1
|
Muhammad M, Wahab A, Waheed A, Hakeem KR, Mohamed HI, Basit A, Toor MD, Liu YH, Li L, Li WJ. Navigating Climate Change: Exploring the Dynamics Between Plant-Soil Microbiomes and Their Impact on Plant Growth and Productivity. GLOBAL CHANGE BIOLOGY 2025; 31:e70057. [PMID: 39924996 DOI: 10.1111/gcb.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/23/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025]
Abstract
Understanding the intricate interplay between plant and soil microbiomes and their effects on plant growth and productivity is vital in a rapidly changing climate. This review explores the interconnected impacts of climate change on plant-soil microbiomes and their profound effects on agricultural productivity. The ongoing rise in global temperatures, shifting precipitation patterns and extreme weather events significantly affect the composition and function of microbial communities in the rhizosphere. Changes in microbial diversity and activity due to rising temperatures impact nutrient cycling, microbial enzyme synthesis, soil health and pest and disease management. These changes also influence the dynamics of soil microbe communities and their capability to promote plant health. As the climate changes, plants' adaptive capacity and microbial partners become increasingly crucial for sustaining agriculture. Mitigating the adverse effects of climate change on plant growth and agricultural productivity requires a comprehensive understanding of the interconnected mechanisms driving these processes. It highlights various strategies for mitigating and adapting to environmental challenges, including soil management, stress-tolerant crops, cover cropping, sustainable land and water management, crop rotation, organic amendments and the development of climate-resilient crop varieties. It emphasises the need for further exploration of plant-soil microbiomes within the broader context of climate change. Promising mitigation strategies, including precision agriculture and targeted microbiome modifications, offer valuable pathways for future research and practical implementation of global food security and climate change.
Collapse
Affiliation(s)
- Murad Muhammad
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
- Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, People's Republic of China
| | - Abdul Wahab
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Abdul Waheed
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, People's Republic of China
- Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, People's Republic of China
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Public Health, Daffodil International University, Dhaka, Bangladesh
- University Centre for Research Development, Chandigarh University, Mohali, Punjab, India
| | - Heba Ibrahim Mohamed
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Abdul Basit
- Department of Horticulture, Graduate School, Kyungpook National University, Daegu, South Korea
| | - Muhammad Danish Toor
- Institute of Ecology and Earth Sciences University of Tartu Estonia, Faculty of Science and Technology, Tartu, Estonia
| | - Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, People's Republic of China
- Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, People's Republic of China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, People's Republic of China
- Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, People's Republic of China
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, People's Republic of China
- Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, People's Republic of China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
2
|
Thakur A, Kumar A, Kumar D, Warghat AR, Pandey SS. Physiological and biochemical regulation of Valeriana jatamansi Jones under water stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108476. [PMID: 38442628 DOI: 10.1016/j.plaphy.2024.108476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/02/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
Understanding the physiological and biochemical regulations in a medicinal plant under stress environments is essential. Here, the effect of water stress such as flooding and water deficit [80% (control), 60%, 40%, 20% field capacity (FC)] conditions on Valeriana jatamansi was studied. Both types of water stresses retarded the plant growth and biomass. Photosynthetic pigments were reduced with maximum reduction under flood stress. Chlorophyll fluorescence study revealed distinct attributes under applied stresses. Better performance index (PI) of flood-grown plants (than 20% and 40% FC) and higher relative fluorescence decrease ratio (Rfd) in 40% FC and flood-grown plants than that of control plants, indicated the adaptation ability of plants under water deficit (40% FC) and flood stress. Reduction in net photosynthetic rate was lesser in flood stress (40.92%) compared to drought stress (73.92% at 20% FC). Accumulation of starch was also decreased (61.1% at 20% FC) under drought stress, while it was increased (24.59%) in flood stress. The effect of water stress was also evident with modulation in H2O2 content and membrane damage. Differential modulation of biosynthesis of secondary metabolites (valtrate, acevaltrate and hydroxyl valerenic acid) and expression of iridoid biosynthetic genes under water stress was also revealed. The present study demonstrated the distinct effect of drought and flood stress on V. jatamansi plants, and drought [20% FC] caused severe loss and more damage than flood stress. Therefore, severe drought should be avoided during cultivation of V. jatamansi and regulated water stress-applications have potential for modulation of biosynthesis of specific secondary metabolites.
