1
|
Roledo C, França DD, Dos Santos Feitosa IR, Quinaglia GA, Montagner CC, Roubicek DA, Dos Reis AG. A comprehensive study on bisphenol A and estrogenic activity in the Paraíba do Sul River, São Paulo, Brazil. JOURNAL OF WATER AND HEALTH 2024; 22:2060-2075. [PMID: 39611669 DOI: 10.2166/wh.2024.205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024]
Abstract
In recent decades, contaminants of emerging concern (CECs) in aquatic environments have garnered significant attention due to their adverse effects on ecosystems and human health. Among these CECs, bisphenol A (BPA) is a major concern because of its widespread use and endocrine-disrupting properties. Brazil's urbanization and industrial growth have led to significant pollution challenges, primarily due to inadequate sewage infrastructure and untreated domestic wastewater being discharged into rivers, contributing to the presence of emerging contaminants in surface waters. This study assessed BPA contamination and estrogenic activity in the Paraíba do Sul River in São Paulo State, Brazil. BPA was detected in 50% of the samples, with concentrations ranging from 11.1 to 116.9 ng L-1. The estrogenic activity assay also showed positive results in 50% of the samples, ranging from 0.12 to 1.36 ng L-1 of estradiol-equivalent, indicating the presence of multiple compounds contributing to estrogenic effects. This underscores the need for a comprehensive approach to monitoring water quality. The water quality index (WQI) revealed compromised water quality at the studied sites, particularly during the rainy season. The correlation between the WQI, BPA, and estrogenic activity parameters suggests that endocrine-disrupting compounds significantly impact water quality, exacerbated by inadequate wastewater treatment infrastructure.
Collapse
Affiliation(s)
- Cely Roledo
- São Paulo State University (UNESP), Institute of Science and Technology, Environmental Engineering Department, São José dos Campos 12247-016, Brazil; São Paulo State Environmental Agency, CETESB, São Paulo 05459-900, Brazil E-mail: ;
| | | | | | | | | | | | - Adriano Gonçalves Dos Reis
- São Paulo State University (UNESP), Institute of Science and Technology, Environmental Engineering Department, São José dos Campos 12247-016, Brazil
| |
Collapse
|
2
|
Rodríguez-Rodríguez CE, Ramírez-Morales D, Gutiérrez-Quirós JA, Rodríguez-Saravia S, Villegas-Solano D. Occurrence of pharmaceuticals in Latin America: case study on hazard assessment and prioritization in Costa Rica. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:739. [PMID: 39012428 DOI: 10.1007/s10661-024-12872-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/28/2024] [Indexed: 07/17/2024]
Abstract
Pharmaceuticals are considered as contaminants of emerging concern, and their occurrence in diverse environmental matrices has been described during the last 25 years. Nonetheless, pharmaceutical occurrence has not been evenly described worldwide, and reports from some geographical areas such as most parts of Latin America are scarce. This work aims to address the situation of water pollution due to pharmaceuticals in Latin America by means of two main goals: i. First, reviewing the monitoring studies performed in Latin America on this topic (period 2009-2024), which were conducted in Brazil, Mexico, Colombia, Ecuador, Peru and Argentina, to highlight the most frequently detected compounds from each therapeutic group in the region. ii. Second, analyzing the case of Costa Rica through the hazard assessment and prioritization of pharmaceuticals based on the monitoring performed in this country (years 2011; 2018-2019). The monitoring in Costa Rica comprised a total of 163 sampling points: wastewater treatment plants (WWTPs) (14 urban WWTPs plus two landfill WWTPs; total samples n = 44 influents and n = 34 effluents), nine hospital effluents (n = 32), wastewater from livestock farms (six swine farms and seven dairy farms; n = 23 influents and n = 37 effluents), 64 continental surface water sampling points (n = 137), and 61 coastal seawater sampling points (n = 61). Risk assessment of detected concentrations by the hazard quotient (HQ) approach (period 2018-2019) revealed a total of 25 medium or high-hazard compounds (out of 37 detected compounds). The prioritization approach (which included the Frequency of Appearance (FoA), the Frequency of PNEC exceedance (FoE), and the Extent of predicted no-effect concentration (PNEC) exceedance (EoE)), showed a critical list of nine pharmaceuticals: caffeine, diphenhydramine, acetaminophen, lovastatin, gemfibrozil, ciprofloxacin, ibuprofen, doxycycline and norfloxacin. These compounds should be taken into account as a first concern during the implementation of environmental policies related to pharmaceutical products in the region.
