1
|
Liu X, Zheng Y, Li H, Ma Y, Cao R, Zheng Z, Tian Y, Du L, Zhang J, Zhang C, Gao J. The role of metabolites in the progression of osteoarthritis: Mechanisms and advances in therapy. J Orthop Translat 2025; 50:56-70. [PMID: 39868350 PMCID: PMC11762942 DOI: 10.1016/j.jot.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/19/2024] [Accepted: 10/08/2024] [Indexed: 01/28/2025] Open
Abstract
Osteoarthritis (OA) is a progressive degenerative disease affected by many factors, and there is currently no effective treatment. In recent years, the latest progress in metabolomics in OA research has revealed several metabolic pathways and new specific metabolites involved in OA. Metabolites play significant roles in the identification and management of OA. This review looks back on the development history of metabolomics and the progress of this technology in OA as well as its potential clinical applications. It summarizes the applications of metabolites in the field of OA and future research directions. This understanding will advance the identification of metabolic treatment goals for OA. The translational potential of this article The development of metabolomics offers possibilities for the treatment of OA. This article reviews the relationship between metabolites associated with chondrocytes and OA. Selectively altering these three metabolic pathways and their associated metabolites may hold great potential as new focal points for OA treatment.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China
| | - Yongqiang Zheng
- Department of Orthopaedics, Shanghai Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yiyang Ma
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Ruomu Cao
- Department of Bone and Joint Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhikai Zheng
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yuchen Tian
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Lin Du
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College
| | - Jinshan Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China
| |
Collapse
|
2
|
Alves PRP, Aguiar DP, Ladeira ACF, Santos GCD, Sousa EBD. Analysis of Synovial Fluid Metabolic Profile in Patients with Knee Osteoarthritis Using Spectroscopic Magnetic Resonance Metabolomics. Rev Bras Ortop 2024; 59:e958-e965. [PMID: 39711625 PMCID: PMC11663051 DOI: 10.1055/s-0044-1790217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/23/2024] [Indexed: 12/24/2024] Open
Abstract
Objective The present study aimed to evaluate the metabolic profile of synovial fluid in patients with knee osteoarthritis (KOA) and its correlation with clinical data. Materials and Methods We collected synovial fluid samples from the knees of 50 subjects with KOA undergoing total knee arthroplasty from October 2019 to December 2020. For each patient, we evaluated the clinical data from the medical record, the radiographic osteoarthritis grade, and the preoperative fasting blood glucose levels. The samples underwent metabolomic analysis by 1H magnetic resonance spectroscopy, and we compared the spectra using multivariate and univariate analyses. Results Most patients were female (66%). The subjects had an average age of 67.96 ± 7.08 years old and an average body mass index (BMI) of 32.51 ± 5.25 kg/m 2 . Clinical and metabolic evaluations revealed that 88% of patients were hypertensive and presented higher levels of valine, arginine, and citrate than non-hypertensive subjects. Conclusion Metabolomic analysis of synovial fluid cannot classify osteoarthritis patients per their clinical characteristics.
Collapse
Affiliation(s)
- Paulo Ricardo Picon Alves
- Divisão de Ensino e Pesquisa, Instituto Nacional de Traumatologia e Ortopedia Jamil Haddad, Rio de Janeiro, RJ, Brasil
| | - Diego Pinheiro Aguiar
- Departamento de Farmácia, Faculdade de Ciências Biológicas e Saúde, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | | | - Gilson Costa dos Santos
- Departamento de Genética, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Laboratório de Metabolômica, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Eduardo Branco de Sousa
- Divisão de Ensino e Pesquisa, Instituto Nacional de Traumatologia e Ortopedia Jamil Haddad, Rio de Janeiro, RJ, Brasil
- Departamento de Cirurgia Geral e Especializada, Faculdade de Medicina, Universidade Federal Fluminense, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
3
|
Aziz A, Ganesan Nathan K, Kamarul T, Mobasheri A, Sharifi A. The interplay between dysregulated metabolites and signaling pathway alterations involved in osteoarthritis: a systematic review. Ther Adv Musculoskelet Dis 2024; 16:1759720X241299535. [PMID: 39600593 PMCID: PMC11590150 DOI: 10.1177/1759720x241299535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a common degenerative joint disease that poses a significant global healthcare challenge due to its complexity and limited treatment options. Advances in metabolomics have provided insights into OA by identifying dysregulated metabolites and their connection to altered signaling pathways. However, a comprehensive understanding of these biomarkers in OA is still required. OBJECTIVES This systematic review aims to identify metabolomics biomarkers associated with dysregulated signaling pathways in OA, using data from various biological samples, including in vitro models, animal studies, and human research. DESIGN A systematic review was conducted following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. DATA SOURCES AND METHODS Data were gathered from literature published between August 2017 and May 2024, using databases such as "PubMed," "Scopus," "Web of Science," and "Google Scholar." Studies were selected based on keywords like "metabolomics," "osteoarthritis," "amino acids," "molecular markers," "biomarkers," "diagnostic markers," "inflammatory cytokines," "molecular signaling," and "signal transduction." The review focused on identifying key metabolites and their roles in OA-related pathways. Limitations include the potential exclusion of studies due to keyword selection and strict inclusion criteria. RESULTS The meta-analysis identified dysregulated metabolites and associated pathways, highlighting a distinct set of related metabolites consistently altered across the studies analyzed. The dysregulated metabolites, including amino acids, lipids, and carbohydrates, were found to play critical roles in inflammation, oxidative stress, and energy metabolism in OA. Metabolites such as alanine, lysine, and proline were frequently linked to pathways involved in inflammation, cartilage degradation, and apoptosis. Key pathways, including nuclear factor kappa B, mitogen-activated protein kinase, Wnt/β-catenin, and mammalian target of rapamycin, were associated with changes in metabolite levels, particularly in proinflammatory lipids and energy-related compounds. CONCLUSION This review reveals a complex interplay between dysregulated metabolites and signaling pathways in OA, offering potential biomarkers and therapeutic targets. Further research is needed to explore the molecular mechanisms driving these changes and their implications for OA treatment.
Collapse
Affiliation(s)
- Atiqah Aziz
- Tissue Engineering Group, National Orthopaedic Centre of Excellence for Research and Learning, Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kavitha Ganesan Nathan
- Tissue Engineering Group, National Orthopaedic Centre of Excellence for Research and Learning, Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Tunku Kamarul
- Tissue Engineering Group, National Orthopaedic Centre of Excellence for Research and Learning, Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Ali Mobasheri
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- World Health Organization Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium
| | - Alimohammad Sharifi
- Tissue Engineering Group, National Orthopaedic Centre of Excellence for Research and Learning, Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Stem cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Stabile M, Fracassi L, Lacitignola L, Garcia-Pedraza E, Girelli CR, Calculli C, D’Uggento AM, Ribecco N, Crovace A, Fanizzi FP, Staffieri F. Effects of a feed supplement, containing undenatured type II collagen (UC II®) and Boswellia Serrata, in the management of mild/moderate mobility disorders in dogs: A randomized, double-blind, placebo controlled, cross-over study. PLoS One 2024; 19:e0305697. [PMID: 39475935 PMCID: PMC11524509 DOI: 10.1371/journal.pone.0305697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/04/2024] [Indexed: 11/02/2024] Open
Abstract
This study was designed as a randomized, placebo-controlled, double-blinded, cross-over trial performed to investigate the effects of a dietary supplement containing undenatured type II collagen (UCII®) and Boswellia Serrata on mobility, pain and joint metabolism in mild moderate osteoarthritis (OA) in dogs. A total of 60 dogs with mobility problems were evaluated and enrolled in the study. Seventeen of these dogs with mild/moderate OA were randomized to receive the product A (UCII® + Boswellia Serrata supplement-UCII®-BW) or product B (Placebo -PL), 1 chew per day for 8 weeks by oral route, and repeated in a crossover design after 4 weeks of washout period. All the subjects had veterinary evaluations during the trial and owners were requested to fill out a questionnaire on mobility impairment using the Liverpool Osteoarthritis in dogs scale (L.O.A.D.) at each time of the study. Objective tools were used to assess mobility, activity, and pain. Metabolomic analysis was performed on synovial fluid of most affected joint at the beginning and the end of the study. The results proved that UCII®+Boswellia serrata supplemented group over a period of eight weeks results in an improvement of mobility impairment, already at 4 weeks of administration, according to the owner´s evaluation. In contrast, its absence increased the risk of OA crisis and decreased the pain threshold on the most affected joint. Furthermore, the synovial fluid metabolic profile showed moderate differences between the beginning and the end of the supplementation period, with a particular influence associated to the time of UCII®-BW administration.
