy: a Narrative Review. Mol Neurobiol 2018; 55:6601-6636. [PMID: 29327206 DOI: 10.1007/s12035-017-0852-4] [Citation(s) in RCA: 265] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/19/2017] [Indexed: 12/20/2022]
Abstract
Brain photobiomodulation (PBM) therapy using red to near-infrared (NIR) light is an innovative treatment for a wide range of neurological and psychological conditions. Red/NIR light is able to stimulate complex IV of the mitochondrial respiratory chain (cytochrome c oxidase) and increase ATP synthesis. Moreover, light absorption by ion channels results in release of Ca2+ and leads to activation of transcription factors and gene expression. Brain PBM therapy enhances the metabolic capacity of neurons and stimulates anti-inflammatory, anti-apoptotic, and antioxidant responses, as well as neurogenesis and synaptogenesis. Its therapeutic role in disorders such as dementia and Parkinson's disease, as well as to treat stroke, brain trauma, and depression has gained increasing interest. In the transcranial PBM approach, delivering a sufficient dose to achieve optimal stimulation is challenging due to exponential attenuation of light penetration in tissue. Alternative approaches such as intracranial and intranasal light delivery methods have been suggested to overcome this limitation. This article reviews the state-of-the-art preclinical and clinical evidence regarding the efficacy of brain PBM therapy.
Collapse
|
23
|
Salehpour F, Ahmadian N, Rasta SH, Farhoudi M, Karimi P, Sadigh-Eteghad S. Transcranial low-level laser therapy improves brain mitochondrial function and cognitive impairment in D-galactose-induced aging mice. Neurobiol Aging 2017; 58:140-150. [PMID: 28735143 DOI: 10.1016/j.neurobiolaging.2017.06.025] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 05/11/2017] [Accepted: 06/29/2017] [Indexed: 12/11/2022]
Abstract
Mitochondrial function plays a key role in the aging-related cognitive impairment, and photoneuromodulation of mitochondria by transcranial low-level laser therapy (LLLT) may contribute to its improvement. This study focused on the transcranial LLLT effects on the D-galactose (DG)-induced mitochondrial dysfunction, apoptosis, and cognitive impairment in mice. For this purpose, red and near-infrared (NIR) laser wavelengths (660 and 810 nm) at 2 different fluencies (4 and 8 J/cm2) at 10-Hz pulsed wave mode were administrated transcranially 3 d/wk in DG-received (500 mg/kg/subcutaneous) mice model of aging for 6 weeks. Spatial and episodic-like memories were assessed by the Barnes maze and What-Where-Which (WWWhich) tasks. Brain tissues were analyzed for mitochondrial function including active mitochondria, adenosine triphosphate, and reactive oxygen species levels, as well as membrane potential and cytochrome c oxidase activity. Apoptosis-related biomarkers, namely, Bax, Bcl-2, and caspase-3 were evaluated by Western blotting method. Laser treatments at wavelengths of 660 and 810 nm at 8 J/cm2 attenuated DG-impaired spatial and episodic-like memories. Also, results showed an obvious improvement in the mitochondrial function aspects and modulatory effects on apoptotic markers in aged mice. However, same wavelengths at the fluency of 4 J/cm2 had poor effect on the behavioral and molecular indexes in aging model. This data indicates that transcranial LLLT at both of red and NIR wavelengths at the fluency of 8 J/cm2 has a potential to ameliorate aging-induced mitochondrial dysfunction, apoptosis, and cognitive impairment.
