1
|
Singh K, Jayaram M, Hanumantharaju A, Tõnissoo T, Jagomäe T, Mikheim K, Muthuraman S, Gilbert SF, Plaas M, Schäfer MKE, Innos J, Lilleväli K, Philips MA, Vasar E. The IgLON family of cell adhesion molecules expressed in developing neural circuits ensure the proper functioning of the sensory system in mice. Sci Rep 2024; 14:22593. [PMID: 39349721 PMCID: PMC11442611 DOI: 10.1038/s41598-024-73358-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Deletions and malfunctions of the IgLON family of cell adhesion molecules are associated with anatomical, behavioral, and metabolic manifestations of neuropsychiatric disorders. We have previously shown that IgLON genes are expressed in sensory nuclei/pathways and that IgLON proteins modulate sensory processing. Here, we examined the expression of IgLON alternative promoter-specific isoforms during embryonic development and studied the sensory consequences of the anatomical changes when one of the IgLON genes, Negr1, is knocked out. At the embryonal age of E12.5 and E13.5, various IgLONs were distributed differentially and dynamically in the developing sensory areas within the central and peripheral nervous system, as well as in limbs and mammary glands. Sensory tests showed that Negr1 deficiency causes differences in vestibular function and temperature sensitivity in the knockout mice. Sex-specific differences were noted across olfaction, vestibular functioning, temperature regulation, and mechanical sensitivity. Our findings highlight the involvement of IgLON molecules during sensory circuit formation and suggest Negr1's critical role in somatosensory processing.
Collapse
Affiliation(s)
- Katyayani Singh
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia.
| | - Mohan Jayaram
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Arpana Hanumantharaju
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Tambet Tõnissoo
- Institute of Molecular and Cell Biology, University of Tartu, Vanemuise 46-221, Ria 23-204, 51010, Tartu, Estonia
| | - Toomas Jagomäe
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14B Ravila Street, 50411, Tartu, Estonia
| | - Kaie Mikheim
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Srirathi Muthuraman
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Scott F Gilbert
- Department of Biology, Swarthmore College, Swarthmore, PA, USA
| | - Mario Plaas
- Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, 14B Ravila Street, 50411, Tartu, Estonia
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, 55131, Mainz, Germany
- Focus Program Translational Neurosciences, Johannes Gutenberg-University Mainz, 55131, Mainz, Germany
- Research Center for Immunotherapy, Johannes Gutenberg-University Mainz, 55131, Mainz, Germany
| | - Jürgen Innos
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Kersti Lilleväli
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
- The Centre of Estonian Rural Research and Knowledge, 48309, Jõgeva Alevik, Estonia
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 19 Ravila Street, 50411, Tartu, Estonia
| |
Collapse
|
2
|
Oi-Kano Y, Goto T, Takahashi H, Iwasaki Y, Kawada T. Effect of Oleuropein on Anti-Obesity and Uncoupling Protein 1 Level in Brown Adipose Tissue in Mild Treadmill Walking Rats with Diet-Induced Obesity. J Nutr Sci Vitaminol (Tokyo) 2024; 70:193-202. [PMID: 38945884 DOI: 10.3177/jnsv.70.193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Oleuropein aglycone (OA), which is the absorbed form of oleuropein, is a major phenolic compound in extra virgin olive oil. We analyzed the anti-obesity effect of OA intake combined with mild treadmill walking (MTW, 4 m/min for 20 min/d, 5-6 d/wk, without electric shocks and slope) in rats under a high-fat diet (HF). Four-week-old male Sprague-Dawley rats (n=28) were equally divided into four groups: control (HF), 0.08% oleuropein-supplemented HF (HFO), HF with MTW (HF+W), and HFO with MTW (HFO+W) groups. After 28 d, the inguinal subcutaneous fat content and weight gain were significantly lower in the HFO+W group than in the control group. The HFO+W group also had significantly higher levels of urinary noradrenaline secretion, interscapular brown adipose tissue, uncoupling protein 1, brain transient receptor potential ankyrin subtype 1 (TRPA1), vanilloid subtype 1 (TRPV1), and brain-derived neurotrophic factor (BDNF) than the control group. Especially, the HFO+W group showed a synergistic effect on noradrenaline secretion. Therefore, OA combined with MTW may accelerate the enhancement of UCP1 and BDNF levels in rats with HF-induced obesity by increasing noradrenaline secretion after TRPA1 and TRPV1 activation.
