1
|
Lu H. Inflammatory liver diseases and susceptibility to sepsis. Clin Sci (Lond) 2024; 138:435-487. [PMID: 38571396 DOI: 10.1042/cs20230522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/09/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Patients with inflammatory liver diseases, particularly alcohol-associated liver disease and metabolic dysfunction-associated fatty liver disease (MAFLD), have higher incidence of infections and mortality rate due to sepsis. The current focus in the development of drugs for MAFLD is the resolution of non-alcoholic steatohepatitis and prevention of progression to cirrhosis. In patients with cirrhosis or alcoholic hepatitis, sepsis is a major cause of death. As the metabolic center and a key immune tissue, liver is the guardian, modifier, and target of sepsis. Septic patients with liver dysfunction have the highest mortality rate compared with other organ dysfunctions. In addition to maintaining metabolic homeostasis, the liver produces and secretes hepatokines and acute phase proteins (APPs) essential in tissue protection, immunomodulation, and coagulation. Inflammatory liver diseases cause profound metabolic disorder and impairment of energy metabolism, liver regeneration, and production/secretion of APPs and hepatokines. Herein, the author reviews the roles of (1) disorders in the metabolism of glucose, fatty acids, ketone bodies, and amino acids as well as the clearance of ammonia and lactate in the pathogenesis of inflammatory liver diseases and sepsis; (2) cytokines/chemokines in inflammatory liver diseases and sepsis; (3) APPs and hepatokines in the protection against tissue injury and infections; and (4) major nuclear receptors/signaling pathways underlying the metabolic disorders and tissue injuries as well as the major drug targets for inflammatory liver diseases and sepsis. Approaches that focus on the liver dysfunction and regeneration will not only treat inflammatory liver diseases but also prevent the development of severe infections and sepsis.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| |
Collapse
|
2
|
Üstündağ H, Demir Ö, Huyut MT, Yüce N. Investigating the individual and combined effects of coenzyme Q10 and vitamin C on CLP-induced cardiac injury in rats. Sci Rep 2024; 14:3098. [PMID: 38326366 PMCID: PMC10850075 DOI: 10.1038/s41598-024-52932-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/25/2024] [Indexed: 02/09/2024] Open
Abstract
Sepsis-induced cardiac injury represents a major clinical challenge, amplifying the urgency for effective therapeutic interventions. This study aimed to delve into the individual and combined prophylactic effects of Vitamin C (Vit C) and Coenzyme Q10 (CoQ10) against inflammatory heart injury in a cecal ligation and puncture (CLP) induced polymicrobial sepsis rat model. Thirty adult female Sprague-Dawley rats were randomly divided into five groups: Control, CLP, Vitamin C, CoQ10, and Vit C + CoQ10, each consisting of six rats. Treatments were administered orally via gavage for 10 days prior to the operation. Eighteen hours post-sepsis induction, the animals were euthanized, and specimens were collected for analysis. The study examined variations in oxidative (TOS, OSI, MDA, MPO) and antioxidative markers (TAS, SOD, CAT, GSH), histopathological changes, inflammatory cytokine concentrations (TNF-α, IL-1β), nitric oxide (NO) dynamics, and cardiac indicators such as CK-MB. Impressively, the combined regimen markedly diminished oxidative stress, and antioxidative parameters reflected notable enhancements. Elevated NO levels, a central player in sepsis-driven inflammatory cascades, were effectively tempered by our intervention. Histological examinations corroborated the biochemical data, revealing diminished cardiac tissue damage in treated subjects. Furthermore, a marked suppression in pro-inflammatory cytokines was discerned, solidifying the therapeutic potential of our intervention. Interestingly, in certain evaluations, CoQ10 exhibited superior benefits over Vit C. Collectively, these findings underscore the potential therapeutic promise of Vit C and CoQ10 combination against septic cardiac injuries in rats.
Collapse
Affiliation(s)
- Hilal Üstündağ
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Türkiye.
| | - Özlem Demir
- Department of Histology, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| | - Mehmet Tahir Huyut
- Department of Biostatistics, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| | - Neslihan Yüce
- Department of Biochemistry, Faculty of Medicine, Atatürk University, Erzurum, Türkiye
| |
Collapse
|
3
|
Harrington JS, Ryter SW, Plataki M, Price DR, Choi AMK. Mitochondria in health, disease, and aging. Physiol Rev 2023; 103:2349-2422. [PMID: 37021870 PMCID: PMC10393386 DOI: 10.1152/physrev.00058.2021] [Citation(s) in RCA: 231] [Impact Index Per Article: 115.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Mitochondria are well known as organelles responsible for the maintenance of cellular bioenergetics through the production of ATP. Although oxidative phosphorylation may be their most important function, mitochondria are also integral for the synthesis of metabolic precursors, calcium regulation, the production of reactive oxygen species, immune signaling, and apoptosis. Considering the breadth of their responsibilities, mitochondria are fundamental for cellular metabolism and homeostasis. Appreciating this significance, translational medicine has begun to investigate how mitochondrial dysfunction can represent a harbinger of disease. In this review, we provide a detailed overview of mitochondrial metabolism, cellular bioenergetics, mitochondrial dynamics, autophagy, mitochondrial damage-associated molecular patterns, mitochondria-mediated cell death pathways, and how mitochondrial dysfunction at any of these levels is associated with disease pathogenesis. Mitochondria-dependent pathways may thereby represent an attractive therapeutic target for ameliorating human disease.