Collapse
Affiliation(s)
- Ankita Thakur
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Anil Kumar
- Chemical Technology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Dinesh Kumar
- Chemical Technology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Ashish Rambhau Warghat
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Shiv Shanker Pandey
- Biotechnology Division, Council of Scientific and Industrial Research (CSIR)-Institute of Himalayan Bioresource Technology, Palampur, 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.
| |
Collapse
|
3
|
Buendía-Valverde MDLL, Gómez-Merino FC, Corona-Torres T, Mateos-Nava RA, Trejo-Téllez LI. Effects of Cadmium, Thallium, and Vanadium on Photosynthetic Parameters of Three Chili Pepper ( Capsicum annuum L.) Varieties. PLANTS (BASEL, SWITZERLAND) 2023; 12:3563. [PMID: 37896025 PMCID: PMC10609808 DOI: 10.3390/plants12203563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
Photosynthesis is a crucial process supporting life on Earth. However, unfavorable environmental conditions including toxic metals may limit the photosynthetic efficiency of plants, and the responses to those challenges may vary among genotypes. In this study, we evaluated photosynthetic parameters of the chili pepper varieties Jalapeño, Poblano, and Serrano exposed to Cd (0, 5, 10 µM), Tl (0, 6, 12 nM), and V (0, 0.75, 1.5 µM). Metals were added to the nutrient solution for 60 days. Stomatal conductance (Gs), transpiration rate (Tr), net photosynthetic rate (Pn), intercellular CO2 concentration (Ci), instantaneous carboxylation efficiency (Pn/Ci), instantaneous water use efficiency (instWUE), and intrinsic water use efficiency (iWUE) were recorded. Mean Pn increased with 12 nM Tl in Serrano and with 0.75 µM V in Poblano. Tl and V increased mean Tr in all three cultivars, while Cd reduced it in Jalapeño and Serrano. Gs was reduced in Jalapeño and Poblano with 5 µM Cd, and 0.75 µM V increased it in Serrano. Ci increased in Poblano with 6 nM Tl, while 12 nM Tl reduced it in Serrano. Mean instWUE increased in Poblano with 10 µM Cd and 0.75 µM V, and in Serrano with 12 nM Tl, while 6 nM Tl reduced it in Poblano and Serrano. Mean iWUE increased in Jalapeño and Poblano with 5 µM Cd, in Serrano with 12 nM Tl, and in Jalapeño with 1.5 µM V; it was reduced with 6 nM Tl in Poblano and Serrano. Pn/Ci increased in Serrano with 5 µM Cd, in Jalapeño with 6 nM Tl, and in Poblano with 0.75 µM V. Interestingly, Tl stimulated six and inhibited five of the seven photosynthetic variables measured, while Cd enhanced three and decreased two variables, and V stimulated five variables, with none inhibited, all as compared to the respective controls. We conclude that Cd, Tl, and V may inhibit or stimulate photosynthetic parameters depending on the genotype and the doses applied.
Collapse
Affiliation(s)
- María de la Luz Buendía-Valverde
- Laboratory of Plant Nutrition, Department of Soil Science, College of Postgraduates in Agricultural Sciences, Campus Montecillo, Montecillo, Texcoco 56264, Mexico
| | - Fernando C Gómez-Merino
- Department of Genetic Resources and Productivity-Plant Physiology, College of Postgraduates in Agricultural Sciences, Campus Montecillo, Montecillo, Texcoco 56264, Mexico
- Laboratory of Plant Tissue Culture, Department of Sustainable Agri-Food Innovation, Collaborative Research Group at College of Postgraduates in Agricultural Sciences, Campus Córdoba, Manuel León, Amatlán de los Reyes 94953, Mexico
| | - Tarsicio Corona-Torres
- Department of Genetic Resources and Productivity-Genetics, College of Postgraduates in Agricultural Sciences, Campus Montecillo, Montecillo, Texcoco 56264, Mexico
| | - Rodrigo Aníbal Mateos-Nava
- Research Unit in Genetics and Environmental Toxicology (UIGTA), Multidisciplinary Experimental Research Unit (UMIE-ZAP 9-020), L5 PA Laboratory, Faculty of Higher Studies-Zaragoza, National Autonomous University of Mexico, Campus II, Mexico City 15000, Mexico
| | - Libia I Trejo-Téllez
- Laboratory of Plant Nutrition, Department of Soil Science, College of Postgraduates in Agricultural Sciences, Campus Montecillo, Montecillo, Texcoco 56264, Mexico
- Department of Genetic Resources and Productivity-Plant Physiology, College of Postgraduates in Agricultural Sciences, Campus Montecillo, Montecillo, Texcoco 56264, Mexico