Collapse
Affiliation(s)
- Yuriko Oi-Kano
- Laboratory of Nutrition Chemistry, Faculty of Home Economics, Kobe Women's University
| | - Tsuyoshi Goto
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| | - Haruya Takahashi
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| | - Yusaku Iwasaki
- Laboratory of Animal Function, Kyoto Prefectural University
| | - Teruo Kawada
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
3
|
Acute Supplementation with Capsaicin Enhances Upper-Limb Performance in Male Jiu-Jitsu Athletes. Sports (Basel) 2022; 10:sports10080120. [PMID: 36006086 PMCID: PMC9415344 DOI: 10.3390/sports10080120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
The present study investigated whether acute capsaicin (CAP) supplementation improves mean power output (MPO) and peak velocity (PV) during the performance of the free bench press exercise (FBP). Twelve (n = 12) male Brazilian Jiu-Jitsu (BJJ) athletes (age: 24.3 ± 1.5 years, height: 1.74 ± 0.1 m, body mass: 75.7 ± 10.1 kg) participated in this randomized, placebo (PLA)-controlled, double-blind, crossover trial. For each condition, 45 min after CAP (12 mg purified) or PLA (12 mg of Celulomax E) consumption, the participants performed four sets of five repetitions of FBP at a load of 60% of body mass with five-min rest intervals. The MPO (t = 5.6, df = 11, p = 0.001, EF = 0.3, IC 95% = −0.55 to 1.05) and PV (t = 5.4, df = 11, p = 0.001, EF = 0.5, IC 95% = −0.32 to 1.30) were significantly higher with CAP supplementation versus PLA. Acute CAP supplementation appears to improve MPO and PV during FBP in male BJJ athletes.
Collapse
|
4
|
Ovchinnikov AN, Deryugina AV, Paoli A. Royal Jelly Plus Coenzyme Q10 Supplementation Enhances High-Intensity Interval Exercise Performance via Alterations in Cardiac Autonomic Regulation and Blood Lactate Concentration in Runners. Front Nutr 2022; 9:893515. [PMID: 35811968 PMCID: PMC9263918 DOI: 10.3389/fnut.2022.893515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose This study aimed to examine whether oral royal jelly (RJ) and coenzyme Q10 (CoQ10) co-supplementation could improve high-intensity interval exercise (HIIE) performance in runners, reducing exercise-induced lactic acidosis and decreasing elevated sympathetic tone following exercise. Methods Thirty regional-level runners (age: 19 ± 1 years; height: 173 ± 2 cm; body mass: 68.9 ± 2 kg; body mass index: 23.1 ± 1 kg/m2) were randomly allocated to receive either 400 mg of RJ and 60 mg of CoQ10 (RJQ) or matching placebo (PLA) once daily for 10 days. Exercise performance expressed as time taken to complete HIIE was evaluated at baseline, and then reassessed at day 10 of intervention. HIIE protocol applied to the runners included three repetitions of 100 m distance at maximum possible speed interspersed with 45 s of recovery periods. Indices of heart rate variability and blood lactate concentration were also measured before and immediately after HIIE in each group. Results HIIE performance significantly improved in RJQ group (p = 0.005) compared to PLA group. Blood lactate levels and sympathetic influence on the heart were significantly lower both before and after the HIIE in athletes who received RJQ (p < 0.05) compared to PLA. Regression analysis showed that oral RJQ administration for 10 days was significantly associated with reductions in HIIE-induced increases in blood lactate concentration and enhanced cardiac parasympathetic modulation following exercise compared to PLA. Principal component analysis revealed that runners treated with RJQ are grouped by the first two principal components into a separate cluster compared to PLA. Correlation analysis demonstrated that the improvements in runners' HIIE performance were due in significant part to RJQ-induced reduction of increment in blood lactate levels in response to exercise in combination with a more rapid shift in autonomic activity toward increased parasympathetic control early at post-exercise. Conclusion These findings suggest that RJQ supplementation for 10 days is potentially effective for enhancing HIIE performance and alleviating adverse effects of increased intramuscular acidity and prolonged sympathetic dominance following intense exercise.