Collapse
Affiliation(s)
- Marzia Stabile
- Dipartimento di Medicina di Precisione e Rigenerativa e Area Jonica (Di.Me.Pre-J), Università Degli Studi di Bari, Valenzano, Bari
| | - Laura Fracassi
- Dipartimento di Medicina di Precisione e Rigenerativa e Area Jonica (Di.Me.Pre-J), Università Degli Studi di Bari, Valenzano, Bari
| | - Luca Lacitignola
- Dipartimento di Medicina di Precisione e Rigenerativa e Area Jonica (Di.Me.Pre-J), Università Degli Studi di Bari, Valenzano, Bari
| | | | - Chiara Roberta Girelli
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (DiSTeBA), Università del Salento, Lecce, Italia
| | - Crescenza Calculli
- Dipartimento di Economia e Finanza, Università degli Studi di Bari, Bari, Italia
| | | | - Nunziata Ribecco
- Dipartimento di Economia e Finanza, Università degli Studi di Bari, Bari, Italia
| | - Antonio Crovace
- Dipartimento di Medicina di Precisione e Rigenerativa e Area Jonica (Di.Me.Pre-J), Università Degli Studi di Bari, Valenzano, Bari
| | - Francesco Paolo Fanizzi
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (DiSTeBA), Università del Salento, Lecce, Italia
| | - Francesco Staffieri
- Dipartimento di Medicina di Precisione e Rigenerativa e Area Jonica (Di.Me.Pre-J), Università Degli Studi di Bari, Valenzano, Bari
| |
Collapse
|
5
|
Xu L, Kazezian Z, Pitsillides AA, Bull AMJ. A synoptic literature review of animal models for investigating the biomechanics of knee osteoarthritis. Front Bioeng Biotechnol 2024; 12:1408015. [PMID: 39132255 PMCID: PMC11311206 DOI: 10.3389/fbioe.2024.1408015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024] Open
Abstract
Osteoarthritis (OA) is a common chronic disease largely driven by mechanical factors, causing significant health and economic burdens worldwide. Early detection is challenging, making animal models a key tool for studying its onset and mechanically-relevant pathogenesis. This review evaluate current use of preclinical in vivo models and progressive measurement techniques for analysing biomechanical factors in the specific context of the clinical OA phenotypes. It categorizes preclinical in vivo models into naturally occurring, genetically modified, chemically-induced, surgically-induced, and non-invasive types, linking each to clinical phenotypes like chronic pain, inflammation, and mechanical overload. Specifically, we discriminate between mechanical and biological factors, give a new explanation of the mechanical overload OA phenotype and propose that it should be further subcategorized into two subtypes, post-traumatic and chronic overloading OA. This review then summarises the representative models and tools in biomechanical studies of OA. We highlight and identify how to develop a mechanical model without inflammatory sequelae and how to induce OA without significant experimental trauma and so enable the detection of changes indicative of early-stage OA in the absence of such sequelae. We propose that the most popular post-traumatic OA biomechanical models are not representative of all types of mechanical overloading OA and, in particular, identify a deficiency of current rodent models to represent the chronic overloading OA phenotype without requiring intraarticular surgery. We therefore pinpoint well standardized and reproducible chronic overloading models that are being developed to enable the study of early OA changes in non-trauma related, slowly-progressive OA. In particular, non-invasive models (repetitive small compression loading model and exercise model) and an extra-articular surgical model (osteotomy) are attractive ways to present the chronic natural course of primary OA. Use of these models and quantitative mechanical behaviour tools such as gait analysis and non-invasive imaging techniques show great promise in understanding the mechanical aspects of the onset and progression of OA in the context of chronic knee joint overloading. Further development of these models and the advanced characterisation tools will enable better replication of the human chronic overloading OA phenotype and thus facilitate mechanically-driven clinical questions to be answered.
Collapse
Affiliation(s)
- Luyang Xu
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Centre for Blast Injury Studies, Imperial College London, London, United Kingdom
| | - Zepur Kazezian
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Centre for Blast Injury Studies, Imperial College London, London, United Kingdom
| | - Andrew A. Pitsillides
- Skeletal Biology Group, Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Anthony M. J. Bull
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Centre for Blast Injury Studies, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Zhang J, Sun S, Bai X, Yang N, Liu Y, Wu X, Li X. Metabolomics analysis of the effect of GnRH on the pregnancy rate of ewes with estrus synchronization scheme based on progesterone. Front Vet Sci 2024; 11:1442931. [PMID: 39055862 PMCID: PMC11270128 DOI: 10.3389/fvets.2024.1442931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Introduction Gonadotropin-releasing hormone (GnRH) is widely used in the timed artificial insemination protocol for sheep. However, there remains a debate regarding its impact on pregnancy rates during artificial insemination. This study aims to evaluate the effect of GnRH on the pregnancy rates in Huyang ewes, analyze the pre-implantation metabolite changes caused by GnRH using metabolomics, and elucidate the mechanism effect on pregnancy rates. Methods All ewes were administered a vaginal progesterone sponge containing 45 mg of flurogestone acetate for 12 days and received 330 units of equine chorionic gonadotropin (eCG) intramuscularly after sponge removal. The experimental group (n = 69) received an intramuscular treatment of 17 μg GnRH agonist triptorelin 48 h after sponge removal on Day 0, while the control group (n = 41) received 1 mL of sterile saline solution. All ewes underwent a single vaginal insemination 58 h after the withdrawal of the progesterone sponge. The difference in pregnancy rates between the two groups was calculated. Metabolomic analysis was performed on plasma samples collected on Day 7 after the treatment of GnRH agonist. Results Gonadotropin-releasing hormone (GnRH) treatment significantly reduced the pregnancy rate in the experimental group compared with the control group (72.2 vs. 82.9%, p < 0.05). Metabolomic analysis indicated that GnRH treatment affected metabolites involved in collagen synthesis and prostaglandin synthesis in the endometrial tissue, which includes a marked decrease in hydroxyproline amino acid content and a significant increase in corticosterone and prostaglandin D2 lipids and unsaturated fatty acids. Conclusion In summary, the injection of GnRH agonist Triptorelin 48 h after progesterone sponges removal reduces the pregnancy rate of Huyang ewe following artificial insemination. It also affects the metabolite levels related to endometrial collagen and prostaglandin synthesis, harming embryo implantation.
Collapse
Affiliation(s)
- Jing Zhang
- College of Animal Science and Technology, Hebei Technology Innovation Center of Cattle and Sheep Embryos, Hebei Agricultural University, Baoding, Hebei, China
| | - Shuyuan Sun
- College of Animal Science and Technology, Hebei Technology Innovation Center of Cattle and Sheep Embryos, Hebei Agricultural University, Baoding, Hebei, China
| | - Xinyu Bai
- College of Animal Science, Tarim University, Alear, Xinjiang, China
| | - Nana Yang
- College of Animal Science and Technology, Hebei Technology Innovation Center of Cattle and Sheep Embryos, Hebei Agricultural University, Baoding, Hebei, China
| | - Yiyong Liu
- Institute of Xinjiang Yili Animal Science, Yining, Xinjiang, China
| | - Xinglong Wu
- College of Animal Science and Technology, Hebei Technology Innovation Center of Cattle and Sheep Embryos, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiangyun Li
- College of Animal Science and Technology, Hebei Technology Innovation Center of Cattle and Sheep Embryos, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
7
|
Dos Santos Pinheiro AC, de Sá GB, de Oliveira RVF, Matsuura C, Bouskela E, Farinatti P, Dos Santos Junior GC. Metabolic flexibility associated with flight time among combat pilots of the Brazilian air force. Metabolomics 2024; 20:63. [PMID: 38796596 DOI: 10.1007/s11306-024-02124-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/02/2024] [Indexed: 05/28/2024]
Abstract
INTRODUCTION Fighter pilots must support the effects of many stressors, including physical and psychological exertion, circadian disturbance, jet lag, and environmental stress. Despite the rigorous selection of military pilots, those factors predispose to failures in physiological compensatory mechanisms and metabolic flexibility. OBJECTIVES We compared through NMR-based metabolomics the metabolic profile of Brazilian F5 fighter pilots with different flight experiences vs. the control group of non-pilots. We hypothesized that combat pilots have metabolic flexibility associated with combat flight time. METHODS We evaluated for the first time 34 Brazilian fighter pilots from Santa Cruz Air Base (Rio de Janeiro, RJ) allocated into three groups: pilots with lower total accumulated flight experience < 1,100 h (PC1, n = 7); pilots with higher total accumulated flight experience ≥ 1,100 h (PC2, n = 6); military non-pilots (CONT, n = 21). Data collection included anthropometric measurements, total blood count, lipidogram, markers of oxidative stress, and serum NMR-based metabolomics. RESULTS In comparison with controls (p < 0.05), pilots exhibited decreased levels of white blood cells (-13%), neutrophils (-15%), lymphocytes (-20%), alfa-glucose (-13%), lactate (-26%), glutamine (-11%), histidine (-20%), and tyrosine (-11%), but higher isobutyrate (+ 10%) concentrations. Significant correlations were found between lactate vs. amino acids in CONT (r = 0.55-0.68, p < 0.001), and vs. glutamine in PC2 (r = 0.94, p = 0.01). CONCLUSION Fighter pilots with lower experience showed a dysregulation in immune-metabolic function in comparison with controls, which seemed to be counteracted by the accumulation of flight hours. Those findings might have implications for the health preservation and operational training of fighter pilots.