| |
Collapse
|
4
|
Hussain S, Wang J, Asad Naseer M, Saqib M, Siddiqui MH, Ihsan F, Xiaoli C, Xiaolong R, Hussain S, Ramzan HN. Water stress memory in wheat/maize intercropping regulated photosynthetic and antioxidative responses under rainfed conditions. Sci Rep 2023; 13:13688. [PMID: 37608147 PMCID: PMC10444778 DOI: 10.1038/s41598-023-40644-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023] Open
Abstract
Drought is a most prevalent environmental stress affecting the productivity of rainfed wheat and maize in the semiarid Loess Plateau of China. Sustainable agricultural practices such as intercropping are important for enhancing crop performance in terms of better physiological and biochemical characteristics under drought conditions. Enzymatic and non-enzymatic antioxidant enzyme activities are associated with improved abiotic tolerance in crop plants, however, its molecular mechanism remains obscure. A 2-year field study was conducted to evaluate the influence of intercropping treatment viz. wheat mono-crop (WMC), maize mono-crop (MMC), intercropping maize (IM) and wheat (IW) crops, and nitrogen (N) application rates viz. control and full-dose of N (basal application at 150 and 235 kg ha-1 for wheat and maize, respectively) on chlorophyll fluorescence, gas exchange traits, lipid peroxidation, antioxidative properties and expression patterns of six tolerance genes in both crops under rainfed conditions. As compared with their respective monocropping treatments, IW and IM increased the Fo/Fm by 18.35 and 14.33%, PS-11 efficiency by 7.90 and 13.44%, photosynthesis by 14.31 and 23.97%, C-capacity by 32.05 and 12.92%, and stomatal conductance by 41.40 and 89.95% under without- and with-N application, respectively. The reductions in instantaneous- and intrinsic-water use efficiency and MDA content in the range of 8.76-26.30% were recorded for IW and IM treatments compared with WMC and MMC, respectively. Compared with the WMC and MMC, IW and IM also triggered better antioxidant activities under both N rates. Moreover, we also noted that intercropping and N addition regulated the transcript levels of six genes encoding non-enzymatic antioxidants cycle enzymes. The better performance of intercropping treatments i.e., IW and IM were also associated with improved osmolytes accumulation under rainfed conditions. As compared with control, N addition significantly improved the chlorophyll fluorescence, gas exchange traits, lipid peroxidation, and antioxidant enzyme activities under all intercropping treatments. Our results increase our understanding of the physiological, biochemical, and molecular mechanisms of intercropping-induced water stress tolerance in wheat and maize crops.
Collapse
Affiliation(s)
- Sadam Hussain
- College of Agronomy, Key Laboratory of Crop Physio-Ecology and Tillage in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semi-Arid Area, Ministry of Education/Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, Shaanxi, China
| | - JinJin Wang
- College of Agronomy, Key Laboratory of Crop Physio-Ecology and Tillage in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semi-Arid Area, Ministry of Education/Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, Shaanxi, China
| | - Muhammad Asad Naseer
- College of Agronomy, Key Laboratory of Crop Physio-Ecology and Tillage in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semi-Arid Area, Ministry of Education/Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, Shaanxi, China
| | - Muhammad Saqib
- Barani Agricultural Research Station, Fateh Jang, Attock, Punjab, 43350, Pakistan
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fahid Ihsan
- Agronomic Research Institute, Ayub Agricultural Research Institute, Faisalabad, Punjab, Pakistan
| | - Chen Xiaoli
- College of Agronomy, Key Laboratory of Crop Physio-Ecology and Tillage in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China.
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semi-Arid Area, Ministry of Education/Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, Shaanxi, China.
| | - Ren Xiaolong
- College of Agronomy, Key Laboratory of Crop Physio-Ecology and Tillage in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China.