Collapse
Affiliation(s)
| | - Anna V. Deryugina
- Department of Physiology and Anatomy, Lobachevsky University, Nizhny Novgorod, Russia
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| |
Collapse
|
5
|
Lima PM, Reis TO, Wanner SP, Chianca-Jr DA, Menezes RC. The role of peripheral transient receptor potential vanilloid 1 channels in stress-induced hyperthermia in rats subjected to an anxiogenic environment. J Therm Biol 2022; 106:103191. [DOI: 10.1016/j.jtherbio.2022.103191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/26/2021] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
|
6
|
Simões CB, Gomes PLC, Silva RA, Fonseca IC, Fonseca M, Cruz VM, Drummond MD. Acute caffeine and capsaicin supplementation and performance in resistance training. MOTRIZ: REVISTA DE EDUCACAO FISICA 2022. [DOI: 10.1590/s1980-65742022010121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
7
|
Kukula O, Çiçekli MN, Şafak S, Günaydın C. Role of TRPV1 channels on glycogen synthase kinase-3β and oxidative stress in ouabain-induced bipolar disease. J Recept Signal Transduct Res 2021; 42:338-348. [PMID: 34304690 DOI: 10.1080/10799893.2021.1955928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bipolar disorder (BD) is a multifactorial chronic and refractory disease characterized by manic, depressive, and mixed mood episodes. Although epidemiological, and pathophysiological studies demonstrated a strong correlation between bipolar disorder and oxidative stress, precise etiology is still missing. Recent studies suggested the possible role of transient receptor potential channels (TRP) in the BD but, current knowledge is limited. Therefore, the current study investigates the possible role of TRPV1 in the ouabain-induced model of BD. The model was created with intracerebroventricular single dose ouabain (10-3 M) administration. Animals were treated with capsaicin, capsazepine, and lithium for seven days. Mania and depressive-like states were investigated with open-field, sucrose preference, and elevated plus maze tests. Oxidative stress was assessed by measuring total antioxidant and oxidant states, spectrophotometrically. The phosphorylation Glycogen synthase kinase-3β (GSK-3β) evaluated by western blotting. Our results demonstrated that capsaicin dose-dependently inhibited the ouabain-induced hyperlocomotion and depression. Although capsazepine exacerbated behavioral impairment, it did not show a significant effect on the antioxidant and oxidant states, and the effects of capsazepine on behaviors were abolished by combination with capsaicin. Additionally, capsaicin potently prevented the ouabain-induced decrease in GSK-3β phosphorylation. In contrast, capsazepine potentiated ouabain-induced decrease in GSK-3β phosphorylation and combination with capsaicin, suppressed the effect of capsazepine on GSK-3β phosphorylation. The effects of TRPV1 activation on oxidative stress and mania-like behaviors in the ouabain-induced BD model might be regulated by GSK-3β phosphorylation.
Collapse
Affiliation(s)
- Osman Kukula
- Department of Pharmacology, School of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Mustafa Nusret Çiçekli
- Department of Pharmacology, School of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Sinan Şafak
- Department of Pharmacology, School of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Caner Günaydın
- Department of Pharmacology, School of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
8
|
Wang L, Xu Z, Ling D, Li J, Wang Y, Shan T. The regulatory role of dietary factors in skeletal muscle development, regeneration and function. Crit Rev Food Sci Nutr 2020; 62:764-782. [PMID: 33021403 DOI: 10.1080/10408398.2020.1828812] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Skeletal muscle plays a crucial role in motor function, respiration, and whole-body energy homeostasis. How to regulate the development and function of skeletal muscle has become a hot research topic for improving lifestyle and extending life span. Numerous transcription factors and nutritional factors have been clarified are closely associated with the regulation of skeletal muscle development, regeneration and function. In this article, the roles of different dietary factors including green tea, quercetin, curcumin (CUR), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and resveratrol (RES) in regulating skeletal muscle development, muscle mass, muscle function, and muscle recovery have been summarized and discussed. We also reviewed the potential regulatory molecular mechanism of these factors. Based on the current findings, dietary factors may be used as a potential therapeutic agent to treat skeletal muscle dysfunction as well as its related diseases.