Collapse
Grants
- 802-B8-510 Vicerrectoría de Investigación, Universidad de Costa Rica
- 802-B8-510 Vicerrectoría de Investigación, Universidad de Costa Rica
- 802-C1-034 Vicerrectoría de Investigación, Universidad de Costa Rica,Costa Rica
- 802-C1-034 Vicerrectoría de Investigación, Universidad de Costa Rica,Costa Rica
- FI-197B-17 Ministerio de Ciencia Tecnología y Telecomunicaciones,Costa Rica
- FI-197B-17 Ministerio de Ciencia Tecnología y Telecomunicaciones,Costa Rica
- FI-197B-17 Ministerio de Ciencia Tecnología y Telecomunicaciones,Costa Rica
- FI-197B-17 Ministerio de Ciencia Tecnología y Telecomunicaciones,Costa Rica
Collapse
Affiliation(s)
- Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica.
| | - Didier Ramírez-Morales
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | | | - Sebastián Rodríguez-Saravia
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Diego Villegas-Solano
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| |
Collapse
|
3
|
Moreira MG, Rodrigues GZP, da Silva DA, Bianchi E, Gehlen G, Ziulkoski AL. Differences in MCF-7 response to endocrine disruptors in waste, superficial, and treated water from Southern Brazil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1539. [PMID: 38012428 DOI: 10.1007/s10661-023-12109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
The aim of this study was to evaluate the effect of possible endocrine disruptors in surface and wastewater using a cell proliferation assay in an estrogen-responsive cell line (MCF-7). This study was conducted in the Sinos River (Brazil). The residual water was collected from a Pilot Treatment Plant (using Typha domingensis) and surface waters of the Luis Rau stream, the Sinos River, and the Water Treatment Station (WTS). After exposures (24-120 h), a Sulforhodamine B assay was performed to determine the proliferation rate. The higher increase in proliferation rate was observed with the Luiz Rau stream and the sewage treated by macrophytes in a flotation filter. The results from WTS water remained with a proliferation rate similar to the negative control at all times, suggesting that the conventional treatment is partially effective for the withdrawal of endocrine-disrupting agents. The study demonstrated the efficiency of the MCF-7 line in assessing endocrine disruption caused by wastewater and surface water samples. Our results indicate that conventional water treatment can partially remove the polluting load of endocrine disruptors, minimizing their environmental and public health impacts. Besides, it demonstrates the need to expand sanitary services to improve the population's quality of life.
Collapse
Affiliation(s)
| | - Gabriela Zimmermann Prado Rodrigues
- Cytotoxicity Laboratory, Feevale University, Novo Hamburgo, Rio Grande Do Sul, Brazil.
- Comparative Histology Laboratory, Feevale University, Novo Hamburgo, Rio Grande Do Sul, Brazil.