Collapse
Affiliation(s)
- Farzad Salehpour
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Physics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahid Ahmadian
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Hossein Rasta
- Department of Medical Physics, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Bioengineering, Tabriz University of Medical Sciences, Tabriz, Iran; School of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Mehdi Farhoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pouran Karimi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
24
|
Lapchak PA, Boitano PD. A novel method to promote behavioral improvement and enhance mitochondrial function following an embolic stroke. Brain Res 2016; 1646:125-131. [PMID: 27180104 DOI: 10.1016/j.brainres.2016.04.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/05/2016] [Accepted: 04/16/2016] [Indexed: 10/21/2022]
Abstract
Tissue plasminogen activator (tPA) is the only FDA-approved treatment for stroke; tPA increases cerebral reperfusion, blood flow and improved behavior. Novel transcranial laser therapy (TLT) also enhances cerebral blood flow and activates mitochondrial function. Using the rabbit small clot embolic stroke model (RSCEM), we studied the effects of continuous wave TLT (7.5mW/cm(2)) alone or in combination with standardized intravenous (IV) tPA (3.3mg/kg) applied 1h post-embolization on 3 endpoints: 1) behavioral function measured 2 days [effective stroke dose (P50 in mg) producing neurological deficits in 50% of embolized rabbits], 2) intracerebral hemorrhage (ICH) rate, and 3) cortical adenosine-5'-triphosphate (ATP) content was measured 6h following embolization. TLT and tPA significantly (p<0.05) increased P50 values by 95% and 56% (p<0.05), respectively over control. TLT-tPA increased P50 by 136% over control (p<0.05). Embolization reduced cortical ATP content by 39%; decreases that were attenuated by either TLT or tPA treatment (p<0.05). TLT-tPA further enhanced cortical ATP levels 22% above that measured in naïve control. TLT and tPA both effectively and safely, without affecting ICH rate, improved behavioral outcome in embolized rabbits; and there was a trend (p>0.05) for the TLT-tPA combination to further increase P50. TLT and tPA both attenuated stroke-induced ATP deficits, and the combination of tPA and TLT produced an additive effect on ATP levels. This study demonstrates that the combination of TLT-tPA enhances ATP production, and suggests that tPA-induced reperfusion in combination with TLT neuroprotection therapy may optimally protect viable cells in the cortex measured using ATP levels as a marker.
Collapse
Affiliation(s)
- Paul A Lapchak
- Cedars-Sinai Medical Center Department of Neurology & Neurosurgery, Advanced Health Sciences Pavilion Suite 8305, 127 South San Vicente Blvd, Los Angeles 90048, United States.
| | - Paul D Boitano
- Cedars-Sinai Medical Center Department of Neurology & Neurosurgery, Advanced Health Sciences Pavilion Suite 8305, 127 South San Vicente Blvd, Los Angeles 90048, United States.
| |
Collapse
|
25
|
Pires de Sousa MV, Ferraresi C, Kawakubo M, Kaippert B, Yoshimura EM, Hamblin MR. Transcranial low-level laser therapy (810 nm) temporarily inhibits peripheral nociception: photoneuromodulation of glutamate receptors, prostatic acid phophatase, and adenosine triphosphate. NEUROPHOTONICS 2016; 3:015003. [PMID: 26835486 PMCID: PMC4725212 DOI: 10.1117/1.nph.3.1.015003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 12/09/2015] [Indexed: 05/13/2023]
Abstract
Photobiomodulation or low-level light therapy has been shown to attenuate both acute and chronic pain, but the mechanism of action is not well understood. In most cases, the light is applied to the painful area, but in the present study we applied light to the head. We found that transcranial laser therapy (TLT) applied to mouse head with specific parameters (810 nm laser, [Formula: see text], 7.2 or [Formula: see text]) decreased the reaction to pain in the foot evoked either by pressure (von Frey filaments), cold, or inflammation (formalin injection) or in the tail (evoked by heat). The pain threshold increasing is maximum around 2 h after TLT, remains up to 6 h, and is finished 24 h after TLT. The mechanisms were investigated by quantification of adenosine triphosphate (ATP), immunofluorescence, and hematoxylin and eosin (H&E) staining of brain tissues. TLT increased ATP and prostatic acid phosphatase (an endogenous analgesic) and reduced the amount of glutamate receptor (mediating a neurotransmitter responsible for conducting nociceptive information). There was no change in the concentration of tubulin, a constituent of the cytoskeleton, and the H&E staining revealed no tissue damage. This is the first study to show inhibition of peripheral pain due to photobiomodulation of the central nervous system.