Collapse
Affiliation(s)
- Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Ziye Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Defeng Ling
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Jie Li
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| |
Collapse
|
9
|
Lafoux A, Lotteau S, Huchet C, Ducreux S. The Contractile Phenotype of Skeletal Muscle in TRPV1 Knockout Mice is Gender-Specific and Exercise-Dependent. Life (Basel) 2020; 10:E233. [PMID: 33036239 PMCID: PMC7600525 DOI: 10.3390/life10100233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/24/2020] [Accepted: 10/03/2020] [Indexed: 12/31/2022] Open
Abstract
The transient receptor potential vanilloid 1 (TRPV1) belongs to the transient receptor potential superfamily of sensory receptors. TRPV1 is a non-selective cation channel permeable to Ca2+ that is capable of detecting noxious heat temperature and acidosis. In skeletal muscles, TRPV1 operates as a reticular Ca2+-leak channel and several TRPV1 mutations have been associated with two muscle disorders: malignant hyperthermia (MH) and exertional heat stroke (EHS). Although TRPV1-/- mice have been available since the 2000s, TRPV1's role in muscle physiology has not been thoroughly studied. Therefore, the focus of this work was to characterize the contractile phenotype of skeletal muscles of TRPV1-deficient mice at rest and after four weeks of exercise. As MS and EHS have a higher incidence in men than in women, we also investigated sex-related phenotype differences. Our results indicated that, without exercise, TRPV1-/- mice improved in vivo muscle strength with an impairment of skeletal muscle in vitro twitch features, i.e., delayed contraction and relaxation. Additionally, exercise appeared detrimental to TRPV1-/- slow-twitch muscles, especially in female animals.
Collapse
Affiliation(s)
- Aude Lafoux
- Therassay Platform, CAPACITES, Université de Nantes, 44200 Nantes, France;
| | - Sabine Lotteau
- CarMeN Laboratory, University of Lyon, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France;
| | - Corinne Huchet
- Nantes Gene Therapy Laboratory, INSERM UMR 1089, Université de Nantes, 44200 Nantes, France;
| | - Sylvie Ducreux
- CarMeN Laboratory, University of Lyon, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France;
- Département de Cardiologie, Hospices Civils de Lyon, Groupement Hospitalier EST, IHU-OPERA Bâtiment B13, 69500 Bron, France
| |
Collapse
|
10
|
Hai J, Kawabata F, Uchida K, Nishimura S, Tabata S. Intragastric administration of AMG517, a TRPV1 antagonist, enhanced activity-dependent energy metabolism via capsaicin-sensitive sensory nerves in mice. Biosci Biotechnol Biochem 2020; 84:2121-2127. [PMID: 32633621 DOI: 10.1080/09168451.2020.1789836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Transient receptor potential vanilloid 1 (TRPV1), a nociceptive cation channel, is known to play roles in regulating the energy metabolism (EM) of the whole body. We previously reported that TRPV1 antagonists such as AMG517 enhanced EM in mice, however, these mechanisms remain unclear. The aim of this study was to explore the mechanisms underlying the enhancement of EM by AMG517, a selective TRPV1 antagonist, in mice. Respiratory gas analysis indicated that intragastric administration of AMG517 enhanced EM along with increasing locomotor activity in mice. Next, to clarify the possible involvement with afferent sensory nerves, including the vagus, we desensitized the capsaicin-sensitive sensory nerves of mice by systemic capsaicin treatment. In the desensitized mice, intragastric administration of AMG517 did not change EM and locomotor activity. Therefore, this study indicated that intragastric administration of AMG517 enhanced EM and increased locomotor activity via capsaicin-sensitive sensory nerves, including vagal afferents in mice.