| | - Diego Araújo da Silva
- Cytotoxicity Laboratory, Feevale University, Novo Hamburgo, Rio Grande Do Sul, Brazil
| | - Eloisa Bianchi
- Cytotoxicity Laboratory, Feevale University, Novo Hamburgo, Rio Grande Do Sul, Brazil
| | - Günther Gehlen
- Comparative Histology Laboratory, Feevale University, Novo Hamburgo, Rio Grande Do Sul, Brazil
| | - Ana Luiza Ziulkoski
- Cytotoxicity Laboratory, Feevale University, Novo Hamburgo, Rio Grande Do Sul, Brazil
| |
Collapse
|
4
|
Schmitt GT, Caetano MO, Marques VM, Kieling AG, Launay M, Acosta Muñiz LI, Gomes LP. Comparison of 17β-estradiol, bisphenol-A and caffeine concentration levels before and after the water treatment plant. JOURNAL OF WATER AND HEALTH 2023; 21:1716-1726. [PMID: 38017601 PMCID: wh_2023_234 DOI: 10.2166/wh.2023.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
This article compares the concentration levels of 17β-estradiol (E2), bisphenol-A (BPA) and caffeine (CAF) in the Sinos River, Brazil, which is a source of drinking water and the presence of contaminants after the conventional treatment in a municipal water treatment plant (WTP). A total of nine sampling campaigns were carried out, with sample collection in the Sinos River, upstream and downstream of the WTP, in addition to a drinking water sample (DW). The samples were extracted with solid phase extraction (SPE) and the concentration by liquid chromatography coupled to mass spectrometry (LC-MS). The maximum concentration in the Sinos River was 6,127.99 ng·L-1 for E2, 3,294.63 ng·L-1 for BPA and 1,221.95 ng·L-1 for CAF. In drinking water, the concentration range of E2, BPA and CAF was from less than the Detection Limit (DL) up to 437.50 ng·L-1,
Collapse
Affiliation(s)
- Graziela Taís Schmitt
- Civil Engineering Post-Graduate Program, Unisinos University, São Leopoldo, Brazil E-mail:
| | | | | | | | - Marie Launay
- Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), University of Stuttgart, Stuttgart, Germany
| | - Lilia Itzel Acosta Muñiz
- Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), University of Stuttgart, Stuttgart, Germany
| | - Luciana Paulo Gomes
- Civil Engineering Post-Graduate Program, Unisinos University, São Leopoldo, Brazil
| |
Collapse
|
5
|
de Melo MG, Dos Anjos OC, Nunes AP, Farias MADS, Val AL, Chaar JDS, Bataglion GA. Correlation between caffeine and coprostanol in contrasting Amazonian water bodies. CHEMOSPHERE 2023; 326:138365. [PMID: 36906004 DOI: 10.1016/j.chemosphere.2023.138365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/19/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
The evaluation of contamination by domestic sewage is relevant in the Amazon region; however, it has neither been well-developed nor accompanied by research or monitoring programs. In this study, caffeine and coprostanol as indicators of sewage were investigated in water samples from Amazonian water bodies that crisscross the city of Manaus (Amazonas state, Brazil) and cover regions with distinct main land uses such as high-density residential, low-density residential, commercial, industrial, and environmental protection areas. Thirty-one water samples were studied based on their dissolved and particulate organic matter (DOM and POM) fractions. Quantitative determination of both caffeine and coprostanol was carried out using LC-MS/MS with APCI in the positive ionization mode. The streams of the urban area of Manaus had the highest concentrations of caffeine (1.47-69.65 μg L-1) and coprostanol (2.88-46.92 μg L-1). Samples from the peri-urban Tarumã-Açu stream and from the streams in the Adolpho Ducke Forest Reserve showed much lower concentrations of caffeine (20.20-165.78 ng L-1) and coprostanol (31.49-120.44 ng L-1). Samples from the Negro River showed a wider range of concentrations of caffeine (20.59-873.59 ng L-1) and coprostanol (31.72-706.46 ng L-1), with the highest values found in the outfalls of the urban streams. Levels of caffeine and coprostanol were significantly positively correlated in the different organic matter fractions. The coprostanol/(coprostanol + cholestanol) ratio proved to be a more suitable parameter than the coprostanol/cholesterol one in low-density residential areas. Proximity to densely populated areas and the flow of water bodies appear to influence the caffeine and coprostanol concentrations, which was observed in their clustering in the multivariate analysis. The results indicate that caffeine and coprostanol can be detected even in water bodies that receive very low domestic sewage input. Therefore, this study revealed that both caffeine in DOM and coprostanol in POM represent viable alternatives for use in studies and monitoring programs even in remote areas of the Amazon, where microbiological analyses are often unfeasible.