Collapse
Affiliation(s)
- Marcelo Victor Pires de Sousa
- Massachusetts General Hospital, Wellman Center for Photomedicine, BAR414, 40 Blossom Street, Boston, Massachusetts 02114, United States
- University of São Paulo, Institute of Physics, Laboratory of Radiation Dosimetry and Medical Physics, Rua do Matão, Travessa R, 187, Cidade Universitária, São Paulo, Brazil
- Bright Photomedicine Ltd., CIETEC Building, 2242 Lineu Prestes, São Paulo 05508-000, Brazil
| | - Cleber Ferraresi
- Massachusetts General Hospital, Wellman Center for Photomedicine, BAR414, 40 Blossom Street, Boston, Massachusetts 02114, United States
- Federal University of São Carlos, Department of Physical Therapy, Laboratory of Electro-Thermo-Phototherapy, Street Washington Luis, km 235. Monjolinho, São Carlos, São Paulo 13565-905, Brazil
- Federal University of São Carlos, Post-Graduation Program in Biotechnology, Street Washington Luis, km 235. Monjolinho, São Carlos, São Paulo 13560-000, Brazil
- University of São Paulo, Optics Group, Physics Institute of São Carlos, Street Miguel Petroni, 146–Jardim Bandeirantes, São Carlos, São Paulo 13560-970, Brazil
| | - Masayoshi Kawakubo
- Massachusetts General Hospital, Wellman Center for Photomedicine, BAR414, 40 Blossom Street, Boston, Massachusetts 02114, United States
| | - Beatriz Kaippert
- Massachusetts General Hospital, Wellman Center for Photomedicine, BAR414, 40 Blossom Street, Boston, Massachusetts 02114, United States
- Federal University of Rio de Janeiro, Carlos Chagas Filho, 373–Cidade Universitária, Rio de Janeiro, RJ 21941-170, Brazil
| | - Elisabeth Mateus Yoshimura
- University of São Paulo, Institute of Physics, Laboratory of Radiation Dosimetry and Medical Physics, Rua do Matão, Travessa R, 187, Cidade Universitária, São Paulo, Brazil
| | - Michael R. Hamblin
- Massachusetts General Hospital, Wellman Center for Photomedicine, BAR414, 40 Blossom Street, Boston, Massachusetts 02114, United States
- Harvard Medical School, Department of Dermatology, 50 Staniford Street #807, Boston, Massachusetts 02114, United States
- Harvard-MIT, Division of Health Sciences and Technology, 77 Massachusetts Avenue, E25-518, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
26
|
Malinovskaya NA, Salmina AB, Prokopenko SV, Morgun AV, Kuvacheva NV, Panina YA, Shilina EV. The coexpression of CD157/CD11b/CD18 in an experimental model of Parkinson’s disease. NEUROCHEM J+ 2015. [DOI: 10.1134/s181971241504011x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Lapchak PA, Boitano PD, Butte PV, Fisher DJ, Hölscher T, Ley EJ, Nuño M, Voie AH, Rajput PS. Transcranial Near-Infrared Laser Transmission (NILT) Profiles (800 nm): Systematic Comparison in Four Common Research Species. PLoS One 2015; 10:e0127580. [PMID: 26039354 PMCID: PMC4454538 DOI: 10.1371/journal.pone.0127580] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 04/16/2015] [Indexed: 12/14/2022] Open
Abstract
Background and Purpose Transcranial near-infrared laser therapy (TLT) is a promising and novel method to promote neuroprotection and clinical improvement in both acute and chronic neurodegenerative diseases such as acute ischemic stroke (AIS), traumatic brain injury (TBI), and Alzheimer’s disease (AD) patients based upon efficacy in translational animal models. However, there is limited information in the peer-reviewed literature pertaining to transcranial near-infrared laser transmission (NILT) profiles in various species. Thus, in the present study we systematically evaluated NILT characteristics through the skull of 4 different species: mouse, rat, rabbit and human. Results Using dehydrated skulls from 3 animal species, using a wavelength of 800nm and a surface power density of 700 mW/cm2, NILT decreased from 40.10% (mouse) to 21.24% (rat) to 11.36% (rabbit) as skull thickness measured at bregma increased from 0.44 mm in mouse to 0.83 mm in rat and then 2.11 mm in rabbit. NILT also significantly increased (p<0.05) when animal skulls were hydrated (i.e. compared to dehydrated); but there was no measurable change in thickness due to hydration. In human calvaria, where mean thickness ranged from 7.19 mm at bregma to 5.91 mm in the parietal skull, only 4.18% and 4.24% of applied near-infrared light was transmitted through the skull. There was a slight (9.2-13.4%), but insignificant effect of hydration state on NILT transmission of human skulls, but there was a significant positive correlation between NILT and thickness at bregma and parietal skull, in both hydrated and dehydrated states. Conclusion This is the first systematic study to demonstrate differential NILT through the skulls of 4 different species; with an inverse relationship between NILT and skull thickness. With animal skulls, transmission profiles are dependent upon the hydration state of the skull, with significantly greater penetration through hydrated skulls compared to dehydrated skulls. Using human skulls, we demonstrate a significant correlation between thickness and penetration, but there was no correlation with skull density. The results suggest that TLT should be optimized in animals using novel approaches incorporating human skull characteristics, because of significant variance of NILT profiles directly related to skull thickness.