Collapse
Affiliation(s)
- Jun Hai
- Laboratory of Functional Anatomy, Faculty of Agriculture, Kyushu University , Fukuoka, Japan.,Department of Physiological Science and Molecular Biology, Fukuoka Dental College , Fukuoka, Japan
| | - Fuminori Kawabata
- Laboratory of Functional Anatomy, Faculty of Agriculture, Kyushu University , Fukuoka, Japan.,Physiology of Domestic Animals, Faculty of Agriculture and Life Science, Hirosaki University , Aomori, Japan
| | - Kunitoshi Uchida
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College , Fukuoka, Japan.,Division of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka , Shizuoka, Japan
| | - Shotaro Nishimura
- Laboratory of Functional Anatomy, Faculty of Agriculture, Kyushu University , Fukuoka, Japan
| | - Shoji Tabata
- Laboratory of Functional Anatomy, Faculty of Agriculture, Kyushu University , Fukuoka, Japan
| |
Collapse
|
11
|
Khalid S, Khan A, Shal B, Ali H, Kim YS, Khan S. Suppression of TRPV1 and P2Y nociceptors by honokiol isolated from Magnolia officinalis in 3 rd degree burn mice by inhibiting inflammatory mediators. Biomed Pharmacother 2019; 114:108777. [PMID: 30925455 DOI: 10.1016/j.biopha.2019.108777] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/26/2019] [Accepted: 03/13/2019] [Indexed: 12/21/2022] Open
Abstract
Burn pain is one of the worst imaginable pain, associated with considerable morbidity and mortality worldwide. The management of pain made significant progress; however, more research is needed for burn pain. In the present study, the antinociceptive effect of honokiol extracted from Magnolia officinalis was assessed for 3 consecutive days. The third-degree burns were induced by the hot water method. The honokiol both by intraperitoneal (i.p) and intra plantar (i.pl) route and in combination with tramadol (i.p) was found to be effective in significantly reducing the mechanical allodynia, hyperalgesia, thermal hyperalgesia and paw edema. Honokiol also succeeded in reducing weight loss and spontaneous pain behavior in mice. Honokiol treatment both i.p and ipl decrease significantly the loss of total protein (3.3 and 3.4 g/dl of total protein) and albumin (2.2 and 2.6 g/dl of total albumin) respectively. It also significantly recovers the normal balance of blood electrolytes and normalizes blood profile. Effect of honokiol on cytokines and mRNA expression levels of TRPV1 and P2Y were also assessed. Honokiol significantly decreases the expression of TNF-α, IL-1β and IL-6 and decreases expression level of TRPV1 and P2Y. Additionally, TRPV1 and P2Y proteins expression levels were also assessed by Western blot in paw skin tissue, sciatic nerve and spinal cord which were remarkably down-regulated by honokiol. Histological analysis of vehicle control and drug-treated paws were also performed through hematoxylin and eosin (H&E) staining which exhibited that honokiol significantly reduced the dermal layers distortion and inflammation associated with the burn. The antioxidant enzymes and nitric oxide (NO) were also determined through ELISA. Honokiol treatment also potentiates the expression of reduced glutathione and glutathione S-transferase, and catalase levels and reduced significantly the nitric oxide (NO) as compared to the burn-induced group. It can be concluded on the base of the results that honokiol has a significant analgesic activity through its action on cytokines and by downregulating TRPV1 and P2Y receptors. It also has a protective role against burn damage by upregulation of antioxidants.
Collapse
Affiliation(s)
- Sidra Khalid
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Adnan Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Bushra Shal
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Yeong Shik Kim
- College of Pharmacy, Seoul National University, Seoul, South Korea.
