1
|
Farroni C, Altera AMG, Salmi A, Vanini V, Cuzzi G, Lindestam Arlehamn CS, Sette A, Delogu G, Palucci I, Sbarra S, Aiello A, Picchianti-Diamanti A, Gualano G, Palmieri F, Goletti D, Petruccioli E. Specific immune response to M. tuberculosis and ability to in vitro control mycobacterial replication are not impaired in subjects with immune-mediated inflammatory disease and tuberculosis infection. Front Immunol 2025; 15:1484143. [PMID: 39872515 PMCID: PMC11770028 DOI: 10.3389/fimmu.2024.1484143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/19/2024] [Indexed: 01/30/2025] Open
Abstract
Background Subjects with immune-mediated inflammatory diseases (IMID), such as rheumatoid arthritis, with tuberculosis infection (TBI), have a high probability of progressing to tuberculosis disease (TB). We aim to characterize the impact of IMID on the immune response to M. tuberculosis (Mtb) in patients with TBI and TB disease. Methods We enrolled TBI and TB patients with and without IMID. Peripheral blood mononuclear cells (PBMCs) were stimulated with Mtb-derived epitopes (MTB300). By flow-cytometry, we identified the Mtb-specific CD4+ T cells as cytokine-producing T cells or as CD25+ CD134+ CD4+ T cells. Memory and activation status of Mtb-specific T cells were assessed by evaluating: CD153, HLA-DR, CD45RA, CD27. Mycobacterial growth inhibition assay (MGIA) was used to evaluate the ability of PBMCs to inhibit mycobacteria growth. A long-term stimulation assay was used to detect a memory response. Results The IMID status and therapy did not affect the magnitude of response to Mtb-antigen stimulation and the number of responders. TBI-IMID showed a cytokine profile like TBI and TB patients. The Mtb response of TBI-IMID patients was characterized by an effector memory and central memory phenotype as in TBI and TB groups. This memory phenotype allowed the increased IFN-γ production after 6 days of MTB300-stimulation. HLA-DR expression on Mtb-specific T cells was associated with TB, whereas CD153 was associated with TBI status. Finally, the TBI-IMID had an MGIA response like TBI and TB patients. Conclusion IMID condition does not affect key aspects of the immune response to Mtb, such as the cytokine response, memory and activation profile, and the ability to contain the mycobacteria replication. The immunological characterization of the fragile population of TBI-IMID patients is fundamental to understanding the correlation between protection and disease.
Collapse
Affiliation(s)
- Chiara Farroni
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Anna Maria Gerarda Altera
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Andrea Salmi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Valentina Vanini
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
- Unità Operativa Semplice (UOS) Professioni Sanitarie Tecniche, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Gilda Cuzzi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | | | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Giovanni Delogu
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Diagnostic Labororatory Unit, Mater Olbia Hospital, Olbia, Italy
| | - Ivana Palucci
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Settimia Sbarra
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Alessandra Aiello
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Andrea Picchianti-Diamanti
- Department of Clinical and Molecular Medicine, “Sapienza” University, S. Andrea University Hospital, Rome, Italy
| | - Gina Gualano
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Fabrizio Palmieri
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Elisa Petruccioli
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| |
Collapse
|
2
|
Kumar SK, Arya S, Singh A, Misra R, Aggarwal A, Sinha S. Patterns of T and B cell responses to Mycobacterium tuberculosis membrane-associated antigens and their relationship with disease activity in rheumatoid arthritis patients with latent tuberculosis infection. PLoS One 2021; 16:e0255639. [PMID: 34339423 PMCID: PMC8328311 DOI: 10.1371/journal.pone.0255639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/20/2021] [Indexed: 11/18/2022] Open
Abstract