Collapse
Affiliation(s)
- John S Harrington
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | | | - Maria Plataki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - David R Price
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| |
Collapse
|
4
|
Zhu Z, Chambers S, Zeng Y, Bhatia M. Gases in Sepsis: Novel Mediators and Therapeutic Targets. Int J Mol Sci 2022; 23:3669. [PMID: 35409029 PMCID: PMC8998565 DOI: 10.3390/ijms23073669] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Sepsis, a potentially lethal condition resulting from failure to control the initial infection, is associated with a dysregulated host defense response to pathogens and their toxins. Sepsis remains a leading cause of morbidity, mortality and disability worldwide. The pathophysiology of sepsis is very complicated and is not yet fully understood. Worse still, the development of effective therapeutic agents is still an unmet need and a great challenge. Gases, including nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S), are small-molecule biological mediators that are endogenously produced, mainly by enzyme-catalyzed reactions. Accumulating evidence suggests that these gaseous mediators are widely involved in the pathophysiology of sepsis. Many sepsis-associated alterations, such as the elimination of invasive pathogens, the resolution of disorganized inflammation and the preservation of the function of multiple organs and systems, are shaped by them. Increasing attention has been paid to developing therapeutic approaches targeting these molecules for sepsis/septic shock, taking advantage of the multiple actions played by NO, CO and H2S. Several preliminary studies have identified promising therapeutic strategies for gaseous-mediator-based treatments for sepsis. In this review article, we summarize the state-of-the-art knowledge on the pathophysiology of sepsis; the metabolism and physiological function of NO, CO and H2S; the crosstalk among these gaseous mediators; and their crucial effects on the development and progression of sepsis. In addition, we also briefly discuss the prospect of developing therapeutic interventions targeting these gaseous mediators for sepsis.
Collapse
Affiliation(s)
- Zhixing Zhu
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (Z.Z.); (S.C.)
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China;
| | - Stephen Chambers
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (Z.Z.); (S.C.)
| | - Yiming Zeng
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China;
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (Z.Z.); (S.C.)
| |
Collapse
|
5
|
Pecchiari M, Pontikis K, Alevrakis E, Vasileiadis I, Kompoti M, Koutsoukou A. Cardiovascular Responses During Sepsis. Compr Physiol 2021; 11:1605-1652. [PMID: 33792902 DOI: 10.1002/cphy.c190044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sepsis is the life-threatening organ dysfunction arising from a dysregulated host response to infection. Although the specific mechanisms leading to organ dysfunction are still debated, impaired tissue oxygenation appears to play a major role, and concomitant hemodynamic alterations are invariably present. The hemodynamic phenotype of affected individuals is highly variable for reasons that have been partially elucidated. Indeed, each patient's circulatory condition is shaped by the complex interplay between the medical history, the volemic status, the interval from disease onset, the pathogen, the site of infection, and the attempted resuscitation. Moreover, the same hemodynamic pattern can be generated by different combinations of various pathophysiological processes, so the presence of a given hemodynamic pattern cannot be directly related to a unique cluster of alterations. Research based on endotoxin administration to healthy volunteers and animal models compensate, to an extent, for the scarcity of clinical studies on the evolution of sepsis hemodynamics. Their results, however, cannot be directly extrapolated to the clinical setting, due to fundamental differences between the septic patient, the healthy volunteer, and the experimental model. Numerous microcirculatory derangements might exist in the septic host, even in the presence of a preserved macrocirculation. This dissociation between the macro- and the microcirculation might account for the limited success of therapeutic interventions targeting typical hemodynamic parameters, such as arterial and cardiac filling pressures, and cardiac output. Finally, physiological studies point to an early contribution of cardiac dysfunction to the septic phenotype, however, our defective diagnostic tools preclude its clinical recognition. © 2021 American Physiological Society. Compr Physiol 11:1605-1652, 2021.