Collapse
Affiliation(s)
- Paul A. Lapchak
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Department of Neurosurgery, Cedars-Sinai Medical center, Los Angeles, California, United States of America
- * E-mail:
| | - Paul D. Boitano
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Pramod V. Butte
- Department of Neurosurgery, Cedars-Sinai Medical center, Los Angeles, California, United States of America
| | - David J. Fisher
- BURL Concepts Inc., San Diego, California, United States of America
| | - Thilo Hölscher
- BURL Concepts Inc., San Diego, California, United States of America
| | - Eric J. Ley
- Department of Surgery, Cedars-Sinai Medical center, Los Angeles, California, United States of America
| | - Miriam Nuño
- Department of Neurosurgery, Cedars-Sinai Medical center, Los Angeles, California, United States of America
| | - Arne H. Voie
- BURL Concepts Inc., San Diego, California, United States of America
| | - Padmesh S. Rajput
- Department of Neurosurgery, Cedars-Sinai Medical center, Los Angeles, California, United States of America
| |
Collapse
|
28
|
Giacci MK, Hart NS, Hartz RV, Harvey AR, Hodgetts SI, Fitzgerald M. Method for the assessment of effects of a range of wavelengths and intensities of red/near-infrared light therapy on oxidative stress in vitro. J Vis Exp 2015:52221. [PMID: 25867757 PMCID: PMC4401369 DOI: 10.3791/52221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Red/near-infrared light therapy (R/NIR-LT), delivered by laser or light emitting diode (LED), improves functional and morphological outcomes in a range of central nervous system injuries in vivo, possibly by reducing oxidative stress. However, effects of R/NIR-LT on oxidative stress have been shown to vary depending on wavelength or intensity of irradiation. Studies comparing treatment parameters are lacking, due to absence of commercially available devices that deliver multiple wavelengths or intensities, suitable for high through-put in vitro optimization studies. This protocol describes a technique for delivery of light at a range of wavelengths and intensities to optimize therapeutic doses required for a given injury model. We hypothesized that a method of delivering light, in which wavelength and intensity parameters could easily be altered, could facilitate determination of an optimal dose of R/NIR-LT for reducing reactive oxygen species (ROS) in vitro. Non-coherent Xenon light was filtered through narrow-band interference filters to deliver varying wavelengths (center wavelengths of 440, 550, 670 and 810 nm) and fluences (8.5x10(-3) to 3.8x10(-1) J/cm2) of light to cultured cells. Light output from the apparatus was calibrated to emit therapeutically relevant, equal quantal doses of light at each wavelength. Reactive species were detected in glutamate stressed cells treated with the light, using DCFH-DA and H2O2 sensitive fluorescent dyes. We successfully delivered light at a range of physiologically and therapeutically relevant wavelengths and intensities, to cultured cells exposed to glutamate as a model of CNS injury. While the fluences of R/NIR-LT used in the current study did not exert an effect on ROS generated by the cultured cells, the method of light delivery is applicable to other systems including isolated mitochondria or more physiologically relevant organotypic slice culture models, and could be used to assess effects on a range of outcome measures of oxidative metabolism.
Collapse
Affiliation(s)
- Marcus K Giacci
- Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia
| | - Nathan S Hart
- School of Animal Biology and The Oceans Institute, The University of Western Australia
| | - Richard V Hartz
- Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia
| | - Alan R Harvey
- Experimental and Regenerative Neurosciences, School of Anatomy, Physiology and Human Biology, The University of Western Australia
| | - Stuart I Hodgetts
- Experimental and Regenerative Neurosciences, School of Anatomy, Physiology and Human Biology, The University of Western Australia
| | - Melinda Fitzgerald
- Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia;
| |
Collapse
|
29
|
Pitzschke A, Lovisa B, Seydoux O, Zellweger M, Pfleiderer M, Tardy Y, Wagnières G. Red and NIR light dosimetry in the human deep brain. Phys Med Biol 2015; 60:2921-37. [PMID: 25789711 DOI: 10.1088/0031-9155/60/7/2921] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photobiomodulation (PBM) appears promising to treat the hallmarks of Parkinson's Disease (PD) in cellular or animal models. We measured light propagation in different areas of PD-relevant deep brain tissue during transcranial, transsphenoidal illumination (at 671 and 808 nm) of a cadaver head and modeled optical parameters of human brain tissue using Monte-Carlo simulations. Gray matter, white matter, cerebrospinal fluid, ventricles, thalamus, pons, cerebellum and skull bone were processed into a mesh of the skull (158 × 201 × 211 voxels; voxel side length: 1 mm). Optical parameters were optimized from simulated and measured fluence rate distributions. The estimated μeff for the different tissues was in all cases larger at 671 than at 808 nm, making latter a better choice for light delivery in the deep brain. Absolute values were comparable to those found in the literature or slightly smaller. The effective attenuation in the ventricles was considerably larger than literature values. Optimization yields a new set of optical parameters better reproducing the experimental data. A combination of PBM via the sphenoid sinus and oral cavity could be beneficial. A 20-fold higher efficiency of light delivery to the deep brain was achieved with ventricular instead of transcranial illumination. Our study demonstrates that it is possible to illuminate deep brain tissues transcranially, transsphenoidally and via different application routes. This opens therapeutic options for sufferers of PD or other cerebral diseases necessitating light therapy.