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semi-Arid Area, Ministry of Education/Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, Shaanxi, China.
| | - Saddam Hussain
- Plant Stress Physiology Lab, Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Hafiz Naveed Ramzan
- Agronomic Research Institute, Ayub Agricultural Research Institute, Faisalabad, Punjab, Pakistan
| |
Collapse
|
5
|
Witt TW, Flynn KC, Zoz T, Lee TO, Monteiro JEA. A site suitability analysis for castor ( Ricinus communis L.) production during Brazil's second harvest incorporating disease prediction. Heliyon 2023; 9:e18981. [PMID: 37600409 PMCID: PMC10432709 DOI: 10.1016/j.heliyon.2023.e18981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023] Open
Abstract
Castor (Ricinus communis L.) is an important industrial crop with a wide range of industrial and pharmaceutical applications. Brazil is among the largest castor-producing countries. Between 2004 and 2010, castor cultivation was stimulated with an emphasis towards biodiesel production. However, this was not enough to leverage the production of castor in Brazil, mainly due to the lack of structured trade and the competition with other cheaper raw materials for the production of biodiesel. Despite this failure, the species presents itself as an excellent alternative for crop rotation in the second crop among soybean, corn, beans, and cotton cultivation areas as the oil is highly valuable for other products. Moreover, it has drawn the attention of producers and researchers in Brazil for this potential rotation as it is considered a plant tolerant of water-deficiency and is highly susceptible to gray mold, a disease favored by high humidity in the final stages of the crop. For instance, its cultivation in the second crop in Cerrado regions, where rains occur in the early stages of the crop and cease when the plants reach the final stage of production, has been successful and shows great promise. The current study aimed to evaluate the suitability of environments throughout Brazil to grow castor, incorporating variables associated with the incidence of gray mold and confirm these findings based on existing castor trial data obtained from the literature. The site suitability analysis determined that 74.99 million hectares - 8.8% of Brazilian territory - are highly suitable for castor production during second harvest, mostly located in the Northeastern and Midwestern regions. These results are surprising since Brazil currently has around 7.8% (∼66.81 million hectares) of its territory occupied with agriculture (grains, fruits, vegetables, and perennial crops). The findings of this study provide a method to perform site suitability for crops using data associated with agronomic and disease characteristics, as is the case with gray mold that often results in significant losses in castor production. Also, this analysis provides evidence for the great potential of Brazil to increase castor production and meet the world demand for its oil through utilization of second-crop cultivation.
Collapse
Affiliation(s)
- Travis W. Witt
- USDA-ARS, PA, Grazinglands Research Laboratory, 7207 West Cheyenne Street, El Reno, OK, 73036, USA
| | - K. Colton Flynn
- USDA-ARS, PA, Grassland Soil and Water Research Laboratory, 808 East Blackland Road, Temple, TX, 76502, USA
| | - Tiago Zoz
- UEMS, Center for Studies and Innovations in Carbon Sequestration (CEISCO), BR163 - km 20,2, Mundo Novo, MS, 79540-000, Brazil
| | - Trey O. Lee
- USDA-ARS, PA, Grassland Soil and Water Research Laboratory, 808 East Blackland Road, Temple, TX, 76502, USA
| | - José E.B. A. Monteiro
- EMBRAPA Informática Agropecuária, 209 André Tosello Street, Campinas, SP, 13083-886, Brazil
| |
Collapse
|
6
|
Singh G, Goldberg S, Schaefer D, Zhang F, Sharma S, Mishra V, Xu J. Biochemical, gas exchange, and chlorophyll fluorescence analysis of maize genotypes under drought stress reveals important insights into their interaction and homeostasis. PHOTOSYNTHETICA 2022; 60:376-388. [PMID: 39650104 PMCID: PMC11558602 DOI: 10.32615/ps.2022.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/25/2022] [Indexed: 12/11/2024]
Abstract
Many studies have been conducted on maize to study the effect of drought on yield at the flowering stage, but understanding biochemical and photosynthetic response against drought at the seedling stage needs to be well established. Thus, to understand differential changes and interaction of biochemical and photosynthetic parameters at the seedling stage under drought, a greenhouse experiment with twelve maize genotypes under severe drought (30% field capacity) and irrigated (90-100% field capacity) conditions were performed. Drought differentially altered biochemical and photosynthetic parameters in all genotypes. A sharp increase in hydrogen peroxide, malondialdehyde (MDA), and total antioxidant capacity (TAOC) were seen and a positive association between H2O2 and TAOC, and MDA and transpiration rate (E) was observed under drought. Nonphotochemical quenching increased under drought to avoid the photosystem damage. PCA biplot analysis showed that reducing E and increasing photosynthetic efficiency would be a better drought adaptation mechanism in maize at the seedling stage.