Collapse
Affiliation(s)
- Matteo Pecchiari
- Dipartimento di Fisiopatologia Medico Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy
| | - Konstantinos Pontikis
- Intensive Care Unit, 1st Department of Pulmonary Medicine, National & Kapodistrian University of Athens, General Hospital for Diseases of the Chest 'I Sotiria', Athens, Greece
| | - Emmanouil Alevrakis
- 4th Department of Pulmonary Medicine, General Hospital for Diseases of the Chest 'I Sotiria', Athens, Greece
| | - Ioannis Vasileiadis
- Intensive Care Unit, 1st Department of Pulmonary Medicine, National & Kapodistrian University of Athens, General Hospital for Diseases of the Chest 'I Sotiria', Athens, Greece
| | - Maria Kompoti
- Intensive Care Unit, Thriassio General Hospital of Eleusis, Magoula, Greece
| | - Antonia Koutsoukou
- Intensive Care Unit, 1st Department of Pulmonary Medicine, National & Kapodistrian University of Athens, General Hospital for Diseases of the Chest 'I Sotiria', Athens, Greece
| |
Collapse
|
6
|
Koch SR, Choi H, Mace EH, Stark RJ. Toll-like receptor 3-mediated inflammation by p38 is enhanced by endothelial nitric oxide synthase knockdown. Cell Commun Signal 2019; 17:33. [PMID: 30987646 PMCID: PMC6466662 DOI: 10.1186/s12964-019-0345-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/21/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Vascular dysfunction is commonly seen during severe viral infections. Endothelial nitric oxide synthase (eNOS), has been postulated to play an important role in regulating vascular homeostasis as well as propagation of the inflammatory reaction. We hypothesized that the loss of eNOS would negatively impact toll-like receptor 3 (TLR3) signaling and worsen vascular function to viral challenge. METHODS Human microvascular endothelial cells (HMVECs) were exposed to either control or eNOS siRNA and then treated with Poly I:C, a TLR3 agonist and mimicker of dsRNA viruses. Cells were assessed for protein-protein associations, cytokine and chemokine analysis as well as transendothelial electrical resistance (TEER) as a surrogate of permeability. RESULTS HMVECs that had reduced eNOS expression had a significantly elevated increase in IL-6, IL-8 and IP-10 production after Poly I:C. In addition, the knockdown of eNOS enhanced the change in TEER after Poly I:C stimulation. Western blot analysis showed enhanced phosphorylation of p38 in sieNOS treated cells with Poly I:C compared to siControl cells. Proximity ligation assays further demonstrated direct eNOS-p38 protein-protein interactions. The addition of the p38 inhibitor, SB203580, in eNOS knockdown cells reduced both cytokine production after Poly I:C, and as well as mitigated the reduction in TEER, suggesting a direct link between eNOS and p38 in TLR3 signaling. CONCLUSIONS These results suggest that reduction of eNOS increases TLR3-mediated inflammation in human endothelial cells in a p38-dependent manner. This finding has important implications for understanding the pathogenesis of severe viral infections and the associated vascular dysfunction.
Collapse
Affiliation(s)
- Stephen R Koch
- Department of Pediatrics, Vanderbilt University Medical Center, 2200 Children's Way, 5121 Doctors' Office Tower, Nashville, TN, 37232-9075, USA
| | - Hyehun Choi
- Department of Pediatrics, Vanderbilt University Medical Center, 2200 Children's Way, 5121 Doctors' Office Tower, Nashville, TN, 37232-9075, USA
| | - Eric H Mace
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Ryan J Stark
- Department of Pediatrics, Vanderbilt University Medical Center, 2200 Children's Way, 5121 Doctors' Office Tower, Nashville, TN, 37232-9075, USA.
| |
Collapse
|
7
|
Winkler MS, Nierhaus A, Rösler G, Lezius S, Harlandt O, Schwedhelm E, Böger RH, Kluge S. Symmetrical (SDMA) and asymmetrical dimethylarginine (ADMA) in sepsis: high plasma levels as combined risk markers for sepsis survival. Crit Care 2018; 22:216. [PMID: 30231905 PMCID: PMC6145330 DOI: 10.1186/s13054-018-2090-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 06/07/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Nitric oxide (NO) regulates processes involved in sepsis progression, including vascular and immune function. NO is generated by nitric oxide synthases (NOS) from L-arginine. Cellular L-arginine uptake is inhibited by symmetric dimethylarginine (SDMA) and asymmetric dimethylarginine (ADMA) is a competitive inhibitor of NOS. Increased inhibitor blood concentrations lead to reduce NO bioavailability. The aim of this study was to determine whether plasma concentrations of SDMA and ADMA are markers for sepsis survival. METHOD This prospective, single center study involved 120 ICU patients with sepsis. Plasma SDMA and ADMA were measured on admission (day 1), day 3 and day 7 by mass spectrometry together with other laboratory markers. The sequential organ failure assessment (SOFA) score was used to evaluate sepsis severity. Survival was documented until day 28. Groups were compared using the Mann-Whitney U test, chi-squared test or non-parametric analysis of variance (ANOVA). Mortality was assessed using Kaplan-Meier curves and compared using the log-rank test. Specific risk groups were identified using a decision tree algorithm. RESULTS Median plasma SDMA and ADMA levels were significantly higher in non-survivors than in survivors of sepsis: SDMA 1.14 vs. 0.82 μmol/L (P = 0.002) and ADMA 0.93 vs. 0.73 μmol/L (P = 0.016). ANOVA showed that increased plasma SDMA and ADMA concentrations were significantly associated with SOFA scores. The 28-day mortality was compared by chi-square test: for SDMA the mortality was 12% in the lower, 25% in the intermediate and 43% in the 75th percentile (P = 0.018); for ADMA the mortality was 18-20% in the lower and intermediate but 48% in the 75th percentile (P = 0.006). The highest mortality (61%) was found in patients with plasma SDMA > 1.34 together with ADMA levels > 0.97 μmol/L. CONCLUSIONS Increased plasma concentrations of SDMA and ADMA are associated with sepsis severity. Therefore, our findings suggest reduced NO bioavailability in non-survivors of sepsis. One may use individual SDMA and ADMA levels to identify patients at risk. In view of the pathophysiological role of NO we conclude that the vascular system and immune response are most severely affected when SDMA and ADMA levels are high.