Collapse
Affiliation(s)
- Alanny Cristine Dos Santos Pinheiro
- Laboratório de Metabolômica (LabMet), Universidade Do Estado Do Rio de Janeiro (UERJ), Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro, RJ, Brazil
| | - Grace Barros de Sá
- Instituto de Educação Física E Desportos, Laboratório de Atividade Física E Promoção da Saúde (Labsau), Universidade Do Estado Do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Roberta Verissimo França de Oliveira
- Laboratório de Metabolômica (LabMet), Universidade Do Estado Do Rio de Janeiro (UERJ), Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro, RJ, Brazil
| | - Cristiane Matsuura
- Departamento de Farmacologia E Psicobiologia, Universidade Do Estado Do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Eliete Bouskela
- Laboratório de Pesquisas Clínicas E Experimentais Em Biologia Vascular (Biovasc), Universidade Do Estado Do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Paulo Farinatti
- Instituto de Educação Física E Desportos, Laboratório de Atividade Física E Promoção da Saúde (Labsau), Universidade Do Estado Do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil.
| | - Gilson Costa Dos Santos Junior
- Laboratório de Metabolômica (LabMet), Universidade Do Estado Do Rio de Janeiro (UERJ), Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
8
|
Tuerxun P, Ng T, Zhao K, Zhu P. Integration of metabolomics and transcriptomics provides insights into the molecular mechanism of temporomandibular joint osteoarthritis. PLoS One 2024; 19:e0301341. [PMID: 38753666 PMCID: PMC11098350 DOI: 10.1371/journal.pone.0301341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/13/2024] [Indexed: 05/18/2024] Open
Abstract
The deficiency of clinically specific biomarkers has made it difficult to achieve an accurate diagnosis of temporomandibular joint osteoarthritis (TMJ-OA) and the insufficient comprehension of the pathogenesis of the pathogenesis of TMJ-OA has posed challenges in advancing therapeutic measures. The combined use of metabolomics and transcriptomics technologies presents a highly effective method for identifying vital metabolic pathways and key genes in TMJ-OA patients. In this study, an analysis of synovial fluid untargeted metabolomics of 6 TMJ-OA groups and 6 temporomandibular joint reducible anterior disc displacement (TMJ-DD) groups was conducted using liquid and gas chromatography mass spectrometry (LC/GC-MS). The differential metabolites (DMs) between TMJ-OA and TMJ-DD groups were analyzed through multivariate analysis. Meanwhile, a transcriptomic dataset (GSE205389) was obtained from the GEO database to analyze the differential metabolism-related genes (DE-MTGs) between TMJ-OA and TMJ-DD groups. Finally, an integrated analysis of DMs and DE-MTGs was carried out to investigate the molecular mechanisms associated with TMJ-OA. The analysis revealed significant differences in the levels of 46 DMs between TMJ-OA and TMJ-DD groups, of which 3 metabolites (L-carnitine, taurine, and adenosine) were identified as potential biomarkers for TMJ-OA. Collectively, differential expression analysis identified 20 DE-MTGs. Furthermore, the integration of metabolomics and transcriptomics analysis revealed that the tricarboxylic acid (TCA) cycle, alanine, aspartate and glutamate metabolism, ferroptosis were significantly enriched. This study provides valuable insights into the metabolic abnormalities and associated pathogenic mechanisms, improving our understanding of TMJOA etiopathogenesis and facilitating potential target screening for therapeutic intervention.
Collapse
Affiliation(s)
- Palati Tuerxun
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong Province, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Takkun Ng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong Province, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ke Zhao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong Province, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ping Zhu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong Province, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
9
|
Guo J, Yang S, Zhai W, Xie Y, Shen Z, Zhang J, Jia Y. Network Pharmacology with Metabolomics Study to Reveal the Mechanisms of Bushen Huoxue Formula in Intervertebral Disc Degeneration Treatment. Drug Des Devel Ther 2024; 18:493-512. [PMID: 38405577 PMCID: PMC10894601 DOI: 10.2147/dddt.s451197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/14/2024] [Indexed: 02/27/2024] Open
Abstract
Background Intervertebral disc degeneration (IVDD) is a pathophysiological process that leads to severe back pain or neurological deficits. The Bushen Huoxue Formula (BSHXF) is a traditional herbal remedy widely used to treat diseases related to IVDD. However, its pharmacological mechanism needs further exploration. Objective This study aimed to elucidate the mechanisms through which BSHXF treats IVDD-related diseases by integrating metabolomics with network pharmacology. Methods Network pharmacology was utilized to identify potential targets of BSHXF against IVDD. Additionally, an animal model of needle puncture-induced disc degeneration was established to assess the effect of BSHXF. Mice were randomly assigned to the sham group, model group, and BSHXF group. Various techniques, including PCR, CCK-8 assay, MRI, histological examinations, and immunohistochemical analyses, were employed to evaluate degenerative and oxidative stress conditions in mouse disc tissue and cultured nucleus pulposus (NP) cells. UHPLC-HRMS/MS was used to differential distinct metabolites in the disc tissue from different groups, and MetaboAnalyst 5.0 was employed to enrich the metabolic pathways. Results Through network pharmacology, 15 core proteins were identified through protein-protein interaction (PPI) network construction. Functional enrichment analysis highlighted the critical role of BSHXF in addressing IVDD by influencing the response to oxidative stress. Furthermore, experimental evidence demonstrated that BSHXF significantly improved the pathological progression of IVDD and increased oxidative stress markers SOD-1 and GPX1, both in the disc degeneration model and cultured NP cells. Metabolomics identified differential metabolites among the three groups, revealing 15 metabolic pathways between the sham and model groups, and 13 metabolic pathways enriched between the model and BSHXF groups. Conclusion This study, integrating network pharmacology and metabolomics, suggests that BSHXF can alleviate IVDD progression by modulating oxidative stress. Key metabolic pathways associated with BSHXF-mediated reduction of oxidative stress include the citrate cycle, cysteine and methionine metabolism, alanine, aspartate and glutamate metabolism, glycine, serine and threonine metabolism, D-glutamine and D-glutamate metabolism, glutathione metabolism, and tryptophan metabolism. While this research demonstrates the therapeutic potential of BSHXF in reducing oxidative stress levels in IVDD, further research is needed to thoroughly understand its underlying mechanisms.
Collapse
Affiliation(s)
- Ji Guo
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200052, People’s Republic of China
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 200052, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200052, People’s Republic of China
| | - Shengqi Yang
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200052, People’s Republic of China
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 200052, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200052, People’s Republic of China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Weifeng Zhai
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200052, People’s Republic of China
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 200052, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200052, People’s Republic of China
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, People’s Republic of China
| | - Yue Xie
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200052, People’s Republic of China
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 200052, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200052, People’s Republic of China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Zhan Shen
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200052, People’s Republic of China
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 200052, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200052, People’s Republic of China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Jianpo Zhang
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200052, People’s Republic of China
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 200052, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200052, People’s Republic of China
| | - Yongwei Jia
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200052, People’s Republic of China
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, 200052, People’s Republic of China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200052, People’s Republic of China
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, People’s Republic of China
| |
Collapse
|
10
|
Piccionello AP, Sassaroli S, Pennasilico L, Rossi G, Di Cerbo A, Riccio V, Di Bella C, Laghi L, Angelini M, Marini C, Magi GE. Comparative study of 1H-NMR metabolomic profile of canine synovial fluid in patients affected by four progressive stages of spontaneous osteoarthritis. Sci Rep 2024; 14:3627. [PMID: 38351089 PMCID: PMC10864333 DOI: 10.1038/s41598-024-54144-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
The study aimed to assess the metabolomic profile of the synovial fluid (SF) of dogs affected by spontaneous osteoarthritis (OA) and compare any differences based on disease progression. Sixty client-owned dogs affected by spontaneous OA underwent clinical, radiographic, and cytologic evaluations to confirm the diagnosis. The affected joints were divided into four study groups based on the Kallgreen-Lawrence classification: OA1 (mild), OA2 (moderate), OA3 (severe), and OA4 (extremely severe/deforming). The osteoarthritic joint's SF was subjected to cytologic examination and 1H-NMR analysis. The metabolomic profiles of the study groups' SF samples were statistically compared using one-way ANOVA. Sixty osteoarthritic joints (45 stifles, 10 shoulders and 5 elbows) were included in the study. Fourteen, 28, and 18 joints were included in the OA1, OA2, and OA3 groups, respectively (0 joints in the OA4 group). Metabolomic analysis identified 48 metabolites, five of which were significantly different between study groups: Mannose and betaine were elevated in the OA1 group compared with the OA2 group, and the 2-hydroxyisobutyrate concentration decreased with OA progression; in contrast, isoleucine was less concentrated in mild vs. moderate OA, and lactate increased in severe OA. This study identified different 1H-NMR metabolomic profiles of canine SF in patients with progressive degrees of spontaneous OA, suggesting 1H-NMR metabolomic analysis as a potential alternative method for monitoring OA progression. In addition, the results suggest the therapeutic potentials of the metabolomic pathways that involve mannose, betaine, 2-hydroxyisobutyrate, isoleucine, and lactate.
Collapse
Affiliation(s)
| | - Sara Sassaroli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024, Matelica, Italy
| | - Luca Pennasilico
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024, Matelica, Italy.
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024, Matelica, Italy
| | - Alessandro Di Cerbo
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024, Matelica, Italy
| | - Valentina Riccio
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024, Matelica, Italy
| | - Caterina Di Bella
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024, Matelica, Italy
| | - Luca Laghi
- Department of Agro-Food Science and Technology, University of Bologna, 47023, Cesena, Italy
| | - Maddalena Angelini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024, Matelica, Italy
| | - Carlotta Marini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024, Matelica, Italy
| | - Gian Enrico Magi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024, Matelica, Italy
| |
Collapse
|
11
|
Wu Y, Shen S, Chen J, Ni W, Wang Q, Zhou H, Chen J, Zhang H, Mei Z, Sun X, Shen P, Jie Z, Xu W, Hong Z, Ma Y, Wang K, Wan S, Wu H, Xie Z, Qin A, Fan S. Metabolite asymmetric dimethylarginine (ADMA) functions as a destabilization enhancer of SOX9 mediated by DDAH1 in osteoarthritis. SCIENCE ADVANCES 2023; 9:eade5584. [PMID: 36753544 PMCID: PMC9908022 DOI: 10.1126/sciadv.ade5584] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Osteoarthritis (OA) is a degenerative disease with a series of metabolic changes accompanied by many altered enzymes. Here, we report that the down-regulated dimethylarginine dimethylaminohydrolase-1 (DDAH1) is accompanied by increased asymmetric dimethylarginine (ADMA) in degenerated chondrocytes and in OA samples. Global or chondrocyte-conditional knockout of ADMA hydrolase DDAH1 accelerated OA development in mice. ADMA induces the degeneration and senescence of chondrocytes and reduces the extracellular matrix deposition, thereby accelerating OA progression. ADMA simultaneously binds to SOX9 and its deubiquitinating enzyme USP7, blocking the deubiquitination effects of USP7 on SOX9 and therefore leads to SOX9 degradation. The ADMA level in synovial fluids of patients with OA is increased and has predictive value for OA diagnosis with good sensitivity and specificity. Therefore, activating DDAH1 to reduce ADMA level might be a potential therapeutic strategy for OA treatment.