Collapse
Affiliation(s)
- G.M. Singh
- MARA-CABI Joint Laboratory for Biosafety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, 650201 Kunming, Yunnan, China
| | - S. Goldberg
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, 650201 Kunming, Yunnan, China
- East and Central Asia Regional Office, World Agroforestry, 650201 Kunming, Yunnan, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, Yunnan, China
| | - D. Schaefer
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, 650201 Kunming, Yunnan, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, Yunnan, China
| | - F. Zhang
- MARA-CABI Joint Laboratory for Biosafety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, China
- College of Agriculture and Ecological Engineering, Hexi University, Zhangye, 734000 Gansu, China
| | - S. Sharma
- Department of Genetics and Plant Breeding, Banaras Hindu University, 221005 Varanasi, India
| | - V.K. Mishra
- Department of Genetics and Plant Breeding, Banaras Hindu University, 221005 Varanasi, India
| | - J. Xu
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, 650201 Kunming, Yunnan, China
- East and Central Asia Regional Office, World Agroforestry, 650201 Kunming, Yunnan, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, Yunnan, China
| |
Collapse
|
7
|
Pandey V, Tiwari DC, Dhyani V, Bhatt ID, Rawal RS, Nandi SK. Physiological and metabolic changes in two Himalayan medicinal herbs under drought, heat and combined stresses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1523-1538. [PMID: 34366594 PMCID: PMC8295442 DOI: 10.1007/s12298-021-01027-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 05/15/2023]
Abstract
UNLABELLED Valeriana jatamansi Jones and Hedychium spicatum Ham-ex-Smith are important medicinal herbs of the Himalayan region, which are highly demanded by pharmaceutical industries. Climatic variability especially increasing temperature and water deficit affects the growth and productivity of these species. In addition, increased temperature and water deficit may trigger the biosynthesis of medicinally important bioactive metabolites, which influence the quality of raw plant material and finished products. Therefore, V. jatamansi and H. spicatum plants were undertaken and subjected to different levels of drought (no irrigation), heat (35 °C), and combined stresses for investigating their physiological and metabolic responses. Both the treatments (individually and in combination) reduced relative water content, photosynthesis, carboxylation efficiency, chlorophyll content, while increased intracellular CO2, malondialdehyde and H2O2 content in both the species. Transpiration and stomatal conductance increased under heat and reduced under drought stress as compared to control. Water use efficiency was found to be increased under drought, while reduced under heat stress. Protein, proline, carotenoid content and antioxidant enzymes activities (superoxide dismutase, peroxidise, catalase) initially increased and thereafter decreased during late stages of stress. Exposure of plants to combined stress was more detrimental than individual stress. In V. jatamansi, exposure to drought stress significantly (p < 0.05) increased valerenic acid content in all plant parts (1.0-6.9 fold) with maximum increase after 20 days of exposure, while under heat stress, valerenic acid content increased (1.0-1.2 fold) in belowground part of V. jatamansi, and decreased (1.1-1.3 fold) in aerial part as compared to control. In H. spicatum, exposure of individual heat stress for 25-30 days and combined stress for 5-15 days significantly (p < 0.05) increased linalool content to 6.2-6.5 fold and 8.3-19.6 fold, respectively, as compared to control. Higher accumulation of bioactive compounds after exposure to mild stress provides encouraging prospects for enhancing pharmaceutical properties of these Himalayan herbs. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01027-w.