Collapse
Affiliation(s)
- Martin Sebastian Winkler
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
- Center for Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistr, 52 20246 Hamburg, Germany
| | - Axel Nierhaus
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Gilbert Rösler
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Susanne Lezius
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Olaf Harlandt
- Department of Internal Medicine II, Asklepios Klinik Nord-Heidberg, Tangstedter Landstr. 400, 22417 Hamburg, Germany
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Rainer H. Böger
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Stefan Kluge
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
8
|
Stark RJ, Koch SR, Choi H, Mace EH, Dikalov SI, Sherwood ER, Lamb FS. Endothelial nitric oxide synthase modulates Toll-like receptor 4-mediated IL-6 production and permeability via nitric oxide-independent signaling. FASEB J 2018; 32:945-956. [PMID: 29061842 DOI: 10.1096/fj.201700410r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Endothelial dysfunction, characterized by changes in eNOS, is a common finding in chronic inflammatory vascular diseases. These states are associated with increased infectious complications. We hypothesized that alterations in eNOS would enhance the response to LPS-mediated TLR4 inflammation. Human microvascular endothelial cells were treated with sepiapterin or N-nitro-L-arginine methylester (L-NAME) to alter endogenous NO production, and small interfering RNA to knockdown eNOS. Alterations of endogenous NO by sepiapterin, and L-NAME provided no significant changes to LPS inflammation. In contrast, eNOS knockdown greatly enhanced endothelial IL-6 production and permeability in response to LPS. Knockdown of eNOS enhanced LPS-induced p38. Inhibition of p38 with SB203580 prevented IL-6 production, without altering permeability. Knockdown of p38 impaired NF-κB activation. Physical interaction between p38 and eNOS was demonstrated by immunoprecipitation, suggesting a novel, NO-independent mechanism for eNOS regulation of TLR4. In correlation, biopsy samples in patients with systemic lupus erythematous showed reduced eNOS expression with associated elevations in TLR4 and p38, suggesting an in vivo link. Thus, reduced expression of eNOS, as seen in chronic inflammatory disease, was associated with enhanced TLR4 signaling through p38. This may enhance the response to infection in patients with chronic inflammatory conditions.-Stark, R. J., Koch, S. R., Choi, H., Mace, E. H., Dikalov, S. I., Sherwood, E. R., Lamb, F. S. Endothelial nitric oxide synthase modulates Toll-like receptor 4-mediated IL-6 production and permeability via nitric oxide-independent signaling.
Collapse
Affiliation(s)
- Ryan J Stark
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Stephen R Koch
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Hyehun Choi
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Eric H Mace
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Sergey I Dikalov
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; and
| | - Edward R Sherwood
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Fred S Lamb
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
9
|
Interferon-γ-Driven iNOS: A Molecular Pathway to Terminal Shock in Arenavirus Hemorrhagic Fever. Cell Host Microbe 2017; 22:354-365.e5. [DOI: 10.1016/j.chom.2017.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/11/2017] [Accepted: 07/11/2017] [Indexed: 01/21/2023]
|
10
|
Rocha Pereira AE, Rodrigues MÂ, Novaes RD, Caldas IS, Martins Souza RL, Costa Pereira AA. Lipopolysaccharide-induced acute lung injury in mice chronically infected by Schistosoma mansoni. Exp Parasitol 2017; 178:21-29. [PMID: 28533109 DOI: 10.1016/j.exppara.2017.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/04/2017] [Accepted: 05/18/2017] [Indexed: 02/06/2023]
Abstract
We used a murine model of Schistosoma mansoni (SM) infection and lipopolysaccharide (LPS)-induced endotoxicity to investigate if these conditions can interact to modify the pathological manifestations typically observed in each condition. Swiss mice were randomized into four groups: SAL, uninfected; SM, infected; LPS, uninfected + LPS; and SM + LPS, infected + LPS. S. mansoni infection developed over 120 days, after which blood samples and lungs were collected, peritoneal leukocytes were isolated and cultivated for 6 and 24 h after LPS inoculation (1 mL/kg). Infected animals presented marked granulomatous inflammation. LPS exposure transiently modified the profile of leucocyte migration into the lung tissue and increased NO production by isolated leukocytes, without inducing any acute effect on the structure of schistosomiasis granulomas. Beyond modifying lung morphology, S. mansoni and LPS interacted to modulate the circulating levels of cytokines. S. mansoni infection restricted INF-γ upregulation 6 and 24 h after LPS administration. Conversely, 24 h after inoculation, LPS increased IL-2 and IL-5 levels. Our findings indicate that LPS impaired the lung microenvironment by acutely disrupting inflammatory homeostatic mechanisms that control lung schistosomiasis. As schistosomiasis develops as a chronic condition, long-term exposure to endotoxins could aggravate the granulomatous process, an issue that requires further investigation.
Collapse
Affiliation(s)
- Amanda Esteves Rocha Pereira
- Institute of Biomedical Sciences, Department of Pathology and Parasitology, Federal University of Alfenas, Minas Gerais, 37130-001, Brazil
| | - Maria Ângela Rodrigues
- Institute of Biomedical Sciences, Department of Pathology and Parasitology, Federal University of Alfenas, Minas Gerais, 37130-001, Brazil
| | - Rômulo Dias Novaes
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, Minas Gerais, 37130-001, Brazil
| | - Ivo Santana Caldas
- Institute of Biomedical Sciences, Department of Pathology and Parasitology, Federal University of Alfenas, Minas Gerais, 37130-001, Brazil
| | - Raquel Lopes Martins Souza
- Institute of Biomedical Sciences, Department of Pathology and Parasitology, Federal University of Alfenas, Minas Gerais, 37130-001, Brazil
| | - Alessandro Antônio Costa Pereira
- Institute of Biomedical Sciences, Department of Pathology and Parasitology, Federal University of Alfenas, Minas Gerais, 37130-001, Brazil.