Collapse
Affiliation(s)
- Yizheng Wu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Shuying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Jiaxin Chen
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiyu Ni
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Qinxin Wang
- Department of Orthopaedic Surgery, China Coast Guard Hospital of the People’s Armed Police Force, Jiaxing, China
| | - Hongyi Zhou
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Junxin Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Haitao Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Zixuan Mei
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xuewu Sun
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Panyang Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Zhiwei Jie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Wenbin Xu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Zhenghua Hong
- Department of Orthopaedic Surgery, Taizhou Hospital of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Kefan Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Shuanglin Wan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Hongfei Wu
- Department of Orthopaedic Surgery, China Coast Guard Hospital of the People’s Armed Police Force, Jiaxing, China
| | - Ziang Xie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - An Qin
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
12
|
Lin X, He S, Wu S, Zhang T, Gong S, Minjie T, Gao Y. Diagnostic biomarker panels of osteoarthritis: UPLC-QToF/MS-based serum metabolic profiling. PeerJ 2023; 11:e14563. [PMID: 36655043 PMCID: PMC9841907 DOI: 10.7717/peerj.14563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/22/2022] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is the most common joint disease in the world, characterized by pain and loss of joint function, which has led to a serious reduction in the quality of patients' lives. In this work, ultrahigh performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-QToF/MS) in conjunction with multivariate pattern recognition methods and an univariate statistical analysis scheme were applied to explore the serum metabolic signatures within OA group (n = 31), HC (healthy controls) group (n = 57) and non-OA group (n = 19) for early diagnosis and differential diagnosis of OA. Based on logistic regression analysis and receiver operating characteristic (ROC) curve analysis, seven metabolites, including phosphatidylcholine (18:0/22:6), p-cresol sulfate and so on, were identified as critical metabolites for the diagnosis of OA and HC and yielded an area under the curve (AUC) of 0.978. The other panel of unknown m/z 239.091, phosphatidylcholine (18:0/18:0) and phenylalanine were found to distinguish OA from non-OA and achieved an AUC of 0.888. These potential biomarkers are mainly involved in lipid metabolism, glucose metabolism and amino acid metabolism. It is expected to reveal new insight into OA pathogenesis from changed metabolic pathways.
Collapse
Affiliation(s)
- Xinxin Lin
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Shiqi He
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Suyu Wu
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Tianwen Zhang
- Fujian Fishery Resources Monitoring Center, Fuzhou, China
| | - Sisi Gong
- Department of Laboratory Medicine, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Tang Minjie
- Department of Laboratory Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yao Gao
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| |
Collapse
|
13
|
Plaas AHK, Moran MM, Sandy JD, Hascall VC. Aggrecan and Hyaluronan: The Infamous Cartilage Polyelectrolytes - Then and Now. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1402:3-29. [PMID: 37052843 DOI: 10.1007/978-3-031-25588-5_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Cartilages are unique in the family of connective tissues in that they contain a high concentration of the glycosaminoglycans, chondroitin sulfate and keratan sulfate attached to the core protein of the proteoglycan, aggrecan. Multiple aggrecan molecules are organized in the extracellular matrix via a domain-specific molecular interaction with hyaluronan and a link protein, and these high molecular weight aggregates are immobilized within the collagen and glycoprotein network. The high negative charge density of glycosaminoglycans provides hydrophilicity, high osmotic swelling pressure and conformational flexibility, which together function to absorb fluctuations in biomechanical stresses on cartilage during movement of an articular joint. We have summarized information on the history and current knowledge obtained by biochemical and genetic approaches, on cell-mediated regulation of aggrecan metabolism and its role in skeletal development, growth as well as during the development of joint disease. In addition, we describe the pathways for hyaluronan metabolism, with particular focus on the role as a "metabolic rheostat" during chondrocyte responses in cartilage remodeling in growth and disease.Future advances in effective therapeutic targeting of cartilage loss during osteoarthritic diseases of the joint as an organ as well as in cartilage tissue engineering would benefit from 'big data' approaches and bioinformatics, to uncover novel feed-forward and feed-back mechanisms for regulating transcription and translation of genes and their integration into cell-specific pathways.
Collapse
Affiliation(s)
- Anna H K Plaas
- Department of Internal Medicine (Rheumatology), Rush University Medical Center, Chicago, IL, USA
| | - Meghan M Moran
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - John D Sandy
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Vincent C Hascall
- Department of Biomedical Engineering, The Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
14
|
Stabile M, Girelli CR, Lacitignola L, Samarelli R, Crovace A, Fanizzi FP, Staffieri F. 1H-NMR metabolomic profile of healthy and osteoarthritic canine synovial fluid before and after UC-II supplementation. Sci Rep 2022; 12:19716. [PMID: 36385297 PMCID: PMC9669020 DOI: 10.1038/s41598-022-23977-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of the study was to compare the metabolomic synovial fluid (SF) profile of dogs affected by spontaneous osteoarthritis (OA) and supplemented with undenatured type II collagen (UC-II), with that of healthy control dogs. Client-owned dogs were enrolled in the study and randomized in two different groups, based on the presence/absence of OA (OA group and OA-free group). All dogs were clinically evaluated and underwent SF sampling for 1H-Nuclear Magnetic Resonance spectroscopy (1H-NMR) analysis at time of presentation. All dogs included in OA group were supplemented with UC-II orally administered for 30 days. After this period, they were reassessed (OA-T30). The differences in the 1H-NMR metabolic SFs profiles between groups (OA-free, OA-T0 and OA-T30) were studied. The multivariate statistical analysis performed on SFs under different conditions (OA-T0 vs OA-T30 SFs; OA-T0 vs OA-free SFs and OA-T30 vs OA-free SFs) gave models with excellent goodness of fit and predictive parameters, revealed by a marked separation between groups. β-Hydroxybutyrate was identified as a characteristic compound of osteoarthritic joints, showing the important role of fat metabolism during OA. The absence of β-hydroxybutyrate after UC-II supplementation suggests the supplement's effectiveness in rebalancing the metabolism inside the joint. The unexpectedly high level of lactate in the OA-free group suggests that lactate could not be considered a good marker for OA. These results prove that 1H-NMR-based metabolomic analysis is a valid tool to study and monitor OA and that UC-II improves clinical symptoms and the SF metabolic profile in OA dogs.
Collapse
Affiliation(s)
- Marzia Stabile
- grid.7644.10000 0001 0120 3326Section of Veterinary Clinics and Animal Production, Department of Emergency and Organ Transplantation, University of Bari, 70123 Bari, Italy
| | - Chiara Roberta Girelli
- grid.9906.60000 0001 2289 7785Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Luca Lacitignola
- grid.7644.10000 0001 0120 3326Section of Veterinary Clinics and Animal Production, Department of Emergency and Organ Transplantation, University of Bari, 70123 Bari, Italy
| | - Rossella Samarelli
- grid.7644.10000 0001 0120 3326Section of Avian Pathology, Department of Veterinary Medicine, University of Bari, 70123 Bari, Italy
| | - Antonio Crovace
- grid.7644.10000 0001 0120 3326Section of Veterinary Clinics and Animal Production, Department of Emergency and Organ Transplantation, University of Bari, 70123 Bari, Italy
| | - Francesco Paolo Fanizzi
- grid.9906.60000 0001 2289 7785Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Francesco Staffieri
- grid.7644.10000 0001 0120 3326Section of Veterinary Clinics and Animal Production, Department of Emergency and Organ Transplantation, University of Bari, 70123 Bari, Italy
| |
Collapse
|
15
|
Zaki S, Blaker CL, Little CB. OA foundations - experimental models of osteoarthritis. Osteoarthritis Cartilage 2022; 30:357-380. [PMID: 34536528 DOI: 10.1016/j.joca.2021.03.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 02/02/2023]
Abstract
Osteoarthritis (OA) is increasingly recognised as a disease of diverse phenotypes with variable clinical presentation, progression, and response to therapeutic intervention. This same diversity is readily apparent in the many animal models of OA. However, model selection, study design, and interpretation of resultant findings, are not routinely done in the context of the target human (or veterinary) patient OA sub-population or phenotype. This review discusses the selection and use of animal models of OA in discovery and therapeutic-development research. Beyond evaluation of the different animal models on offer, this review suggests focussing the approach to OA-animal model selection on study objective(s), alignment of available models with OA-patient sub-types, and the resources available to achieve valid and translatable results. How this approach impacts model selection is discussed and an experimental design checklist for selecting the optimal model(s) is proposed. This approach should act as a guide to new researchers and a reminder to those already in the field, as to issues that need to be considered before embarking on in vivo pre-clinical research. The ultimate purpose of using an OA animal model is to provide the best possible evidence if, how, when and where a molecule, pathway, cell or process is important in clinical disease. By definition this requires both model and study outcomes to align with and be predictive of outcomes in patients. Keeping this at the forefront of research using pre-clinical OA models, will go a long way to improving the quality of evidence and its translational value.