Collapse
Affiliation(s)
- Veena Pandey
- G. B. Pant National Institute of Himalayan Environment (GBPNIHE), Kosi-Katarmal, Almora, Uttarakhand 263 643 India
| | - Deep C. Tiwari
- G. B. Pant National Institute of Himalayan Environment (GBPNIHE), Kosi-Katarmal, Almora, Uttarakhand 263 643 India
| | - Vibhash Dhyani
- G. B. Pant National Institute of Himalayan Environment (GBPNIHE), Kosi-Katarmal, Almora, Uttarakhand 263 643 India
| | - Indra D. Bhatt
- G. B. Pant National Institute of Himalayan Environment (GBPNIHE), Kosi-Katarmal, Almora, Uttarakhand 263 643 India
| | - Ranbeer S. Rawal
- G. B. Pant National Institute of Himalayan Environment (GBPNIHE), Kosi-Katarmal, Almora, Uttarakhand 263 643 India
| | - Shyamal K. Nandi
- G. B. Pant National Institute of Himalayan Environment (GBPNIHE), Kosi-Katarmal, Almora, Uttarakhand 263 643 India
| |
Collapse
|
8
|
Yu H, Zhao X, Huang W, Zhan J, He Y. Drought Stress Influences the Growth and Physiological Characteristics of Solanum rostratum Dunal Seedlings From Different Geographical Populations in China. FRONTIERS IN PLANT SCIENCE 2021; 12:733268. [PMID: 34868115 PMCID: PMC8637895 DOI: 10.3389/fpls.2021.733268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/02/2021] [Indexed: 05/16/2023]
Abstract
Extensive studies have shown that the success of invasive plants in large environmental gradients can be partly attributed to related factors, including phenotypic plasticity and rapid evolution. To enhance their ability to compete and invade, invasive plants often show higher morphological and physiological plasticity to adapt to different habitat conditions. In the past two decades, invasive species have expanded to some new habitats in North and Northwest China, including arid oasis agricultural zones, which are disturbed by human activities, and the ecosystem itself is very fragile. To evaluate the ecological adaptability of invasive plants widely distributed in North and Northwest China, we studied the physiological response and tolerance mechanism of different geographical populations of Solanum rostratum Dunal to different drought-stress gradients in extremely arid regions (Xinjiang population) and semi-arid regions (Inner Mongolia population). The results showed that with the aggravation of drought stress, S. rostratum from different geographical populations adopted different physiological mechanisms to drought stress. Xinjiang population was mostly affected by root/shoot ratio and chlorophyll fluorescence characteristics, showing higher plasticity in the net and total photosynthetic rates, while the Inner Mongolia population mainly relied on the accumulation of osmotic adjustment substances, higher leaf dry matter content, and increased malondialdehyde to cope with drought stress. Based on these results, we concluded that the physiological responses of S. rostratum invading different habitats in northern China to drought stress were significantly different. The drought resistance of the Xinjiang population was higher than that of the Inner Mongolia population. In general, S. rostratum can be widely adapted to both harsh and mild habitats through phenotypic plasticity, threatening agricultural production and ecological environment security in northern China.
Collapse
Affiliation(s)
- Hailun Yu
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, China
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xueyong Zhao
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, China
- *Correspondence: Xueyong Zhao,
| | - Wenda Huang
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, China
| | - Jin Zhan
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanzheng He
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences (CAS), Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Eco-physiological responses of desert and riverain legume plant species to extreme environmental stress. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
10
|
Liu F, Mo X, Zhang S, Chen F, Li D. Gas exchange characteristics and their influencing factors for halophytic plant communities on west coast of Bohai Sea. PLoS One 2020; 15:e0229047. [PMID: 32049992 PMCID: PMC7015410 DOI: 10.1371/journal.pone.0229047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/28/2020] [Indexed: 11/29/2022] Open
Abstract
Water-salt stress and nutrient limitation may affect leaf economic spectrum of halophytes and confuse our understanding on plant physiological principles in a changing world. In this study, three halophytic plant communities of Phragmites australis, Suaeda salsa, and Tamarix chinensis, were selected in two sites (sites 1 and 2) on the west coast of Bohai Sea. The net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), leaf vapor pressure deficit (VPDleaf) and their influencing factors were studied to test the possible carbon assimilation strategies of the halophytes. P. australis had higher Pn, Tr, and Gs than S. salsa and T. chinensis in both sites. Similar trends were found for leaf P and photosynthetic N and P efficiency (PNUE and PPUE, respectively) in one or both sites. By contrast, the leaf dry mass per area (LMA) increased in the order of P. australis < S. salsa < T. chinensis in both sites. For identical species in different sites, Pn, leaf P, and PNUE were lower but Tr, VPDleaf, leaf N, leaf N:P, and PPUE were higher in site 1 than in site 2 for one or more halophytes. Although soil physicochemical properties in different sites explained several variations among the halophytes, two-way ANOVA indicated that the species can explain most of the leaf traits compared with the site. LMA also had significant nonlinear relationships with Pn, Tr, Gs, and VPDleaf. PNUE and PPUE showed positive correlation with Pn in both sites, but they decreased in the power-law function with increasing LMA. Overall, the redundancy analysis showed that the gas exchange capacity of the halophytic plant communities was significantly affected by PPUE (60.0% of explanation), PNUE (57.1%), LMA (35.0%), leaf P (22.0%), and soil N (15.8%).
Collapse
Affiliation(s)
- Fude Liu
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, P. R. China
| | - Xue Mo
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, P. R. China
| | - Sen Zhang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, P. R. China
| | - Feijie Chen
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, P. R. China
| | - Desheng Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, P. R. China
| |
Collapse
|