Collapse
Affiliation(s)
- Moacir Guimarães de Melo
- Department of Chemistry, Institute of Exact Sciences, Federal University of Amazonas (UFAM), General Rodrigo Octavio Avenue, 6200, Coroado, Manaus, AM, Brazil
| | - Otorvan Conrado Dos Anjos
- Department of Chemistry, Institute of Exact Sciences, Federal University of Amazonas (UFAM), General Rodrigo Octavio Avenue, 6200, Coroado, Manaus, AM, Brazil
| | - Andreza Pinheiro Nunes
- Department of Chemistry, Institute of Exact Sciences, Federal University of Amazonas (UFAM), General Rodrigo Octavio Avenue, 6200, Coroado, Manaus, AM, Brazil
| | - Marco Antônio Dos Santos Farias
- Departamento de Tecnologia Agroindustrial e Socioeconomia Rural (DTAiSeR), Federal University of São Carlos (UFSCar), Rodovia Anhanguera, Km 174, Araras, SP, Brazil
| | - Adalberto Luis Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Amazonian Research (INPA), André Araújo Avenue, 2936, Aleixo, Manaus, AM, Brazil
| | - Jamal da Silva Chaar
- Department of Chemistry, Institute of Exact Sciences, Federal University of Amazonas (UFAM), General Rodrigo Octavio Avenue, 6200, Coroado, Manaus, AM, Brazil
| | - Giovana Anceski Bataglion
- Department of Chemistry, Institute of Exact Sciences, Federal University of Amazonas (UFAM), General Rodrigo Octavio Avenue, 6200, Coroado, Manaus, AM, Brazil.
| |
Collapse
|
6
|
Senra MVX, Fonseca AL. Toxicological impacts and likely protein targets of bisphenol a in Paramecium caudatum. Eur J Protistol 2023; 88:125958. [PMID: 36857848 DOI: 10.1016/j.ejop.2023.125958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/14/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Bisphenol A (BPA) is a widely used plasticizer agent and a well-known ubiquitous endocrine disruptor, which is frequently associated with a series of reproductive, developmental, and transgenerational effects over wildlife, livestocks, and humans. Although extensive toxicological data is available for metazoans, the impact of BPA over unicellular eukaryotes, which represents a considerable proportion of eukaryotic diversity, remains largely overlooked. Here, we used acute end-point toxicological assay and an inverted virtual-screening (IVS) approach to evaluate cellular impairments infringed by BPA over the cosmopolitan ciliated protist, Paramecium caudatum. Our data indicate a clear time-dependent effect over P. caudatum survival, which seems to be a consequence of disruptions to multiple core cellular functions, such as DNA and cell replication, transcription, translation and signaling pathways. Finally, the use of this ciliate as a biosensor to monitor BPA within environments and the relevance of bioinformatic methods to leverage our current knowledge on the impacts of emerging contaminants to biological systems are discussed.
Collapse
Affiliation(s)
- Marcus V X Senra
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580, Santo André, São Paulo, Brazil; Instituto de Recursos Naturais, Universidade Federal de Itajubá, 37500-903, Itajubá, Minas Gerais, Brazil.
| | - Ana Lúcia Fonseca
- Instituto de Recursos Naturais, Universidade Federal de Itajubá, 37500-903, Itajubá, Minas Gerais, Brazil
| |
Collapse
|
7
|
Yasasve M, Manjusha M, Manojj D, Hariharan NM, Sai Preethi P, Asaithambi P, Karmegam N, Saravanan M. Unravelling the emerging carcinogenic contaminants from industrial waste water for prospective remediation by electrocoagulation - A review. CHEMOSPHERE 2022; 307:136017. [PMID: 35977566 DOI: 10.1016/j.chemosphere.2022.136017] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/16/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
The need of the hour relies on finding new but sustainable ways to curb rising pollution levels. The accelerated levels of urbanization and increase in population deplete the finite resources essential for human sustenance. In this aspect, water is one of the non-renewable sources that is running out very fast and is polluted drastically day by day. One way of tackling the problem is to reduce the pollution levels by decreasing the usage of chemicals in the process, and the other is to find ways to reuse or reduce the contaminants in the effluent by treatment methods. Most of the available water recycling or treatment methods are not sustainable. Some of them even use toxic chemicals in the processing steps. Treatment of organic wastes from industries is a challenging task as they are hard to remove. Electrocoagulation is one of the emerging water treatment technologies that is highly sustainable and has a comparatively cheaper operating cost. Being a broad-spectrum treatment process, it is suitable for treating the most common water pollutants ranging from oils, bacteria, heavy metals, and others. The process is also straightforward, where electrical current is used to coagulate the contaminates. The presence of carcinogens in these waste water increases the need for its treatment towards further use. The present investigation is made as an extensive analysis of the emerging carcinogens and their various sources from process industries, especially in the form of organic waste and their removal by electrocoagulation and its coupled techniques. The paper also aims to ascertain why the electrocoagulation technique may be a better alternative compared with other methods for the removal of carcinogens in organic wastewater, an analysis which has not been explored before.