Collapse
Affiliation(s)
- S Zaki
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Australia; Raymond Purves Bone and Joint Research Laboratory, Australia.
| | - C L Blaker
- Raymond Purves Bone and Joint Research Laboratory, Australia; Murray Maxwell Biomechanics Laboratory, The Kolling Institute, University of Sydney Faculty of Medicine and Health, At Royal North Shore Hospital, Australia.
| | - C B Little
- Raymond Purves Bone and Joint Research Laboratory, Australia.
| |
Collapse
|
16
|
Li Z, Ma D, Peng L, Li Y, Liao Z, Yu T. Compatibility of Achyranthes bidentata components in reducing inflammatory response through Arachidonic acid pathway for treatment of Osteoarthritis. Bioengineered 2022; 13:1746-1757. [PMID: 35001833 PMCID: PMC8805818 DOI: 10.1080/21655979.2021.2020394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Achyranthes bidentate is a common traditional Chinese medicine (TCM) used in treating osteoarthritis (OA). The compatibility between effective components has now become a breakthrough in understanding the mechanism of TCM. This study aimed at determining the optimal compatibility and possible mechanism of Achyranthes bidentate for OA treatment. Results showed that the adhesion score of the OA group is higher than NC group, and showed a trend of down-regulation in the intervention group. The CHI3L1 and IL-1β in joint fluid of the OA group was significantly increased compared to the sham operation group (NC group). Group G, I, and L exhibited significantly down-regulated CHI3L1, while groups C, F, I, K, and L exhibited reduced IL-1β. Joint adhesion, damage in cartilage, and synovial tissue was found in the OA model, cartilage tissue was found recovered in groups I, J, and L, and synovial tissue was recovered in group G, I, and L. Thus, group I and L were chosen for metabolite analysis, and indole-3-propionic acid was slightly up-regulated, while koeiginequinone A, prostaglandin H2, and 1-hydroxy-3-methoxy-10-methylacridonew were down-regulated in group I and L. According to functional analysis, the arachidonic acid (AA) metabolic pathway is enriched. Down-regulated expression of vital proteins in the AA metabolism pathway, such as PGE2 and COX2 in group I and L were verified. In conclusion, Hydroxyecdysone, Oleanolic acid, Achyranthes bidentata polysaccharide at a compatibility of 0.03-μg/mg, 2.0-μg/mg, 20.0-μg/mg or 0.03-μg/mg, 2.0-μg/mg, 10.0-μg/mg, respectively, may be the optimal compatibility of Achyranthes bidentate.
Collapse
Affiliation(s)
- Zanzhu Li
- Master Bailing Liu's Tianchi Traumatology Inheritance Studio, Shenzhen Bailin Chinese Traditional Orthopaedic Hospital, Shenzhen, China
| | - Dujun Ma
- Orthopedics Department, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Liping Peng
- Orthopedics Department, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Yuan Li
- Traditional Chinese Medicine Department, The Second People's Hospital of Futian District, Shenzhen, China
| | - Zhouwei Liao
- Orthopedics Department, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Tian Yu
- Orthopedics Department, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
17
|
Glycine-Serine-Threonine Metabolic Axis Delays Intervertebral Disc Degeneration through Antioxidant Effects: An Imaging and Metabonomics Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5579736. [PMID: 34484565 PMCID: PMC8416401 DOI: 10.1155/2021/5579736] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022]
Abstract
Although intervertebral disc degeneration (IDD) can be described as different stages of change through biological methods, this long and complex process cannot be defined in stages by single or simple combination of biological techniques. Under the background of the development of nuclear magnetic resonance (NMR) technology and the emerging metabonomics, we based on animal models and expanded to the study of clinical human degeneration models. The characteristics of different stages of IDD were analyzed by omics. Omics imaging combined with histology, cytology, and proteomics was used for screening of the intervertebral disc (IVD) of research subjects. Furthermore, mass spectrometry nontargeted metabolomics was used to explore profile of metabolites at different stages of the IDD process, to determine differential metabolic pathways and metabolites. NMR spectroscopy was used to qualitatively and quantitatively identify markers of degeneration. NMR was combined with mass spectrometry metabolomics to explore metabolic pathways. Metabolic pathways were determined through protein molecular biology and histocytology of the different groups. Distinguishing advantages of magnetic resonance spectroscopy (MRS) for analysis of metabolites and effective reflection of structural integrity and water molecule metabolism through diffusion tensor imaging (DTI) were further used to verify the macrometabolism profile during degeneration. A corresponding model of in vitro metabolomics and in vivo omics imaging was established. The findings of this study show that a series of metabolic pathways associated with the glycine-serine-threonine (Gly-Ser-Thr) metabolic axis affects carbohydrate patterns and energy utilization efficiency and ultimately delays disc degeneration through antioxidant effects.
Collapse
|
18
|
Herger S, Vach W, Liphardt AM, Nüesch C, Egloff C, Mündermann A. Experimental-analytical approach to assessing mechanosensitive cartilage blood marker kinetics in healthy adults: dose-response relationship and interrelationship of nine candidate markers. F1000Res 2021; 10:490. [PMID: 35284064 PMCID: PMC8907551 DOI: 10.12688/f1000research.52159.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 11/20/2022] Open
Abstract
Purpose: To determine the suitability of selected blood biomarkers of articular cartilage as mechanosensitive markers and to investigate the dose-response relationship between ambulatory load magnitude and marker kinetics in response to load. Methods: Serum samples were collected from 24 healthy volunteers before and at three time points after a 30-minute walking stress test performed on three test days. In each experimental session, one of three ambulatory loads was applied: 100% body weight (BW); 80%BW; 120%BW. Serum concentrations of COMP, MMP-3, MMP-9, ADAMTS-4, PRG-4, CPII, C2C and IL-6 were assessed using commercial enzyme-linked immunosorbent assays. A two-stage analytical approach was used to determine the suitability of a biomarker by testing the response to the stress test (criterion I) and the dose-response relationship between ambulatory load magnitude and biomarker kinetics (criterion II). Results. COMP, MMP-3 and IL-6 at all three time points after, MMP-9 at 30 and 60 minutes after, and ADAMTS-4 and CPII at immediately after the stress test showed an average response to load or an inter-individual variation in response to load of up to 25% of pre-test levels. The relation to load magnitude on average or an inter-individual variation in this relationship was up to 8% from load level to load level. There was a positive correlation for the slopes of the change-load relationship between COMP and MMP-3, and a negative correlation for the slopes between COMP, MMP-3 and IL-6 with MMP-9, and COMP with IL6. Conclusions: COMP, MMP-3, IL-6, MMP-9, and ADAMTS-4 warrant further investigation in the context of articular cartilage mechanosensitivity and its role in joint degeneration and OA. While COMP seems to be able to reflect a rapid response, MMP-3 seems to reflect a slightly longer lasting, but probably also more distinct response. MMP-3 showed also the strongest association with the magnitude of load.
Collapse
Affiliation(s)
- Simon Herger
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, BS, 4031, Switzerland
- Department of Spine Surgery, University Hospital Basel, Basel, BS, 4031, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, BL, 4123, Switzerland
| | - Werner Vach
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, BS, 4031, Switzerland
- Department of Clinical Research, University of Basel, Basel, BS, 4031, Switzerland
- Basel Academy for Quality and Research in Medicine, Basel, Switzerland
| | - Anna-Maria Liphardt
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Corina Nüesch
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, BS, 4031, Switzerland
- Department of Spine Surgery, University Hospital Basel, Basel, BS, 4031, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, BL, 4123, Switzerland
- Department of Clinical Research, University of Basel, Basel, BS, 4031, Switzerland
| | - Christian Egloff
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, BS, 4031, Switzerland
| | - Annegret Mündermann
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, BS, 4031, Switzerland
- Department of Spine Surgery, University Hospital Basel, Basel, BS, 4031, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, BL, 4123, Switzerland
- Department of Clinical Research, University of Basel, Basel, BS, 4031, Switzerland
| |
Collapse
|
19
|
Herger S, Vach W, Liphardt AM, Nüesch C, Egloff C, Mündermann A. Experimental-analytical approach to assessing mechanosensitive cartilage blood marker kinetics in healthy adults: dose-response relationship and interrelationship of nine candidate markers. F1000Res 2021; 10:490. [PMID: 35284064 PMCID: PMC8907551 DOI: 10.12688/f1000research.52159.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 11/23/2023] Open
Abstract
Purpose: To determine the suitability of selected blood biomarkers of articular cartilage as mechanosensitive markers and to investigate the dose-response relationship between ambulatory load magnitude and marker kinetics in response to load. Methods: Serum samples were collected from 24 healthy volunteers before and at three time points after a 30-minute walking stress test performed on three test days. In each experimental session, one of three ambulatory loads was applied: 100% body weight (BW); 80%BW; 120%BW. Serum concentrations of COMP, MMP-3, MMP-9, ADAMTS-4, PRG-4, CPII, C2C and IL-6 were assessed using commercial enzyme-linked immunosorbent assays. A two-stage analytical approach was used to determine the suitability of a biomarker by testing the response to the stress test (criterion I) and the dose-response relationship between ambulatory load magnitude and biomarker kinetics (criterion II). Results. COMP, MMP-3 and IL-6 at all three time points after, MMP-9 at 30 and 60 minutes after, and ADAMTS-4 and CPII at immediately after the stress test showed an average response to load or an inter-individual variation in response to load of up to 25% of pre-test levels. The relation to load magnitude on average or an inter-individual variation in this relationship was up to 8% from load level to load level. There was a positive correlation for the slopes of the change-load relationship between COMP and MMP-3, and a negative correlation for the slopes between COMP, MMP-3 and IL-6 with MMP-9, and COMP with IL6. Conclusions: COMP, MMP-3, IL-6, MMP-9, and ADAMTS-4 warrant further investigation in the context of articular cartilage mechanosensitivity and its role in joint degeneration and OA. While COMP seems to be able to reflect a rapid response, MMP-3 seems to reflect a slightly longer lasting, but probably also more distinct response. MMP-3 showed also the strongest association with the magnitude of load.