| |
Collapse
|
11
|
Jang M, Lee YC, Hong HD, Rhee YK, Lim TG, Kim KT, Chen F, Kim HJ, Cho CW. Anti-oxidative and anti-inflammatory activities of devil's club ( Oplopanax horridus) leaves. Food Sci Biotechnol 2017; 26:213-220. [PMID: 30263531 PMCID: PMC6049459 DOI: 10.1007/s10068-017-0029-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/08/2016] [Accepted: 11/14/2016] [Indexed: 11/24/2022] Open
Abstract
This study aimed to investigate the anti-oxidative properties of the ethanolic extracts of the devil's club (Oplopanax horridus) leaves, stems, and roots. Furthermore, the anti-inflammatory activity of the leaf extract was analyzed. The leaf extract had higher total phenolic and flavonoid contents and anti-oxidative activity (radical scavenging, reducing power, and inhibition of lipid oxidation) than the root and stem extracts. The leaf extract also had anti-inflammatory effects. It significantly reduced lipopolysaccharide (LPS)-induced nitric oxide (NO; 71.0% at 50 μg/mL), tumor necrosis factor (TNF)-α (87.6% at 100 μg/mL), and interleukin (IL)-6 (36.2% at 100 μg/mL) production in murine RAW 264.7 macrophages. Furthermore, LPS-induced inducible nitric oxide synthase (iNOS) expression was decreased by the leaf extract (IC50=24.4 μg/mL). The ultra performance liquid chromatography-diode array detector (UPLC-DAD) analysis showed that the leaf extract contained gallic acid, protocatechuic acid, chlorogenic acid, and maltol. These findings suggest that the leaf extract could be utilized as a functional food material because of its anti-oxidative and anti-inflammatory activities.
Collapse
Affiliation(s)
- Mi Jang
- Division of Strategic Food Research, Korea Food Research Institute, Seongnam, Gyeonggi, 13539 Korea
- Department of Oriental Medicinal Material and Processing, College of Life Science, Kyung Hee University, Yongin, Gyeonggi, 17104 Korea
| | - Young-Chul Lee
- Division of Strategic Food Research, Korea Food Research Institute, Seongnam, Gyeonggi, 13539 Korea
| | - Hee-Do Hong
- Division of Strategic Food Research, Korea Food Research Institute, Seongnam, Gyeonggi, 13539 Korea
| | - Young Kyoung Rhee
- Division of Strategic Food Research, Korea Food Research Institute, Seongnam, Gyeonggi, 13539 Korea
| | - Tae-Gyu Lim
- Division of Strategic Food Research, Korea Food Research Institute, Seongnam, Gyeonggi, 13539 Korea
| | - Kyung-Tack Kim
- Division of Strategic Food Research, Korea Food Research Institute, Seongnam, Gyeonggi, 13539 Korea
| | - Feng Chen
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634 USA
| | - Hyun-Jin Kim
- Division of Applied Life Sciences (BK21 plus)/Department of Food Science & Technology, and Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Gyeongnam, 52828 Korea
| | - Chang-Won Cho
- Division of Strategic Food Research, Korea Food Research Institute, Seongnam, Gyeonggi, 13539 Korea
| |
Collapse
|
12
|
Seemann S, Lupp A. Administration of AMD3100 in endotoxemia is associated with pro-inflammatory, pro-oxidative, and pro-apoptotic effects in vivo. J Biomed Sci 2016; 23:68. [PMID: 27716214 PMCID: PMC5048674 DOI: 10.1186/s12929-016-0286-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/27/2016] [Indexed: 12/28/2022] Open
Abstract
Background Chemokine receptor 4 (CXCR4) is a multifunctional G protein-coupled receptor that is activated by its natural ligand, C-X-C motif chemokine 12 (CXCL12). As a likely member of the lipopolysaccharide (LPS)-sensing complex, CXCR4 is involved in pro-inflammatory cytokine production and exhibits substantial chemo-attractive activity for various inflammatory cells. Here, we aimed to characterize the effects of CXCR4 blockade in systemic inflammation and to evaluate its impact on organ function. Furthermore, we investigated whether CXCR4 blockade exerts deleterious effects, thereby substantiating previous studies showing a beneficial outcome after treatment with CXCR4 agonists in endotoxemia. Methods The CXCR4 antagonist AMD3100 was administered intraperitoneally to mice shortly after LPS treatment. After 24 h, health status was determined and serum tumor necrosis factor alpha (TNF alpha), interferon gamma (IFN gamma), and nitric oxide (NO) levels were measured. We further assessed oxidative stress in the brain, kidney, and liver as well as liver biotransformation capacity. Finally, we utilized immunohistochemistry and immunoblotting in liver and spleen tissue to determine cluster of differentiation 3 (CD3), CD8, CD68, and TNF alpha expression patterns, and to assess the presence of various markers for apoptosis and oxidative stress. Results Mice treated with AMD3100 displayed impaired health status and showed enhanced serum levels of TNF alpha, IFN gamma and NO levels in endotoxemia. This compound also amplified LPS-induced oxidative stress in all tissues investigated and decreased liver biotransformation capacity in co-treated animals. Co-treatment with AMD3100 further inhibited expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf-2), heme oxygenase-1 (HO-1), and various cytochrome P450 enzymes, whereas it enhanced expression of CD3, inducible nitric oxide synthase, and TNF alpha, as well as the total number of neutrophils in liver tissue. Spleens from co-treated animals contained large numbers of erythrocytes and neutrophils, but fewer CD3+ cells, and demonstrated increased apoptosis in the white pulp. Conclusions AMD3100 administration in a mouse model of endotoxemia further impaired health status and liver function and mediated pro-inflammatory, pro-oxidative, and pro-apoptotic effects. This suggests that interruption of the CXCR4/CXCL12 axis is deleterious in acute inflammation and confirms previous findings showing beneficial effects of CXCR4 agonists in endotoxemia, thereby more clearly elucidating the role of CXCR4 in inflammation. Electronic supplementary material The online version of this article (doi:10.1186/s12929-016-0286-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Semjon Seemann
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, 07747, Jena, Germany.