Collapse
Affiliation(s)
- A Pitzschke
- Federal Institute of Technology (EPFL), Institute of Chemical Sciences and Engineering (ISIC), 1015 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
30
|
Henderson TA, Morries LD. Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain? Neuropsychiatr Dis Treat 2015. [PMID: 26346298 DOI: 10.2147/ndt] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
Traumatic brain injury (TBI) is a growing health concern effecting civilians and military personnel. Research has yielded a better understanding of the pathophysiology of TBI, but effective treatments have not been forthcoming. Near-infrared light (NIR) has shown promise in animal models of both TBI and stroke. Yet, it remains unclear if sufficient photonic energy can be delivered to the human brain to yield a beneficial effect. This paper reviews the pathophysiology of TBI and elaborates the physiological effects of NIR in the context of this pathophysiology. Pertinent aspects of the physical properties of NIR, particularly in regards to its interactions with tissue, provide the background for understanding this critical issue of light penetration through tissue. Our recent tissue studies demonstrate no penetration of low level NIR energy through 2 mm of skin or 3 cm of skull and brain. However, at 10-15 W, 0.45%-2.90% of 810 nm light penetrated 3 cm of tissue. A 15 W 810 nm device (continuous or non-pulsed) NIR delivered 2.9% of the surface power density. Pulsing at 10 Hz reduced the dose of light delivered to the surface by 50%, but 2.4% of the surface energy reached the depth of 3 cm. Approximately 1.22% of the energy of 980 nm light at 10-15 W penetrated to 3 cm. These data are reviewed in the context of the literature on low-power NIR penetration, wherein less than half of 1% of the surface energy could reach a depth of 1 cm. NIR in the power range of 10-15 W at 810 and 980 nm can provide fluence within the range shown to be biologically beneficial at 3 cm depth. A companion paper reviews the clinical data on the treatment of patients with chronic TBI in the context of the current literature.
Collapse
Affiliation(s)
- Theodore A Henderson
- The Synaptic Space, Centennial, CO, USA ; Neuro-Laser Foundation, Lakewood, CO, USA
| | | |
Collapse
|
31
|
Henderson TA, Morries LD. Near-infrared photonic energy penetration: can infrared phototherapy effectively reach the human brain? Neuropsychiatr Dis Treat 2015; 11:2191-208. [PMID: 26346298 PMCID: PMC4552256 DOI: 10.2147/ndt.s78182] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Traumatic brain injury (TBI) is a growing health concern effecting civilians and military personnel. Research has yielded a better understanding of the pathophysiology of TBI, but effective treatments have not been forthcoming. Near-infrared light (NIR) has shown promise in animal models of both TBI and stroke. Yet, it remains unclear if sufficient photonic energy can be delivered to the human brain to yield a beneficial effect. This paper reviews the pathophysiology of TBI and elaborates the physiological effects of NIR in the context of this pathophysiology. Pertinent aspects of the physical properties of NIR, particularly in regards to its interactions with tissue, provide the background for understanding this critical issue of light penetration through tissue. Our recent tissue studies demonstrate no penetration of low level NIR energy through 2 mm of skin or 3 cm of skull and brain. However, at 10-15 W, 0.45%-2.90% of 810 nm light penetrated 3 cm of tissue. A 15 W 810 nm device (continuous or non-pulsed) NIR delivered 2.9% of the surface power density. Pulsing at 10 Hz reduced the dose of light delivered to the surface by 50%, but 2.4% of the surface energy reached the depth of 3 cm. Approximately 1.22% of the energy of 980 nm light at 10-15 W penetrated to 3 cm. These data are reviewed in the context of the literature on low-power NIR penetration, wherein less than half of 1% of the surface energy could reach a depth of 1 cm. NIR in the power range of 10-15 W at 810 and 980 nm can provide fluence within the range shown to be biologically beneficial at 3 cm depth. A companion paper reviews the clinical data on the treatment of patients with chronic TBI in the context of the current literature.