Collapse
Affiliation(s)
- Madhavan Yasasve
- Department of Biotechnology, Sree Sastha Institute of Engineering and Technology (Affiliated to Anna University), Chembarambakkam, Chennai, 600123, Tamil Nadu, India
| | - Muralidharan Manjusha
- Department of Genetic Engineering, School of Bioengineering, SRM University, Kattankulathur, 603203, Tamil Nadu, India
| | - Dhinakaran Manojj
- Department of Biotechnology, Sree Sastha Institute of Engineering and Technology (Affiliated to Anna University), Chembarambakkam, Chennai, 600123, Tamil Nadu, India
| | - N M Hariharan
- Department of Biotechnology, Sree Sastha Institute of Engineering and Technology (Affiliated to Anna University), Chembarambakkam, Chennai, 600123, Tamil Nadu, India.
| | - P Sai Preethi
- Department of Biotechnology, Sree Sastha Institute of Engineering and Technology (Affiliated to Anna University), Chembarambakkam, Chennai, 600123, Tamil Nadu, India
| | - Perumal Asaithambi
- Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, Jimma, Po Box - 378, Ethiopia
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem, 636007, Tamil Nadu, India
| | - Muthupandian Saravanan
- AMR and Nanomedicine Laboratory, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600077, Tamil Nadu, India.
| |
Collapse
|
8
|
de Morais Farias J, Krepsky N. Bacterial degradation of bisphenol analogues: an overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76543-76564. [PMID: 36166118 DOI: 10.1007/s11356-022-23035-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Bisphenol A (BPA) is one of the most produced synthetic monomers in the world and is widespread in the environment. BPA was replaced by bisphenol analogues (BP) because of its adverse effects on life. Bacteria can degrade BPA and other bisphenol analogues (BP), diminishing their environmental concentrations. This study aimed to summarize the knowledge and contribute to future studies. In this review, we surveyed papers on bacterial degradation of twelve different bisphenol analogues published between 1987 and June 2022. A total of 102 original papers from PubMed and Google Scholar were selected for this review. Most of the studies (94.1%, n = 96) on bacterial degradation of bisphenol analogues focused on BPA, and then on bisphenol F (BPF), and bisphenol S (BPS). The number of studies on bacterial degradation of bisphenol analogues increased more than six times from 2000 (n = 2) to 2021 (n = 13). Indigenous microorganisms and the genera Sphingomonas, Sphingobium, and Cupriavidus could degrade several BP. However, few studies focussed on Cupriavidus. The acknowledgement of various aspects of BP bacterial biodegradation is vital for choosing the most suitable microorganisms for the bioremediation of a single BP or a mixture of BP.
Collapse
Affiliation(s)
- Julia de Morais Farias
- Laboratory of Water Microbiology (LACQUA), Department of Environmental Science, Institute of Biosciences, Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458, CEP 22290‑240, Rio de Janeiro, RJ, Brazil
| | - Natascha Krepsky
- Laboratory of Water Microbiology (LACQUA), Department of Environmental Science, Institute of Biosciences, Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458, CEP 22290‑240, Rio de Janeiro, RJ, Brazil.
- Graduate Program in Neotropical Biodiversity (PPGBIO), Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458. Urca, CEP: 22.290-255, Rio de Janeiro, RJ, Brazil.
- Institute of Biosciences (IBIO), Graduate Program in Ecotourism and Conservation, Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458. Urca, CEP: 22.290-255, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
9
|
Huang J, Ding J, Jiang H, Wang Z, Zheng L, Song X, Zou H. Pharmaceuticals and Personal Care Products across Different Water Bodies in Taihu Lake Basin, China: Occurrence, Source, and Flux. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11135. [PMID: 36078849 PMCID: PMC9517866 DOI: 10.3390/ijerph191711135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Although pharmaceuticals and personal care products (PPCPs) have attracted great attentions, their occurrence characteristics across different water bodies at a basin scale remain poorly understood. To grasp a more comprehensive understanding of PPCP pollution from the perspective of the whole basin, the occurrence, spatial and seasonal variation, source, and flux of thirteen PPCPs across the different environmental compartments of the northern Taihu Lake Basin (TLB) were studied. The results showed that the non-therapeutic pharmaceuticals caffeine (CFI) and n, n-diethyl-m-toluamide (DEET) were the main components across the different environmental compartments. The total concentrations of detected PPCPs ranged from 0.2 to 2437.9 ng/L. Higher concentrations of PPCPs were observed in spring and autumn, which were mainly attributed to seasonal differences in PPCP consumption. Generally, pollution level was higher in industry and agriculture area and in the inner bay and southwest of Taihu Lake. Source apportionment indicated that untreated water was the main source of PPCPs in river waters of the northern TLB. Flux estimation showed that the mean annual flux of PPCPs from northern TLB to Taihu Lake in 2021 was 1.6 t/a, which was higher in comparison with other areas. Overall, the resulting data will be useful to enrich the research of PPCPs in freshwater for environmental investigations.