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Drackendorfer Str. 1, 07747, Jena, Germany
| |
Collapse
|
13
|
Catecholamines for inflammatory shock: a Jekyll-and-Hyde conundrum. Intensive Care Med 2016; 42:1387-97. [PMID: 26873833 DOI: 10.1007/s00134-016-4249-z] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 01/26/2016] [Indexed: 02/06/2023]
Abstract
Catecholamines are endogenous neurosignalling mediators and hormones. They are integral in maintaining homeostasis by promptly responding to any stressor. Their synthetic equivalents are the current mainstay of treatment in shock states to counteract myocardial depression and/or vasoplegia. These phenomena are related in large part to decreased adrenoreceptor sensitivity and altered adrenergic signalling, with resultant vascular and cardiomyocyte hyporeactivity. Catecholamines are predominantly used in supraphysiological doses to overcome these pathological consequences. However, these adrenergic agents cause direct organ damage and have multiple 'off-target' biological effects on immune, metabolic and coagulation pathways, most of which are not monitored or recognised at the bedside. Such detrimental consequences may contribute negatively to patient outcomes. This review explores the schizophrenic 'Jekyll-and-Hyde' characteristics of catecholamines in critical illness, as they are both necessary for survival yet detrimental in excess. This article covers catecholamine physiology, the pleiotropic effects of catecholamines on various body systems and pathways, and potential alternatives for haemodynamic support and adrenergic modulation in the critically ill.
Collapse
|
14
|
Seemann S, Lupp A. Administration of a CXCL12 Analog in Endotoxemia Is Associated with Anti-Inflammatory, Anti-Oxidative and Cytoprotective Effects In Vivo. PLoS One 2015; 10:e0138389. [PMID: 26375818 PMCID: PMC4574197 DOI: 10.1371/journal.pone.0138389] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/28/2015] [Indexed: 12/27/2022] Open
Abstract
Background The chemokine receptor CXCR4 is a multifunctional receptor which is activated by its natural ligand C-X-C motif chemokine 12 (CXCL12). As CXCR4 is part of the lipopolysaccharide sensing complex and CXCL12 analogs are not well characterized in inflammation, we aimed to uncover the systemic effects of a CXCL12 analog in severe systemic inflammation and to evaluate its impact on endotoxin induced organ damages by using a sublethal LPS dose. Methods The plasma stable CXCL12 analog CTCE-0214D was synthesized and administered subcutaneously shortly before LPS treatment. After 24 hours, mice were sacrificed and blood was obtained for TNF alpha, IFN gamma and blood glucose evaluation. Oxidative stress in the liver and spleen was assessed and liver biotransformation capacity was determined. Finally, CXCR4, CXCL12 and TLR4 expression patterns in liver, spleen and thymus tissue as well as the presence of different markers for apoptosis and oxidative stress were determined by means of immunohistochemistry. Results CTCE-0214D distinctly reduced the LPS mediated effects on TNF alpha, IFN gamma, ALAT and blood glucose levels. It attenuated oxidative stress in the liver and spleen tissue and enhanced liver biotransformation capacity unambiguously. Furthermore, in all three organs investigated, CTCE-0214D diminished the LPS induced expression of CXCR4, CXCL12, TLR4, NF-κB, cleaved caspase-3 and gp91 phox, whereas heme oxygenase 1 expression and activity was induced above average. Additionally, TUNEL staining revealed anti-apoptotic effects of CTCE-0214D. Conclusions In summary, CTCE-0214D displayed anti-inflammatory, anti-oxidative and cytoprotective features. It attenuated reactive oxygen species, induced heme oxygenase 1 activity and mitigated apoptosis. Thus, the CXCR4/CXCL12 axis seems to be a promising target in the treatment of acute systemic inflammation, especially when accompanied by a hepatic dysfunction and an excessive production of free radicals.