Collapse
Affiliation(s)
- Simon Herger
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, BS, 4031, Switzerland
- Department of Spine Surgery, University Hospital Basel, Basel, BS, 4031, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, BL, 4123, Switzerland
| | - Werner Vach
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, BS, 4031, Switzerland
- Department of Clinical Research, University of Basel, Basel, BS, 4031, Switzerland
- Basel Academy for Quality and Research in Medicine, Basel, Switzerland
| | - Anna-Maria Liphardt
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Corina Nüesch
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, BS, 4031, Switzerland
- Department of Spine Surgery, University Hospital Basel, Basel, BS, 4031, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, BL, 4123, Switzerland
- Department of Clinical Research, University of Basel, Basel, BS, 4031, Switzerland
| | - Christian Egloff
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, BS, 4031, Switzerland
| | - Annegret Mündermann
- Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, BS, 4031, Switzerland
- Department of Spine Surgery, University Hospital Basel, Basel, BS, 4031, Switzerland
- Department of Biomedical Engineering, University of Basel, Allschwil, BL, 4123, Switzerland
- Department of Clinical Research, University of Basel, Basel, BS, 4031, Switzerland
| |
Collapse
|
20
|
Costa Dos Santos G, Renovato-Martins M, de Brito NM. The remodel of the "central dogma": a metabolomics interaction perspective. Metabolomics 2021; 17:48. [PMID: 33969452 PMCID: PMC8106972 DOI: 10.1007/s11306-021-01800-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/30/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND In 1957, Francis Crick drew a linear diagram on a blackboard. This diagram is often called the "central dogma." Subsequently, the relationships between different steps of the "central dogma" have been shown to be considerably complex, mostly because of the emerging world of small molecules. It is noteworthy that metabolites can be generated from the diet through gut microbiome metabolism, serve as substrates for epigenetic modifications, destabilize DNA quadruplexes, and follow Lamarckian inheritance. Small molecules were once considered the missing link in the "central dogma"; however, recently they have acquired a central role, and their general perception as downstream products has become reductionist. Metabolomics is a large-scale analysis of metabolites, and this emerging field has been shown to be the closest omics associated with the phenotype and concomitantly, the basis for all omics. AIM OF REVIEW Herein, we propose a broad updated perspective for the flux of information diagram centered in metabolomics, including the influence of other factors, such as epigenomics, diet, nutrition, and the gut- microbiome. KEY SCIENTIFIC CONCEPTS OF REVIEW Metabolites are the beginning and the end of the flux of information.
Collapse
Affiliation(s)
- Gilson Costa Dos Santos
- Laboratory of NMR Metabolomics, IBRAG, Department of Genetics, State University of Rio de Janeiro, Rio de Janeiro, 20551-030, Brazil.
| | - Mariana Renovato-Martins
- Department of Cellular and Molecular Biology, IB, Federal Fluminense University, Niterói, 24210-200, Brazil
| | - Natália Mesquita de Brito
- Laboratory of Cellular and Molecular Pharmacology, IBRAG, Department of Cell Biology, State University of Rio de Janeiro, Rio de Janeiro, 20551-030, Brazil.
| |
Collapse
|
21
|
Costa dos Santos Junior G, Pereira CM, Kelly da Silva Fidalgo T, Valente AP. Saliva NMR-Based Metabolomics in the War Against COVID-19. Anal Chem 2020; 92:15688-15692. [PMID: 33215503 PMCID: PMC7688045 DOI: 10.1021/acs.analchem.0c04679] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022]
Abstract
COVID-19 is an emergent, worldwide public health concern. Joint efforts have been made by scientific communities of various fields to better understand the mechanisms of action of SARS-CoV-2. The need to understand the pathophysiological fingerprint and pathways of this disease make metabolomics-related approaches an indispensable tool for properly answering concerns relating to disease course. Determination of the metabolomic profile may help to explain the heterogeneous spectra of COVID-19 clinical phenotypes and be useful in monitoring disease progression as well as therapeutic treatments. In this sense, saliva has proven to be a strategic biofluid, owing not only to its appeal as a noninvasive sampling method but also due to the capacity of the virus to invade epithelial cells of the oral mucosa and salivary gland ducts via ACE2 receptors. Accordingly, important changes in metabolism have been described relating to COVID-19, indicating that metabolomics may open new avenues for understanding the pathophysiology of this disease, especially via longitudinal study designs. Thus, we discuss the importance of comprehending the SARS-CoV-2 salivary metabolomic fingerprint and also highlight the situation of Brazil on the frontlines of the war against COVID-19.
Collapse
Affiliation(s)
- Gilson Costa dos Santos Junior
- Laboratory of NMR Metabolomics, IBRAG, Department of
Genetics, State University of Rio de Janeiro, Boulevard 28 de
Setembro 77 fds, Vila Isabel, RJ, 20551-030 Rio de Janeiro,
Brazil
| | - Claudia Maria Pereira
- Postgraduate Program in Translational Biomedicine,
Grande Rio University, Rua Professor José de Souza
Herdy, 1160, Jardim Vinte e Cinco de Agosto, 25071-202 Duque de Caxias,
Brazil
| | - Tatiana Kelly da Silva Fidalgo
- Dental School, Department of Preventive and Community
Dentistry, State University of Rio de Janeiro, Boulevard 28 de
Setembro, 157, Vila Isabel, 20551-030 Rio de Janeiro, Brazil
| | - Ana Paula Valente
- BioNMR, CENABIO I, Department of Structural Biology,
Federal University of Rio de Janeiro, Av. Carlos Chagas
Filho, 373, CCS/bloco K-anexo, 21941-599 Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Bi H, Guo Z, Jia X, Liu H, Ma L, Xue L. The key points in the pre-analytical procedures of blood and urine samples in metabolomics studies. Metabolomics 2020; 16:68. [PMID: 32451742 DOI: 10.1007/s11306-020-01666-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/14/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND Metabolomics provides measurement of numerous metabolites in human samples, which can be a useful tool in clinical research. Blood and urine are regarded as preferred subjects of study because of their minimally invasive collection and simple preprocessing methods. Adhering to standard operating procedures is an essential factor in ensuring excellent sample quality and reliable results. AIM OF REVIEW In this review, we summarize the studies about the impacts of various preprocessing factors on metabolomics studies involving clinical blood and urine samples in order to provide guidance for sample collection and preprocessing. KEY SCIENTIFIC CONCEPTS OF REVIEW Clinical information is important for sample grouping and data analysis which deserves attention before sample collection. Plasma and serum as well as urine samples are appropriate for metabolomics analysis. Collection tubes, hemolysis, delay at room temperature, and freeze-thaw cycles may affect metabolic profiles of blood samples. Collection time, time between sampling and examination, contamination, normalization strategies, and storage conditions may alter analysis results of urine samples. Taking these collection and preprocessing factors into account, this review provides suggestions of standard sample preprocessing.
Collapse
Affiliation(s)
- Hai Bi
- Department of Urology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, People's Republic of China
| | - Zhengyang Guo
- Medical Research Center, Peking University Third Hospital, Haidian District, 49 Huayuan North Road, Beijing, People's Republic of China
| | - Xiao Jia
- Medical Research Center, Peking University Third Hospital, Haidian District, 49 Huayuan North Road, Beijing, People's Republic of China
- Biobank, Peking University Third Hospital, Beijing, People's Republic of China
| | - Huiying Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, People's Republic of China
| | - Lulin Ma
- Department of Urology, Peking University Third Hospital, 49 Huayuan North Road, Haidian District, Beijing, People's Republic of China.
| | - Lixiang Xue
- Medical Research Center, Peking University Third Hospital, Haidian District, 49 Huayuan North Road, Beijing, People's Republic of China.
- Biobank, Peking University Third Hospital, Beijing, People's Republic of China.