| | - Salman Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
12
|
Functional characterization of the cannabinoid receptors 1 and 2 in zebrafish larvae using behavioral analysis. Psychopharmacology (Berl) 2019; 236:2049-2058. [PMID: 30820632 PMCID: PMC6647118 DOI: 10.1007/s00213-019-05193-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 02/07/2019] [Indexed: 12/30/2022]
Abstract
RATIONALE The endocannabinoid system (ECS) comprises the cannabinoids anandamide and 2-arachidonoylglycerol and the cannabinoid receptors 1 and 2 (Cnr1 and Cnr2). The function of these receptors in relation to zebrafish larval behavior is poorly understood, even though the zebrafish larva has become a versatile animal model in biomedical research. OBJECTIVES The objective of the present study is to characterize the function of Cnr1 and Cnr2 in relation to behavior in zebrafish. METHODS Behavioral analysis of zebrafish larvae was performed using a visual motor response (VMR) test, which allows locomotor activity to be determined under basal conditions and upon a dark challenge. RESULTS Treatment with the non-specific Cnr agonists WIN55,212-2 and CP55,940 resulted in a decrease in locomotion. This was observed for both basal and challenge-induced locomotion, although the potency for these two effects was different, which suggests different mechanisms of action. In addition, WIN55,212-2 increased the reaction time of the startle response after the dark challenge. Using the Cnr1 antagonist AM251 and a cnr1-/- mutant line, it was shown that the effects were mediated by Cnr1 and not Cnr2. Interestingly, administration of the antagonist AM251 alone does not have an effect on locomotion, which indicates that endogenous cannabinoid activity does not affect locomotor activity of zebrafish larvae. Upon repeated dark challenges, the WIN55,212-2 effect on the locomotor activity decreased, probably due to desensitization of Cnr1. CONCLUSIONS Taken together, these results show that Cnr1 activation by exogenous endocannabinoids modulates both basal and challenge-induced locomotor activity in zebrafish larvae and that these behavioral effects can be used as a readout to monitor the Cnr1 responsiveness in the zebrafish larva model system.
Collapse
|
13
|
Conrado de Freitas M, Cholewa JM, Freire RV, Carmo BA, Bottan J, Bratfich M, Della Bandeira MP, Gonçalves DC, Caperuto EC, Lira FS, Rossi FE. Acute Capsaicin Supplementation Improves Resistance Training Performance in Trained Men. J Strength Cond Res 2018; 32:2227-2232. [PMID: 28682933 DOI: 10.1519/jsc.0000000000002109] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Conrado de Freitas, M, Cholewa, JM, Freire, RV, Carmo, BA, Bottan, J, Bratfich, M, Della Bandeira, MP, Gonçalves, DC, Caperuto, EC, Lira, FS, and Rossi, FE. Acute capsaicin supplementation improves resistance training performance in trained men. J Strength Cond Res 32(8): 2227-2232, 2018-The purpose of this study was to investigate the acute effect of capsaicin supplementation on performance, rate of perceived exertion (RPE), and blood lactate concentrations during resistance exercise in healthy trained young men. Ten resistance-trained men (age = 22.7 ± 4.0 years, mass = 82.3 ± 9.6 kg, and height = 175 ± 0.1 cm) completed 2 randomized, double-blind trials: capsaicin condition (12 mg) or a placebo condition. Forty-five minutes after supplement consumption, subjects performed 4 sets until movement failure in the squat exercise at 70% of 1 repetition maximum with 90 seconds of rest interval between sets. The total mass lifted (total repetitions × mass lifted) was calculated. The RPE was recorded after the last set. Blood lactate was analyzed after each set of exercise, immediately postexercise, and after 3, 5, and at 30 minutes during recovery. The number of repetitions in each set decreased significantly after all sets compared with set-1 and after set-3 and set-4 in relation to set-2 (p < 0.001); however, total mass lifted was higher in capsaicin compared with placebo (3,919.4 ± 1,227.4 kg vs. 3,179.6 ± 942.4 kg, p = 0.002). Blood lactate increased significantly after each set (p < 0.001); however, there were no differences between conditions. Rate of perceived exertion was significantly less for the capsaicin condition than placebo (17.2 ± 1.0 vs. 18.3 ± 1.7, p = 0.048). In summary, acute capsaicin supplementation improves lower-body resistance training performance in trained young men.