Collapse
Affiliation(s)
- Semjon Seemann
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- * E-mail:
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
15
|
Aydemir O, Ozcan B, Yucel H, Yagmur Bas A, Demirel N. Asymmetric dimethylarginine andl-arginine levels in neonatal sepsis and septic shock. J Matern Fetal Neonatal Med 2014; 28:977-82. [DOI: 10.3109/14767058.2014.939950] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
|
17
|
Abstract
Hypoxic pulmonary vasoconstriction (HPV) continues to fascinate cardiopulmonary physiologists and clinicians since its definitive description in 1946. Hypoxic vasoconstriction exists in all vertebrate gas exchanging organs. This fundamental response of the pulmonary vasculature in air breathing animals has relevance to successful fetal transition to air breathing at birth and as a mechanism of ventilation-perfusion matching in health and disease. It is a complex process intrinsic to the vascular smooth muscle, but with in vivo modulation by a host of factors including the vascular endothelium, erythrocytes, pulmonary innervation, circulating hormones and acid-base status to name only a few. This review will provide a broad overview of HPV and its mechansms and discuss the advantages and disadvantages of HPV in normal physiology, disease and high altitude.
Collapse
Affiliation(s)
- Erik R Swenson
- Department of Medicine, University of Washington, VA Puget Sound Health Care System, Seattle, WA 98108, USA.
| |
Collapse
|
18
|
Boncoeur É, Bouvet GF, Migneault F, Tardif V, Ferraro P, Radzioch D, de Sanctis JB, Eidelman D, Govindaraju K, Dagenais A, Berthiaume Y. Induction of nitric oxide synthase expression by lipopolysaccharide is mediated by calcium-dependent PKCα-β1 in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2013; 305:L175-84. [PMID: 23686852 DOI: 10.1152/ajplung.00295.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide (NO) plays an important role in innate host defense and inflammation. In response to infection, NO is generated by inducible nitric oxide synthase (iNOS), a gene product whose expression is highly modulated by different stimuli, including lipopolysaccharide (LPS) from gram-negative bacteria. We reported recently that LPS from Pseudomonas aeruginosa altered Na⁺ transport in alveolar epithelial cells via a suramin-dependent process, indicating that LPS activated a purinergic response in these cells. To further study this question, in the present work, we tested whether iNOS mRNA and protein expression were modulated in response to LPS in alveolar epithelial cells. We found that LPS induced a 12-fold increase in iNOS mRNA expression via a transcription-dependent process in these cells. iNOS protein, NO, and nitrotyrosine were also significantly elevated in LPS-treated cells. Ca²⁺ chelation and protein kinase C (PKCα-β1) inhibition suppressed iNOS mRNA induction by LPS, implicating Ca²⁺-dependent PKC signaling in this process. LPS evoked a significant increase of extracellular ATP. Because PKC activation is one of the signaling pathways known to mediate purinergic signaling, we evaluated the hypothesis that iNOS induction was ATP dependent. Although high suramin concentration inhibited iNOS mRNA induction, the process was not ATP dependent, since specific purinergic receptor antagonists could not inhibit the process. Altogether, these findings demonstrate that iNOS expression is highly modulated in alveolar epithelial cells by LPS via a Ca²⁺/PKCα-β1 pathway independent of ATP signaling.
Collapse
Affiliation(s)
- Émilie Boncoeur
- Centre de recherche, Centre hospitalier de l’Université de Montréal (CR-CHUM)-Hôtel-Dieu, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Chatpun S, Cabrales P. Exogenous intravascular nitric oxide enhances ventricular function after hemodilution with plasma expander. Life Sci 2012; 90:39-46. [PMID: 22056371 DOI: 10.1016/j.lfs.2011.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 09/17/2011] [Accepted: 10/03/2011] [Indexed: 11/30/2022]
Abstract
AIMS This study evaluated the hypothesis that exogenous nitric oxide (NO) supplementation during acute hemodilution with plasma expander (PE) provides beneficial effects on cardiac function. MAIN METHODS Acute hemodilution in golden Syrian hamsters was induced by a 40% of blood volume exchange with dextran 70 kDa. Intravascular NO supplementation after hemodilution was accomplished with a NO donor, diethylenetriamine NONOate (DETA NONOate). The test group was treated with DETA NONOate, while the control group received only vehicle. Left ventricular cardiac function was studied using pressure-volume measurements obtained with a miniaturized conductance catheter. KEY FINDINGS Cardiac output increased to 122±5% and 107±1% of the baseline in the group treated with NO donor and the vehicle group, respectively. Stroke work per stroke volume (SW/SV) after hemodilution reduced to 90% of the baseline and the NO donor significantly reduced SW/SV compared to the vehicle. The minimum rate of pressure change (dP/dt(min)) was significantly lower in animals treated with the NO donor compared to vehicle treated animals. Systemic vascular resistance (SVR) decreased to 62±5% of the baseline in the NO donor group whereas the vehicle group SVR decreased to 83±5% of the baseline. Using intravital microscopy analysis of microvessel in the dorsal skinfold window chamber, we established that the NO donor group induced significant vasodilation compared to the vehicle group. SIGNIFICANCE NO supplementation in an acute hemodilution with PE has beneficial effects on cardiac performance. However, the NO supplementation effects with a NO donor are dose-independent and short-lasting.