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, People's Republic of China.
| |
Collapse
|
23
|
King A, Baginski M, Morikawa Y, Rainville PD, Gethings LA, Wilson ID, Plumb RS. Application of a Novel Mass Spectral Data Acquisition Approach to Lipidomic Analysis of Liver Extracts from Sitaxentan-Treated Liver-Humanized PXB Mice. J Proteome Res 2019; 18:4055-4064. [DOI: 10.1021/acs.jproteome.9b00334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Adam King
- Waters Corporation, Stamford Avenue, Wilmslow SK9 4AX, U.K
| | - Matthew Baginski
- PhoenixBio USA Corporation, 65 Broadway, Suite 605, New York, New York 10006, United States
| | - Yoshio Morikawa
- PhoenixBio USA Corporation, 65 Broadway, Suite 605, New York, New York 10006, United States
| | - Paul D. Rainville
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| | | | - Ian D. Wilson
- Department of Surgery and Cancer, Imperial College, Exhibition Road, South Kensington, London SW7 2AZ, U.K
| | - Robert S. Plumb
- Waters Corporation, 34 Maple Street, Milford, Massachusetts 01757, United States
| |
Collapse
|
24
|
Zhang HY, Liu Q, Yang HX, Shi LQ, Wang P, Xie MJ, Liu JQ, Xu XJ, Liu XD, Yu SB, Jiao K, Zhang M, Xuan SJ, Xu YF, Zhang X, Liu YF, Zhang J, Wang MQ. Early growth response 1 reduction in peripheral blood involving condylar subchondral bone loss. Oral Dis 2019; 25:1759-1768. [PMID: 31357246 DOI: 10.1111/odi.13168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/29/2019] [Accepted: 07/22/2019] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To detect whether early growth response 1 (EGR1) in peripheral blood leucocytes (PBLs) indicates temporomandibular joint (TMJ) osteoarthritis (OA) lesions. MATERIALS AND METHODS Egr1 mRNA expression levels in PBLs were detected in eight malocclusion patients without temporomandibular disorder (TMD) signs and 16 malocclusion patients with clinical TMD signs with (eight) or without (eight) imaging signs of TMJ OA. Twelve 6-week-old rats were randomized to a control group and a unilateral anterior crossbite (UAC) group and were sampled at 4 weeks. The Egr1 mRNA expression levels in PBLs and protein expression levels in different orofacial tissues were measured. RESULTS Patients with TMD signs with/without TMJ OA diagnosis showed lower Egr1 mRNA expression levels in PBLs than patients without TMD signs. The lower Egr1 mRNA expression was also found in the PBLs of UAC rats, which were induced to exhibit early histo-morphological signs of TMJ OA lesions. In subchondral bone of UAC rats, EGR1 protein expression was decreased, co-localization of EGR1 with osterix or dentin matrix protein-1 was identified, and the number of EGR1 and osterix double-positive cells was reduced (all p < .05). CONCLUSION Egr1 reduction in PBLs potentially indicates subchondral bone OA lesions at an early stage.
Collapse
Affiliation(s)
- Hong-Yun Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Qian Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Hong-Xu Yang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Li-Qiang Shi
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Radiology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Pei Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Radiology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Mian-Jiao Xie
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Jin-Qiang Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xiao-Jie Xu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xiao-Dong Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Shi-Bin Yu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Kai Jiao
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Mian Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Shi-Jie Xuan
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yi-Fei Xu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xuan Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yi-Fan Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Jing Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Mei-Qing Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
25
|
Intra-articular targeting of nanomaterials for the treatment of osteoarthritis. Acta Biomater 2019; 93:239-257. [PMID: 30862551 DOI: 10.1016/j.actbio.2019.03.010] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 12/31/2022]
Abstract
Osteoarthritis is a prevalent and debilitating disease that involves pathological contributions from numerous joint tissues and cells. The joint is a challenging arena for drug delivery, since the joint has poor bioavailability for systemically administered drugs and experiences rapid clearance of therapeutics after intra-articular injection. Moreover, each tissue within the joint presents unique barriers to drug localization. In this review, the various applications of nanotechnology to overcome these drug delivery limitations are investigated. Nanomaterials have reliably shown improvements to retention profiles of drugs within the joint space relative to injected free drugs. Additionally, nanomaterials have been modified through active and passive targeting strategies to facilitate interactions with and localization within specific joint tissues such as cartilage and synovium. Last, the limitations of drawing cross-study comparisons, the implications of synovial fluid, and the potential importance of multi-modal therapeutic strategies are discussed. As emerging, cell-specific disease modifying osteoarthritis drugs continue to be developed, the need for targeted nanomaterial delivery will likely become critical for effective clinical translation of therapeutics for osteoarthritis. STATEMENT OF SIGNIFICANCE: Improving drug delivery to the joint is a pressing clinical need. Over 27 million Americans live with osteoarthritis, and this figure is continuously expanding. Numerous drugs have been investigated but have failed in clinical trials, likely related to poor bioavailability to target cells. This article comprehensively reviews the advances in nano-scale delivery vehicles designed to overcome the delivery barriers in the joint. This is the first review to analyze active and passive targeting strategies systematically for different target sites while also delineating between tissue homing and whole joint retention. By bringing together the lessons learned across numerous nano-scale platforms, researchers may be able to hone future nanomaterial designs, allowing emerging therapeutics to perform with clinically relevant efficacy and disease modifying potential.
Collapse
|
26
|
Zhang HY, Liu Q, Liu JQ, Wang J, Yang HX, Xu XJ, Xie MJ, Liu XD, Yu SB, Zhang M, Lu L, Zhang J, Wang MQ. Molecular changes in peripheral blood involving osteoarthritic joint remodelling. J Oral Rehabil 2019; 46:820-827. [PMID: 31046158 PMCID: PMC6851883 DOI: 10.1111/joor.12810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/20/2019] [Accepted: 04/25/2019] [Indexed: 11/27/2022]
Abstract
Biomarkers of temporomandibular joint (TMJ) osteoarthritis (OA) remain unknown. The objective was to detect whether molecular biomarkers from peripheral blood leucocytes (PBLs) engage in TMJ OA lesions. Thirty‐four six‐week‐old Sprague Dawley rats were used. The top upregulated gene ontology categories and gene‐fold changes in PBLs were detected by a microarray analysis comparing rats that received 20‐week unilateral anterior crossbite (UAC) treatment with age‐matched controls (n = 4). Twenty weeks of UAC treatment had been reported to induce TMJ OA‐like lesions. The other twenty‐four rats were randomly placed in the UAC and control groups at 12‐ and 20‐week time points (n = 6). The mRNA expression levels of the selected biomarkers derived from the microarray analysis and their protein expression in the alveolar bone and TMJ were detected. The microarray analysis indicated that the three most highly involved genes in PBLs were Egr1, Ephx1 and Il10, which were confirmed by real‐time PCR detection. The increased protein expression levels of the three detected molecules were demonstrated in cartilage and subchondral bone (P < 0.05), and increased levels of EPHX1 were reported in discs (P < 0.05); however, increased levels were not present in the alveolar bone. Immunohistochemistry revealed the increased distribution of EGR1‐positive, EXPH1‐positive and IL10‐positive cells predominantly in the osteochondral interface, with EXPH1 also present in TMJ discs. In conclusion, the increased mRNA expression of Egr1, Ephx1 and Il10 in PBLs may serve as potential biomarkers for developed osteoarthritic lesions relating to osteochondral interface hardness changes induced by dental biomechanical stimulation.
Collapse
Affiliation(s)
- Hong-Yun Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Centre for Oral Disease & Shaanxi International Joint Research Centre for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Qian Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Centre for Oral Disease & Shaanxi International Joint Research Centre for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Jin-Qiang Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Centre for Oral Disease & Shaanxi International Joint Research Centre for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,School of Stomatology, The Jiamusi University, Jiamusi, China
| | - Jing Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hong-Xu Yang
- State Key Laboratory of Military Stomatology, National Clinical Research Centre for Oral Disease & Shaanxi International Joint Research Centre for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xiao-Jie Xu
- State Key Laboratory of Military Stomatology, National Clinical Research Centre for Oral Disease & Shaanxi International Joint Research Centre for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Mian-Jiao Xie
- State Key Laboratory of Military Stomatology, National Clinical Research Centre for Oral Disease & Shaanxi International Joint Research Centre for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xiao-Dong Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Centre for Oral Disease & Shaanxi International Joint Research Centre for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Shi-Bin Yu
- State Key Laboratory of Military Stomatology, National Clinical Research Centre for Oral Disease & Shaanxi International Joint Research Centre for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Mian Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Centre for Oral Disease & Shaanxi International Joint Research Centre for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Lei Lu
- State Key Laboratory of Military Stomatology, National Clinical Research Centre for Oral Disease & Shaanxi International Joint Research Centre for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Jing Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Centre for Oral Disease & Shaanxi International Joint Research Centre for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Mei-Qing Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Centre for Oral Disease & Shaanxi International Joint Research Centre for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
27
|
Abstract
PURPOSE OF THE REVIEW Osteoarthritis (OA) is a multifactorial and progressive disease affecting whole synovial joint. The extract pathogenic mechanisms and diagnostic biomarkers of OA remain unclear. In this article, we review the studies related to metabolomics of OA, discuss the biomarkers as a tool for early OA diagnosis. Furthermore, we examine the major studies on the application of metabolomics methodology in the complex context of OA and create a bridge from findings in basic science to their clinical utility. RECENT FINDINGS Recently, the tissue metabolomics signature permits a view into transitional phases between the healthy and OA joint. Both nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry-based metabolomics approaches have been used to interrogate the metabolic alterations that may indicate the complex progression of OA. Specifically, studies on alterations pertaining to lipids, glucose, and amino acid metabolism have aided in the understanding of the complex pathogenesis of OA. The discovery of identified metabolites could be important for diagnosis and staging of OA, as well as for the assessment of efficacy of new drugs.