Collapse
Affiliation(s)
- Marcelo Conrado de Freitas
- Skeletal Muscle Assessment Laboratory, School of Technology and Sciences, Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, São Paulo, Brazil
| | - Jason M Cholewa
- Department of Kinesiology, Coastal Carolina University, Conway, South Carolina
| | | | | | | | | | | | - Daniela C Gonçalves
- Biosciences Department, Federal University of São Paulo, UNIFESP, São Paul, Brazil
| | | | - Fabio S Lira
- Exercise and Immunometabolism Research Group, Department of Physical Education, São Paulo State University (UNESP), Santos, Brazil
| | - Fabrício E Rossi
- Immunometabolism of Skeletal Muscle and Exercise Research Group, Department of Physical Education, Federal University of Piauí (UFPI), Teresina-PI, Brazil
| |
Collapse
|
14
|
Inprasit C, Lin YW, Huang CP, Wu SY, Hsieh CL. Targeting TRPV1 to relieve motion sickness symptoms in mice by electroacupuncture and gene deletion. Sci Rep 2018; 8:10365. [PMID: 29985388 PMCID: PMC6037734 DOI: 10.1038/s41598-018-23793-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 03/06/2018] [Indexed: 11/09/2022] Open
Abstract
Motion sickness (MS) is an acute disorder that occurs in healthy individuals worldwide regardless of gender, age, or ethnicity. Our study used a mouse model to rule out the effects of any psychological factors related to MS and EA. Subjects were randomly separated into four groups, namely the control group (Con), motion sickness inducing group (MS), mentioning sickness inducing with electroacupuncture treatment group (EA) and motion sickness inducing only in TRPV1 knockout mice group (TRPV1-/-). The consumption of kaolin, a non-nutrient substance, was measured as a behavior observed response of an emetic reflex in a murine model. This behavior is referred to as pica behavior. Our results showed that pica behavior was observed in the MS group. Moreover, kaolin consumption in the EA group decreased to the average baseline of the control group. A similar result was observed in TRPV1 null mice. We also observed an increase of TRPV1 and related molecules in the thalamus, hypothalamic and brain stem after MS stimulation and a significant decrease in the EA and TRPV1 null groups. This is the first study to demonstrate that TRPV1 pathways are possibly associated with mechanisms of MS, and can be attended through EA or TRPV1 genetic manipulation.
Collapse
Affiliation(s)
- Chanya Inprasit
- College of Chinese Medicine, Graduate Institute of Acupuncture Science International Master Program, China Medical University, Taichung, 404, Taiwan
| | - Yi-Wen Lin
- Chinese Medicine Research Center, China Medical University, Taichung, 404, Taiwan
- College of Chinese Medicine, Graduate Institute of Acupuncture Science, China Medical University, Taichung, 404, Taiwan
| | - Chun-Ping Huang
- Chinese Medicine Research Center, China Medical University, Taichung, 404, Taiwan
| | - Shu-Yih Wu
- Department of Rehabilitation Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Ching-Liang Hsieh
- Chinese Medicine Research Center, China Medical University, Taichung, 404, Taiwan.
- College of Chinese Medicine, Graduate Institute of Acupuncture Science, China Medical University, Taichung, 404, Taiwan.
- College of Chinese Medicine, Graduate Institute of Integrated Medicine, China Medical University, Taichung, 404, Taiwan.
- Department of Chinese Medicine, China Medical University Hospital, Taichung, 404, Taiwan.
| |
Collapse
|
15
|
Patel S, Hill MN, Cheer JF, Wotjak CT, Holmes A. The endocannabinoid system as a target for novel anxiolytic drugs. Neurosci Biobehav Rev 2017; 76:56-66. [PMID: 28434588 PMCID: PMC5407316 DOI: 10.1016/j.neubiorev.2016.12.033] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/22/2016] [Accepted: 12/16/2016] [Indexed: 12/01/2022]
Abstract
The endocannabinoid (eCB) system has attracted attention for its role in various behavioral and brain functions, and as a therapeutic target in neuropsychiatric disease states, including anxiety disorders and other conditions resulting from dysfunctional responses to stress. In this mini-review, we highlight components of the eCB system that offer potential 'druggable' targets for new anxiolytic medications, emphasizing some of the less well-discussed options. We discuss how selectively amplifying eCBs recruitment by interfering with eCB-degradation, via fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), has been linked to reductions in anxiety-like behaviors in rodents and variation in human anxiety symptoms. We also discuss a non-canonical route to regulate eCB degradation that involves interfering with cyclooxygenase-2 (COX-2). Next, we discuss approaches to targeting eCB receptor-signaling in ways that do not involve the cannabinoid receptor subtype 1 (CB1R); by targeting the CB2R subtype and the transient receptor potential vanilloid type 1 (TRPV1). Finally, we review evidence that cannabidiol (CBD), while representing a less specific pharmacological approach, may be another way to modulate eCBs and interacting neurotransmitter systems to alleviate anxiety. Taken together, these various approaches provide a range of plausible paths to developing novel compounds that could prove useful for treating trauma-related and anxiety disorders.