This study was aimed at exploring whether latent tuberculosis infection (LTBI) contributes to the pathogenesis of immune-mediated inflammatory diseases in a TB endemic setting. We screened 198 rheumatoid arthritis (RA) patients with tuberculin skin test (TST) and studied 61 (median DAS28-ESR = 6.3) who were positive. Whole blood T cell proliferative responses to Mycobacterium tuberculosis (Mtb) membrane (MtM) antigens, including the latency-induced protein alpha crystallin (Acr), were determined by flow cytometry using Ki67 expression as the marker for nuclear proliferation. Serum antibody levels were determined by ELISA. Follow-up investigations (at 3–6, 9–12 and 15–18 months after baseline) were performed in 41 patients who were classified empirically as ‘high’ (HR-T/HR-B) or ‘low’ (LR-T/LR-B) responders based on their dynamic T cell or antibody responses. Significant correlations were seen between baseline T cell responses to MtM and Acr, and between IgG, IgA and IgM antibody responses to MtM. However, no correlation was seen between T and B cell responses. At all time points during the follow-up, T cell responses to both antigens (except for MtM at one point) were significantly higher in HR-T (n = 25) than LR-T (n = 16) patients. Levels of IgA and IgM (but not IgG) antibodies to MtM were also significantly higher in HR-B (n = 13) than LR-B (n = 28) at all time points. Importantly, HR-T patients exhibited significantly higher baseline and follow-up DAS28 scores than LR-T. Ten (of 61) patients had a history of TB and developed RA 6 years (median) after contracting TB. Three new TB cases (1 from TST-positive and 2 from TST-negative groups) emerged during the follow-up. Our results suggest that persistently elevated T cell responses to Mtb antigens may contribute to disease activity in RA.
Collapse
Affiliation(s)
- Shashi Kant Kumar
- Department of Clinical Immunology & Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Suvrat Arya
- Department of Clinical Immunology & Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Ankita Singh
- Department of Clinical Immunology & Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Ramnath Misra
- Department of Clinical Immunology & Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Amita Aggarwal
- Department of Clinical Immunology & Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
- * E-mail: , (SS); , (AA)
| | - Sudhir Sinha
- Department of Clinical Immunology & Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
- * E-mail: , (SS); , (AA)
| |
Collapse
|
3
|
Long F, Kong M, Wu S, Zhang W, Liao Q, Peng Z, Nan L, Liu Y, Wang M, He C, Wu Y, Lu X, Kang M. Development and validation of an advanced fragment analysis-based assay for the detection of 22 pathogens in the cerebrospinal fluid of patients with meningitis and encephalitis. J Clin Lab Anal 2019; 33:e22707. [PMID: 30666716 PMCID: PMC6818557 DOI: 10.1002/jcla.22707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/10/2018] [Accepted: 10/07/2018] [Indexed: 02/05/2023] Open
Abstract
Background Meningitis and encephalitis (ME) are central nervous system (CNS) infections mainly caused by bacteria, mycobacteria, fungi, viruses, and parasites that result in high morbidity and mortality. The early, accurate diagnosis of pathogens in the cerebrospinal fluid (CSF) and timely medication are associated with better prognosis. Conventional methods, such as culture, microscopic examination, serological detection, CSF routine analysis, and radiological findings, either are time‐consuming or lack sensitivity and specificity. Methods To address these clinical needs, we developed an advanced fragment analysis (AFA)‐based assay for the multiplex detection of 22 common ME pathogens, including eight viruses, 11 bacteria, and three fungi. The detection sensitivity of each target was evaluated with a recombinant plasmid. The limits of detection of the 22 pathogens ranged from 15 to 120 copies/reaction. We performed a retrospective study to analyze the pathogens from the CSF specimens of 170 clinically diagnosed ME patients using an AFA‐based assay and compared the results with culture (bacteria and fungi), microscopic examination (fungi), polymerase chain reaction (PCR) (Mycobacterium tuberculosis), and Sanger sequencing (virus) results. Results The sensitivity of the AFA assay was 100% for 10 analytes. For Cryptococcus neoformans, the sensitivity was 63.6%. The overall specificity was 98.2%. The turnaround time was reduced to 4‐6 hours from the 3‐7 days required using conventional methods. Conclusions In conclusion, the AFA‐based assay provides a rapid, sensitive, and accurate method for pathogen detection from CSF samples.