Collapse
Affiliation(s)
- Theodore A Henderson
- The Synaptic Space, Centennial, CO, USA ; Neuro-Laser Foundation, Lakewood, CO, USA
| | | |
Collapse
|
32
|
Giacci MK, Wheeler L, Lovett S, Dishington E, Majda B, Bartlett CA, Thornton E, Harford-Wright E, Leonard A, Vink R, Harvey AR, Provis J, Dunlop SA, Hart NS, Hodgetts S, Natoli R, Van Den Heuvel C, Fitzgerald M. Differential effects of 670 and 830 nm red near infrared irradiation therapy: a comparative study of optic nerve injury, retinal degeneration, traumatic brain and spinal cord injury. PLoS One 2014; 9:e104565. [PMID: 25105800 PMCID: PMC4126771 DOI: 10.1371/journal.pone.0104565] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/10/2014] [Indexed: 01/23/2023] Open
Abstract
Red/near-infrared irradiation therapy (R/NIR-IT) delivered by laser or light-emitting diode (LED) has improved functional outcomes in a range of CNS injuries. However, translation of R/NIR-IT to the clinic for treatment of neurotrauma has been hampered by lack of comparative information regarding the degree of penetration of the delivered irradiation to the injury site and the optimal treatment parameters for different CNS injuries. We compared the treatment efficacy of R/NIR-IT at 670 nm and 830 nm, provided by narrow-band LED arrays adjusted to produce equal irradiance, in four in vivo rat models of CNS injury: partial optic nerve transection, light-induced retinal degeneration, traumatic brain injury (TBI) and spinal cord injury (SCI). The number of photons of 670 nm or 830 nm light reaching the SCI injury site was 6.6% and 11.3% of emitted light respectively. Treatment of rats with 670 nm R/NIR-IT following partial optic nerve transection significantly increased the number of visual responses at 7 days after injury (P ≤ 0.05); 830 nm R/NIR-IT was partially effective. 670 nm R/NIR-IT also significantly reduced reactive species and both 670 nm and 830 nm R/NIR-IT reduced hydroxynonenal immunoreactivity (P ≤ 0.05) in this model. Pre-treatment of light-induced retinal degeneration with 670 nm R/NIR-IT significantly reduced the number of Tunel+ cells and 8-hydroxyguanosine immunoreactivity (P ≤ 0.05); outcomes in 830 nm R/NIR-IT treated animals were not significantly different to controls. Treatment of fluid-percussion TBI with 670 nm or 830 nm R/NIR-IT did not result in improvements in motor or sensory function or lesion size at 7 days (P>0.05). Similarly, treatment of contusive SCI with 670 nm or 830 nm R/NIR-IT did not result in significant improvements in functional recovery or reduced cyst size at 28 days (P>0.05). Outcomes from this comparative study indicate that it will be necessary to optimise delivery devices, wavelength, intensity and duration of R/NIR-IT individually for different CNS injury types.
Collapse
Affiliation(s)
- Marcus K. Giacci
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, Australia
- School of Animal Biology, The University of Western Australia, Crawley, Australia
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Australia
| | - Lachlan Wheeler
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, Australia
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Australia
| | - Sarah Lovett
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, Australia
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Australia
| | - Emma Dishington
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, Australia
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Australia
| | - Bernadette Majda
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, Australia
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Australia
| | - Carole A. Bartlett
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, Australia
- School of Animal Biology, The University of Western Australia, Crawley, Australia
| | - Emma Thornton
- School of Medical Sciences, The University of Adelaide, Adelaide, Australia
| | | | - Anna Leonard
- School of Medical Sciences, The University of Adelaide, Adelaide, Australia
| | - Robert Vink
- School of Medical Sciences, The University of Adelaide, Adelaide, Australia
| | - Alan R. Harvey
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, Australia
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Australia
| | - Jan Provis
- ANU Medical School and John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Sarah A. Dunlop
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, Australia
- School of Animal Biology, The University of Western Australia, Crawley, Australia
| | - Nathan S. Hart
- School of Animal Biology, The University of Western Australia, Crawley, Australia
- Neuroecology Group, The Oceans Institute, The University of Western Australia, Crawley, Australia
| | - Stuart Hodgetts
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, Australia
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Australia
| | - Riccardo Natoli
- ANU Medical School and John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | | | - Melinda Fitzgerald
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, Australia
- School of Animal Biology, The University of Western Australia, Crawley, Australia
- * E-mail:
| |
Collapse
|
33
|
Optical feedback-induced light modulation for fiber-based laser ablation. Lasers Med Sci 2014; 29:1919-25. [PMID: 24913423 DOI: 10.1007/s10103-014-1604-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/28/2014] [Indexed: 10/25/2022]
Abstract
Optical fibers have been used as a minimally invasive tool in various medical fields. However, due to excessive heat accumulation, the distal end of a fiber often suffers from severe melting or devitrification, leading to the eventual fiber failure during laser treatment. In order to minimize thermal damage at the fiber tip, an optical feedback sensor was developed and tested ex vivo. Porcine kidney tissue was used to evaluate the feasibility of optical feedback in terms of signal activation, ablation performance, and light transmission. Testing various signal thresholds demonstrated that 3 V was relatively appropriate to trigger the feedback sensor and to prevent the fiber deterioration during kidney tissue ablation. Based upon the development of temporal signal signatures, full contact mode rapidly activated the optical feedback sensor possibly due to heat accumulation. Modulated light delivery induced by optical feedback diminished ablation efficiency by 30% in comparison with no feedback case. However, long-term transmission results validated that laser ablation assisted with optical feedback was able to almost consistently sustain light delivery to the tissue as well as ablation efficiency. Therefore, an optical feedback sensor can be a feasible tool to protect optical fiber tips by minimizing debris contamination and delaying thermal damage process and to ensure more efficient and safer laser-induced tissue ablation.