Collapse
Affiliation(s)
- Sachin Patel
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, USA; Vanderbilt Kennedy Center for Human Development, Vanderbilt University Medical Center, Nashville, USA
| | - Mathew N Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada; Departments of Cell Biology and Anatomy and Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Joseph F Cheer
- Department of Anatomy and Neurobiology and Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carsten T Wotjak
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology & Neurogenetics, Munich, Germany
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
16
|
Schwellnus MP, Hoffman MD. Transient receptor potential channels and exercise-associated muscle cramping: A tale of multiple complexities. Muscle Nerve 2017; 56:355-357. [PMID: 28437833 DOI: 10.1002/mus.25668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 01/03/2023]
Affiliation(s)
- M P Schwellnus
- Sport, Exercise Medicine and Lifestyle Institute (SEMLI) and Section Sports Medicine, Faculty of Health Sciences, Section Sports Medicine, University of Pretoria Sports Campus, Burnett Street, Hatfield, Pretoria, 0020, South Africa.,IOC Research Centre, South Africa
| | - M D Hoffman
- Department of Veterans Affairs, Northern California Health Care System, Sacramento, California, USA.,Department of Physical Medicine and Rehabilitation, University of California Davis Medical Center, Sacramento, California, USA
| |
Collapse
|
17
|
Hsu YJ, Huang WC, Chiu CC, Liu YL, Chiu WC, Chiu CH, Chiu YS, Huang CC. Capsaicin Supplementation Reduces Physical Fatigue and Improves Exercise Performance in Mice. Nutrients 2016; 8:E648. [PMID: 27775591 PMCID: PMC5084035 DOI: 10.3390/nu8100648] [Citation(s) in RCA: 288] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/08/2016] [Accepted: 10/13/2016] [Indexed: 11/16/2022] Open
Abstract
Chili pepper is used as a food, seasoning and has been revered for its medicinal and health claims. It is very popular and is the most common spice worldwide. Capsaicin (CAP) is a major pungent and bioactive phytochemical in chili peppers. CAP has been shown to improve mitochondrial biogenesis and adenosine triphosphate (ATP) production. However, there is limited evidence around the effects of CAP on physical fatigue and exercise performance. The purpose of this study was to evaluate the potential beneficial effects of CAP on anti-fatigue and ergogenic functions following physiological challenge. Female Institute of Cancer Research (ICR) mice from four groups (n = 8 per group) were orally administered CAP for 4 weeks at 0, 205, 410, and 1025 mg/kg/day, which were respectively designated the vehicle, CAP-1X, CAP-2X, and CAP-5X groups. The anti-fatigue activity and exercise performance was evaluated using forelimb grip strength, exhaustive swimming time, and levels of serum lactate, ammonia, glucose, BUN (blood urea nitrogen) and creatine kinase (CK) after a 15-min swimming exercise. The grip strength and exhaustive swimming time of the CAP-5X group were significantly higher than other groups. CAP supplementation dose-dependently reduced serum lactate, ammonia, BUN and CK levels, and increased glucose concentration after the 15-min swimming test. In addition, CAP also increased hepatic glycogen content, an important energy source for exercise. The possible mechanism was relevant to energy homeostasis and the physiological modulations by CAP supplementation. Therefore, our results suggest that CAP supplementation may have a wide spectrum of bioactivities for promoting health, performance improvement and fatigue amelioration.
Collapse
Affiliation(s)
- Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan.
| | - Wen-Ching Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan.
| | - Chien-Chao Chiu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan.
| | - Yan-Lin Liu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan.
| | - Wan-Chun Chiu
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan.
| | - Chun-Hui Chiu
- Graduate Institute of Health Industry Technology, Research Center for Industry of Human Ecology and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan.
| | - Yen-Shuo Chiu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan.
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Orthopedic Surgery, Taipei Medical University Shuang Ho Hospital, New Taipei City 23561, Taiwan.
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan.
| |
Collapse
|