Collapse
Affiliation(s)
- Fang Long
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Mimi Kong
- Ningbo HEALTH Gene Technologies Co., Ltd., Ningbo, China
| | - Siying Wu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Weili Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Quanfeng Liao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Zaisheng Peng
- Enshi Tujia and Miao Autonomous Prefecture Center for Disease Control and Prevention, Enshi, China
| | - Li Nan
- Ningbo HEALTH Gene Technologies Co., Ltd., Ningbo, China
| | - Ya Liu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Minjin Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chao He
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Wu
- Ningbo HEALTH Gene Technologies Co., Ltd., Ningbo, China
| | - Xiaojun Lu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Mei Kang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Abstract
Central nervous system (CNS) infections are potentially life threatening if not diagnosed and treated early. The initial clinical presentations of many CNS infections are non-specific, making a definitive etiologic diagnosis challenging. Nucleic acid in vitro amplification-based molecular methods are increasingly being applied for routine microbial detection. These methods are a vast improvement over conventional techniques with the advantage of rapid turnaround and higher sensitivity and specificity. Additionally, molecular methods performed on cerebrospinal fluid samples are considered the new gold standard for diagnosis of CNS infection caused by pathogens, which are otherwise difficult to detect. Commercial diagnostic platforms offer various monoplex and multiplex PCR assays for convenient testing of targets that cause similar clinical illness. Pan-omic molecular platforms possess potential for use in this area. Although molecular methods are predicted to be widely used in diagnosing and monitoring CNS infections, results generated by these methods need to be carefully interpreted in combination with clinical findings. This review summarizes the currently available armamentarium of molecular assays for diagnosis of central nervous system infections, their application, and future approaches.
Collapse
|
5
|
Santos ÍM, da Rosa EA, Gräf T, Ferreira LGE, Petry A, Cavalheiro F, Reiche EM, Zanetti CR, Pinto AR. Analysis of Immunological, Viral, Genetic, and Environmental Factors That Might Be Associated with Decreased Susceptibility to HIV Infection in Serodiscordant Couples in Florianópolis, Southern Brazil. AIDS Res Hum Retroviruses 2015; 31:1116-25. [PMID: 26389741 PMCID: PMC4651055 DOI: 10.1089/aid.2015.0168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Individuals who have been exposed to human immunodeficiency virus (HIV) and have not been infected might possess natural resistance mechanisms. An understanding of the sociodemographic and immunological conditions that influence resistance to HIV is a challenge, and very little is known about the role of intrinsic antiviral factors that restrict HIV infection. The aim of this study was to analyze potential factors responsible for resistance to HIV infection in serodiscordant couples by comparing HIV-exposed seronegative individuals (HESN) to HIV-seropositive individuals treated with antiretroviral therapy (HIV-ART) along with healthy controls (HC). The results revealed one HLA-B*27 and two HLA-B*57 individuals among the HESN; a CCR5Δ32 heterozygous deletion was observed in one serodiscordant couple, while the homozygous genotype for this variant was not observed. There were no differences in the basal mRNA expression of APOBEC3G, CFLAR, TRIM5α, LEDGF/p75, BST-2, or SAMHD1 in CD4(+) T lymphocyte- and monocyte-enriched populations among the three groups, and lower HBD-3 concentrations were observed in saliva from HIV-ART compared to HESN and HC. The most prevalent HIV-1 subtype was C or C-containing recombinant forms. Six HIV-ART individuals and one HIV-ART individual were infected with the R5 HIV and X4 HIV strains, respectively. The ability to control infection or delay disease progression is probably defined by a balance between viral and host factors, and further evaluation should be performed in larger cohorts. Our data suggest that susceptibility to HIV infection varies among individuals and strengthens the multifactorial characteristics underlying the resistance mechanisms in HIV.
Collapse
Affiliation(s)
- Íris M. Santos
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Elis A. da Rosa
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Tiago Gräf
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | - Andrea Petry
- Centro de Hematologia e Hemoterapia de Santa Catarina, Florianópolis, SC, Brazil
| | - Fernanda Cavalheiro
- Centro de Hematologia e Hemoterapia de Santa Catarina, Florianópolis, SC, Brazil
| | - Edna M. Reiche
- Departamento de Patologia, Análises Clínicas e Toxicológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Carlos R. Zanetti
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Aguinaldo R. Pinto
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|