Collapse
|
34
|
Moro C, Massri NE, Torres N, Ratel D, De Jaeger X, Chabrol C, Perraut F, Bourgerette A, Berger M, Purushothuman S, Johnstone D, Stone J, Mitrofanis J, Benabid AL. Photobiomodulation inside the brain: a novel method of applying near-infrared light intracranially and its impact on dopaminergic cell survival in MPTP-treated mice. J Neurosurg 2014; 120:670-83. [DOI: 10.3171/2013.9.jns13423] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Previous experimental studies have documented the neuroprotection of damaged or diseased cells after applying, from outside the brain, near-infrared light (NIr) to the brain by using external light-emitting diodes (LEDs) or laser devices. In the present study, the authors describe an effective and reliable surgical method of applying to the brain, from inside the brain, NIr to the brain. They developed a novel internal surgical device that delivers the NIr to brain regions very close to target damaged or diseased cells. They suggest that this device will be useful in applying NIr within the large human brain, particularly if the target cells have a very deep location.
Methods
An optical fiber linked to an LED or laser device was surgically implanted into the lateral ventricle of BALB/c mice or Sprague-Dawley rats. The authors explored the feasibility of the internal device, measured the NIr signal through living tissue, looked for evidence of toxicity at doses higher than those required for neuroprotection, and confirmed the neuroprotective effect of NIr on dopaminergic cells in the substantia nigra pars compacta (SNc) in an acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of Parkinson disease in mice.
Results
The device was stable in freely moving animals, and the NIr filled the cranial cavity. Measurements showed that the NIr intensity declined as distance from the source increased across the brain (65% per mm) but was detectable up to 10 mm away. At neuroprotective (0.16 mW) and much higher (67 mW) intensities, the NIr caused no observable behavioral deficits, nor was there evidence of tissue necrosis at the fiber tip, where radiation was most intense. Finally, the intracranially delivered NIr protected SNc cells against MPTP insult; there were consistently more dopaminergic cells in MPTP-treated mice irradiated with NIr than in those that were not irradiated.
Conclusions
In summary, the authors showed that NIr can be applied intracranially, does not have toxic side effects, and is neuroprotective.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jonathan Stone
- 3Physiology, University of Sydney, New South Wales, Australia
| | | | | |
Collapse
|
35
|
Konstantinović LM, Jelić MB, Jeremić A, Stevanović VB, Milanović SD, Filipović SR. Transcranial application of near-infrared low-level laser can modulate cortical excitability. Lasers Surg Med 2013; 45:648-53. [PMID: 24136303 DOI: 10.1002/lsm.22190] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2013] [Indexed: 11/12/2022]
Abstract
BACKGROUND AND OBJECTIVE Near-infrared low-level laser (NIR-LLL) irradiation penetrates scalp and skull and can reach superficial layers of the cerebral cortex. It was shown to improve the outcome of acute stroke in both animal and human studies. In this study we evaluated whether transcranial laser stimulation (TLS) with NIR-LLL can modulate the excitability of the motor cortex (M1) as measured by transcranial magnetic stimulation (TMS). METHODS TLS was applied for 5 minutes over the representation of the right first dorsal interosseal muscle (FDI) in left primary motor cortex (M1), in 14 healthy subjects. Motor evoked potentials (MEPs) from the FDI, elicited by single-pulse TMS, were measured at baseline and up to 30 minutes after the TLS. RESULTS The average MEP size was significantly reduced during the first 20 minutes following the TLS. The pattern was present in 10 (71.5%) of the participants. The MEP size reduction correlated negatively with the motor threshold at rest. CONCLUSIONS TLS with NIR-LLL induced transitory reduction of the excitability of the stimulated cortex. These findings give further insights into the mechanisms of TLS effects in the human cerebral cortex, paving the way for potential applications of TLS in treatment of stroke and in other clinical settings.