Collapse
Affiliation(s)
- Surapong Chatpun
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093-0412, USA
| | | |
Collapse
|
21
|
Novel interventional approaches for ALI/ARDS: cell-based gene therapy. Mediators Inflamm 2011; 2011:560194. [PMID: 21785528 PMCID: PMC3139183 DOI: 10.1155/2011/560194] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/09/2011] [Accepted: 05/22/2011] [Indexed: 12/21/2022] Open
Abstract
Acute lung injury (ALI) and its more severe
form, acute respiratory distress syndrome (ARDS),
continue to be a major cause of morbidity and
mortality in critically ill patients. The present
therapeutic strategies for ALI/ARDS including
supportive care, pharmacological treatments, and
ventilator support are still controversial. More
scientists are focusing on therapies involving
stem cells, which have self-renewing capabilities
and differentiate into multiple cell lineages,
and, genomics therapy which has the potential to
upregulate expression of anti-inflammatory
mediators. Recently, the combination of cell and
gene therapy which has been demonstrated to
provide additive benefit has opened up a new
chapter in therapeutic strategy and provides a
basis for the development of an innovative
approach for the prevention and treatment of
ALI/ARDS.
Collapse
|
22
|
Ichim TE, Minev B, Braciak T, Luna B, Hunninghake R, Mikirova NA, Jackson JA, Gonzalez MJ, Miranda-Massari JR, Alexandrescu DT, Dasanu CA, Bogin V, Ancans J, Stevens RB, Markosian B, Koropatnick J, Chen CS, Riordan NH. Intravenous ascorbic acid to prevent and treat cancer-associated sepsis? J Transl Med 2011; 9:25. [PMID: 21375761 PMCID: PMC3061919 DOI: 10.1186/1479-5876-9-25] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 03/04/2011] [Indexed: 02/07/2023] Open
Abstract
The history of ascorbic acid (AA) and cancer has been marked with controversy. Clinical studies evaluating AA in cancer outcome continue to the present day. However, the wealth of data suggesting that AA may be highly beneficial in addressing cancer-associated inflammation, particularly progression to systemic inflammatory response syndrome (SIRS) and multi organ failure (MOF), has been largely overlooked. Patients with advanced cancer are generally deficient in AA. Once these patients develop septic symptoms, a further decrease in ascorbic acid levels occurs. Given the known role of ascorbate in: a) maintaining endothelial and suppression of inflammatory markers; b) protection from sepsis in animal models; and c) direct antineoplastic effects, we propose the use of ascorbate as an adjuvant to existing modalities in the treatment and prevention of cancer-associated sepsis.
Collapse
Affiliation(s)
- Thomas E Ichim
- Department of Orthomolecular Studies, Riordan Clinic, 3100 N Hillside, Wichita, Kansas, 67210, USA
- Department of Regenerative Medicine, Medistem Inc, 9255 Towne Centre Drive, San Diego, California, 92121. USA
| | - Boris Minev
- Department of Medicine, Moores Cancer Center, University of California San Diego, 3855 Health Sciences Dr, San Diego, California, 92121, USA
| | - Todd Braciak
- Department of Regenerative Medicine, Medistem Inc, 9255 Towne Centre Drive, San Diego, California, 92121. USA
- Department of Immunology, Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, La Jolla, California,92121, USA
| | - Brandon Luna
- Department of Regenerative Medicine, Medistem Inc, 9255 Towne Centre Drive, San Diego, California, 92121. USA
| | - Ron Hunninghake
- Department of Orthomolecular Studies, Riordan Clinic, 3100 N Hillside, Wichita, Kansas, 67210, USA
| | - Nina A Mikirova
- Department of Orthomolecular Studies, Riordan Clinic, 3100 N Hillside, Wichita, Kansas, 67210, USA
| | - James A Jackson
- Department of Orthomolecular Studies, Riordan Clinic, 3100 N Hillside, Wichita, Kansas, 67210, USA
| | - Michael J Gonzalez
- Department of Human Development, Nutrition Program, University of Puerto Rico, Medical Sciences Campus, San Juan, 00936-5067, PR
| | - Jorge R Miranda-Massari
- Department of Pharmacy Practice, University of Puerto Rico, Medical Sciences Campus, School of Pharmacy, San Juan, 00936-5067, PR
| | - Doru T Alexandrescu
- Department of Experimental Studies, Georgetown Dermatology, 3301 New Mexico Ave, Washington DC, 20018, USA
| | - Constantin A Dasanu
- Department of Hematology and Oncology, University of Connecticut, 115 North Eagleville Road, Hartford, Connecticut, 06269, USA
| | - Vladimir Bogin
- Department of Regenerative Medicine, Medistem Inc, 9255 Towne Centre Drive, San Diego, California, 92121. USA
| | - Janis Ancans
- Department of Surgery, University of Latvia, 19 Raina Blvd, Riga, LV 1586, Latvia
| | - R Brian Stevens
- Department of Surgery, Microbiology, and Pathology, University of Nebraska Medical Center, 42nd and Emile, Omaha, Nebraska, 86198, USA
| | - Boris Markosian
- Department of Regenerative Medicine, Medistem Inc, 9255 Towne Centre Drive, San Diego, California, 92121. USA
| | - James Koropatnick
- Department of Microbiology and Immunology, and Department of Oncology, Lawson Health Research Institute and The University of Western Ontario, 1151 Richmond Street, London, Ontario, N2G 3M5, Canada
| | - Chien-Shing Chen
- School of Medicine, Division of Hematology and Oncology, Loma Linda University,24851 Circle Dr, Loma Linda, California, 92354, USA
| | - Neil H Riordan
- Department of Orthomolecular Studies, Riordan Clinic, 3100 N Hillside, Wichita, Kansas, 67210, USA
- Department of Regenerative Medicine, Medistem Inc, 9255 Towne Centre Drive, San Diego, California, 92121. USA
| |
Collapse
|