Collapse
|
28
|
Alarcon P, Hidalgo AI, Manosalva C, Cristi R, Teuber S, Hidalgo MA, Burgos RA. Metabolic disturbances in synovial fluid are involved in the onset of synovitis in heifers with acute ruminal acidosis. Sci Rep 2019; 9:5452. [PMID: 30932023 PMCID: PMC6443794 DOI: 10.1038/s41598-019-42007-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/22/2019] [Indexed: 12/18/2022] Open
Abstract
Acute ruminal acidosis (ARA) is the result of increased intake of highly fermentable carbohydrates, which frequently occurs in dairy cattle and is associated with aseptic polysynovitis. To characterise the metabolic changes in the joints of animals with ARA, we performed an untargeted gas chromatography-mass spectrometry (GC-MS)-based metabolomic analysis of synovial fluid. Seven heifers were challenged with an intraruminal oligofructose overload (13 g/kg of body weight [BW]) dissolved in water. Synovial fluid samples were collected at 0, 9 and 24 h post-overload. Metabolome analysis revealed the presence of 67 metabolites. At 9 h post-overload, glyceric acid, cellobiose, fructose and lactic acid were all increased, whereas at 24 h, sorbitol, lactic acid and fructose levels were all increased >10-fold. At 24 h, citric acid and threonine levels were significantly reduced. We detected increased L- and D-lactate, and the presence of interleukin-6 (IL-6) in synovial fluid. Furthermore, using bovine fibroblast-like synoviocytes, we observed that D-lactate induces IL-6 synthesis. Our results suggest that ARA produces severe metabolomic changes in synovial fluid, including disturbances in starch and sucrose metabolism, and increased lactate levels. These changes were observed prior to the appearance of synovitis, suggesting a potential role in the onset of polysynovitis.
Collapse
Affiliation(s)
- Pablo Alarcon
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Science, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Alejandra I Hidalgo
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Science, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Carolina Manosalva
- Faculty of Sciences, Institute of Pharmacy, Universidad Austral de Chile, Valdivia, Chile
| | - Raul Cristi
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Science, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Stefanie Teuber
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Science, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Maria A Hidalgo
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Science, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael A Burgos
- Laboratory of Inflammation Pharmacology, Faculty of Veterinary Science, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
29
|
de Sousa EB, dos Santos Junior GC, Aguiar RP, da Costa Sartore R, de Oliveira ACL, Almeida FCL, Neto VM, Aguiar DP. Osteoarthritic Synovial Fluid Modulates Cell Phenotype and Metabolic Behavior In Vitro. Stem Cells Int 2019; 2019:8169172. [PMID: 30766606 PMCID: PMC6350599 DOI: 10.1155/2019/8169172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/10/2018] [Accepted: 10/21/2018] [Indexed: 12/11/2022] Open
Abstract
Synovial fluid holds a population of mesenchymal stem cells (MSC) that could be used for clinical treatment. Our goal was to characterize the inflammatory and metabolomic profile of the synovial fluid from osteoarthritic patients and to identify its modulatory effect on synovial fluid cells. Synovial fluid was collected from non-OA and OA patients, which was centrifuged to isolate cells. Cells were cultured for 21 days, characterized with specific markers for MSC, and exposed to a specific cocktail to induce chondrogenic, osteogenic, and adipogenic differentiation. Then, we performed a MTT assay exposing SF cells from non-OA and OA patients to a medium containing non-OA and OA synovial fluid. Synovial fluid from non-OA and OA patients was submitted to ELISA to evaluate BMP-2, BMP-4, IL-6, IL-10, TNF-α, and TGF-β1 concentrations and to a metabolomic evaluation using 1H-NMR. Synovial fluid cells presented spindle-shaped morphology in vitro. Samples from OA patients formed a higher number of colonies than the ones from non-OA patients. After 21 days, the colony-forming cells from OA patients differentiated into the three mesenchymal cell lineages, under the appropriated induction protocols. Synovial fluid cells increased its metabolic activity after being exposed to the OA synovial fluid. ELISA assay showed that OA synovial fluid samples presented higher concentration of IL-10 and TGF-β1 than the non-OA, while the NMR showed that OA synovial fluid presents higher concentrations of glucose and glycerol. In conclusion, SFC activity is modulated by OA synovial fluid, which presents higher concentration of IL-10, TGF-β, glycerol, and glucose.
Collapse
Affiliation(s)
- Eduardo Branco de Sousa
- Research Division, National Institute of Traumatology and Orthopedics Jamil Haddad, Rio de Janeiro, RJ, Brazil
- Program of Cell and Developmental Biology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Ramon Pinheiro Aguiar
- Center of Structural Biology and Bioimaging I (CENABIO I), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafaela da Costa Sartore
- Research Division, National Institute of Traumatology and Orthopedics Jamil Haddad, Rio de Janeiro, RJ, Brazil
| | | | | | - Vivaldo Moura Neto
- Program of Cell and Developmental Biology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Biomedical Laboratory of the Brain, Institute of Brain Paulo Niemeyer, Rio de Janeiro, RJ, Brazil
| | - Diego Pinheiro Aguiar
- Research Division, National Institute of Traumatology and Orthopedics Jamil Haddad, Rio de Janeiro, RJ, Brazil
- Pharmacy Unit, West Zone State University, Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Calciolari E, Donos N. The use of omics profiling to improve outcomes of bone regeneration and osseointegration. How far are we from personalized medicine in dentistry? J Proteomics 2018; 188:85-96. [DOI: 10.1016/j.jprot.2018.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/25/2018] [Accepted: 01/30/2018] [Indexed: 12/12/2022]
|
31
|
Anderson J, Phelan MM, Clegg PD, Peffers MJ, Rubio-Martinez LM. Synovial Fluid Metabolites Differentiate between Septic and Nonseptic Joint Pathologies. J Proteome Res 2018; 17:2735-2743. [PMID: 29969035 PMCID: PMC6092013 DOI: 10.1021/acs.jproteome.8b00190] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Indexed: 12/12/2022]
Abstract
Osteoarthritis (OA), osteochondrosis (OC), and synovial sepsis in horses cause loss of function and pain. Reliable biomarkers are required to achieve accurate and rapid diagnosis, with synovial fluid (SF) holding a unique source of biochemical information. Nuclear magnetic resonance (NMR) spectroscopy allows global metabolite analysis of a small volume of SF, with minimal sample preprocessing using a noninvasive and nondestructive method. Equine SF metabolic profiles from both nonseptic joints (OA and OC) and septic joints were analyzed using 1D 1H NMR spectroscopy. Univariate and multivariate statistical analyses were used to identify differential metabolite abundance between groups. Metabolites were annotated via 1H NMR using 1D NMR identification software Chenomx, with identities confirmed using 1D 1H and 2D 1H 13C NMR. Multivariate analysis identified separation between septic and nonseptic groups. Acetate, alanine, citrate, creatine phosphate, creatinine, glucose, glutamate, glutamine, glycine, phenylalanine, pyruvate, and valine were higher in the nonseptic group, while glycylproline was higher in sepsis. Multivariate separation was primarily driven by glucose; however, partial-least-squares discriminant analysis plots with glucose excluded demonstrated the remaining metabolites were still able to discriminate the groups. This study demonstrates that a panel of synovial metabolites can distinguish between septic and nonseptic equine SF, with glucose the principal discriminator.
Collapse
Affiliation(s)
- James
R. Anderson
- Institute
of Ageing and Chronic Disease, University
of Liverpool, Liverpool L7 8TX, U.K.
| | - Marie M. Phelan
- Institute
of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K.
- HLS
Technology Directorate, University of Liverpool, Liverpool L69 3GB, U.K.
| | - Peter D. Clegg
- Institute
of Ageing and Chronic Disease, University
of Liverpool, Liverpool L7 8TX, U.K.
| | - Mandy J. Peffers
- Institute
of Ageing and Chronic Disease, University
of Liverpool, Liverpool L7 8TX, U.K.
| | - Luis M. Rubio-Martinez
- Institute
of Veterinary Science, University of Liverpool, Leahurst Campus, Neson CH64 7TE, U.K.
| |
Collapse
|
32
|
Chen R, Han S, Liu X, Wang K, Zhou Y, Yang C, Zhang X. Perturbations in amino acids and metabolic pathways in osteoarthritis patients determined by targeted metabolomics analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1085:54-62. [DOI: 10.1016/j.jchromb.2018.03.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 03/26/2018] [Accepted: 03/29/2018] [Indexed: 12/19/2022]
|
33
|
Yang X, Chen W, Zhao X, Chen L, Li W, Ran J, Wu L. Pyruvate Kinase M2 Modulates the Glycolysis of Chondrocyte and Extracellular Matrix in Osteoarthritis. DNA Cell Biol 2018; 37:271-277. [PMID: 29356574 DOI: 10.1089/dna.2017.4048] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pyruvate kinase M2 (PKM2) has been wildly verified to modulate glycolysis in tumor cells. However, the role of PKM2 on the glycolysis of osteoarthritis (OA) chondrocytes is still unclear. In present study, we investigate the function of PKM2 on OA chondrocyte glycolysis and the collagen matrix generation in vitro. Results showed that PKM2 was upregulated in OA chondrocytes compared with healthy control chondrocytes. In OA chondrocytes, ATP expression was lower compared with healthy control chondrocytes. Loss-of-function experiment showed that PKM2 knockdown mediated by lentivirus transfection could significantly suppress the glucose consumption and lactate secretion levels and decrease glucose transporter-1 (Glut-1), lactate dehydrogenase A (LDHA), and hypoxia inducible factor 1-alpha (HIF-1α), indicating the inhibition of PKM2 knockdown on glycolysis. Moreover, Cell Counting Kit-8 (CCK-8), flow cytometry, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay showed that PKM2 knockdown inhibited OA chondrocyte proliferation and promoted the apoptosis. Western blot and immunocytochemical staining showed that PKM2 knockdown downregulated the expression levels of COL2A1 and SOX-9. In summary, our results conclude that PKM2 modulates the glycolysis and extracellular matrix generation, providing the vital role of PKM2 on OA pathogenesis and a novel therapeutic target for OA.
Collapse
Affiliation(s)
- Xiaobo Yang
- The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Weiping Chen
- The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Xiang Zhao
- The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Linwei Chen
- The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Wanli Li
- The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Jisheng Ran
- The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Lidong Wu
- The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| |
Collapse
|