Collapse
Affiliation(s)
- Ljubica M Konstantinović
- Department of Rehabilitation, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia; Klinika za Rehabilitaciju "Dr Miroslav Zotović", 11000, Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
36
|
Qin XH, Torgersen J, Saf R, Mühleder S, Pucher N, Ligon SC, Holnthoner W, Redl H, Ovsianikov A, Stampfl J, Liska R. Three-dimensional microfabrication of protein hydrogels via two-photon-excited thiol-vinyl ester photopolymerization. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26903] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Xiao-Hua Qin
- Institute of Applied Synthetic Chemistry; Vienna University of Technology; Getreidemarkt 9/163/MC 1060 Vienna Austria
- Austrian Cluster for Tissue Regeneration; Favoritenstraße 9 1040 Vienna Austria
| | - Jan Torgersen
- Austrian Cluster for Tissue Regeneration; Favoritenstraße 9 1040 Vienna Austria
- Institute of Materials Science and Technology; Vienna University of Technology; Favoritenstraße 9 1040 Vienna Austria
| | - Robert Saf
- Institute for Chemistry and Technology of Materials; Graz University of Technology; Stremayrgasse 9 8010 Graz Austria
| | - Severin Mühleder
- Austrian Cluster for Tissue Regeneration; Favoritenstraße 9 1040 Vienna Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology; Donaueschingenstraße 13 1200 Vienna Austria
| | - Niklas Pucher
- Institute of Applied Synthetic Chemistry; Vienna University of Technology; Getreidemarkt 9/163/MC 1060 Vienna Austria
| | - S. Clark Ligon
- Institute of Applied Synthetic Chemistry; Vienna University of Technology; Getreidemarkt 9/163/MC 1060 Vienna Austria
- Austrian Cluster for Tissue Regeneration; Favoritenstraße 9 1040 Vienna Austria
| | - Wolfgang Holnthoner
- Austrian Cluster for Tissue Regeneration; Favoritenstraße 9 1040 Vienna Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology; Donaueschingenstraße 13 1200 Vienna Austria
| | - Heinz Redl
- Austrian Cluster for Tissue Regeneration; Favoritenstraße 9 1040 Vienna Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology; Donaueschingenstraße 13 1200 Vienna Austria
| | - Aleksandr Ovsianikov
- Austrian Cluster for Tissue Regeneration; Favoritenstraße 9 1040 Vienna Austria
- Institute of Materials Science and Technology; Vienna University of Technology; Favoritenstraße 9 1040 Vienna Austria
| | - Jürgen Stampfl
- Austrian Cluster for Tissue Regeneration; Favoritenstraße 9 1040 Vienna Austria
- Institute of Materials Science and Technology; Vienna University of Technology; Favoritenstraße 9 1040 Vienna Austria
| | - Robert Liska
- Institute of Applied Synthetic Chemistry; Vienna University of Technology; Getreidemarkt 9/163/MC 1060 Vienna Austria
- Austrian Cluster for Tissue Regeneration; Favoritenstraße 9 1040 Vienna Austria
| |
Collapse
|
37
|
[Near-infrared laser treatment of acute stroke: from bench to bedside]. DER NERVENARZT 2013; 83:966-74. [PMID: 22801662 DOI: 10.1007/s00115-012-3567-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Near-infrared laser therapy (NIRLT) as a transcranial laser therapy (TLT) is currently being investigated as a neuroreparatory and neuroprotective treatment for acute ischemic stroke patients in a pivotal phase III trial (NEST-3). In this review we cover the theoretical background, experimental studies, translational research and the clinical trial program.
Collapse
|
38
|
Sommer AP. A novel approach for addressing Alzheimer's disease: The chemo-optical synergism. J Neurosci Res 2012; 90:1297-8. [DOI: 10.1002/jnr.23044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/17/2012] [Accepted: 01/24/2012] [Indexed: 11/08/2022]
|