Collapse
Affiliation(s)
- Jichao Huang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiannan Ding
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China
- Biomass Energy and Biological Carbon Reduction Engineering Center of Jiangsu Province, Wuxi 214122, China
| | - Hang Jiang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenguo Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Lixing Zheng
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaojun Song
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Hua Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China
- Biomass Energy and Biological Carbon Reduction Engineering Center of Jiangsu Province, Wuxi 214122, China
| |
Collapse
|
10
|
Picinini J, Oliveira RF, Garcia ALH, da Silva GN, Sebben VC, de Souza GMS, Dias JF, Corrêa DS, da Silva J. In vitro genotoxic and mutagenic effects of water samples from Sapucaia and Esteio streams (Brazil) under the influence of different anthropogenic activities. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 878:503484. [PMID: 35649678 DOI: 10.1016/j.mrgentox.2022.503484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 03/07/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Pollution of aquatic ecosystems is associated with the discharge of mainly industrial and urban effluents, which may cause damage to public health. This study aims to evaluate the cytotoxic, genotoxic, and mutagenic potential of surface water samples under the influence of different anthropogenic effluents in a human-derived liver cell line (HepG2). Samples were collected in Esteio and Sapucaia streams (Rio Grande do Sul; Brazil), which flow into the Sinos River, a source of water supply for more than one million people. Physicochemical and microbiological analyses were performed as well as an analysis of inorganic elements using the PIXE technique (Particle-Induced X-Ray Emission). The presence of pharmaceutical compounds and caffeine was evaluated by gas chromatography coupled to mass spectrometry. The cytotoxicity, genotoxicity, and mutagenicity of the samples were evaluated in HepG2 cells by cell viability assays, alkaline Comet Assay and Cytokinesis-block micronucleus (CBMN) assay. We verified alterations in the physicochemical and microbiological parameters and detected caffeine, diethyltoluamide, and different inorganic elements that corresponded to elements from domestic and industrial effluents and agricultural runoff. Although the samples in the concentration used were not cytotoxic, water samples from all sites induced DNA damage. However, it is difficult to attribute these damages to a specific substance since the factors are a complex mixture of different compounds. Despite this, it is observed that both urban and industrial contributions had a similar effect in the cells evaluated. Such results demonstrate the need to perform biomonitoring of surface waters under anthropogenic influence, especially those that flow into rivers that are a source of public supply water. We also highlight the need for research into emerging pollutants in these aquatic environments.
Collapse
Affiliation(s)
- Juliana Picinini
- Laboratory of Genetic Toxicology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Av. Farroupilha, 8001, Building 22 (4th floor), 92425-900, Canoas, RS, Brazil.
| | - Renata Farias Oliveira
- Product and Development Research Center, Lutheran University of Brazil (ULBRA), Av. Farroupilha, 8001, 92425-900, Canoas, RS, Brazil
| | - Ana Letícia Hilário Garcia
- Laboratory of Genetic Toxicology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Av. Farroupilha, 8001, Building 22 (4th floor), 92425-900, Canoas, RS, Brazil; Laboratory of Genetic Toxicology, PPGSDH, La Salle University (UniLaSalle), Av. Victor Barreto, 2288, 92010-000, Canoas, RS, Brazil
| | - Gabrielle Nunes da Silva
- Laboratory of Genetic Toxicology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Av. Farroupilha, 8001, Building 22 (4th floor), 92425-900, Canoas, RS, Brazil
| | - Viviane Cristina Sebben
- Rio Grande do Sul Toxicological Information Center (CIT/RS), Av. Ipiranga, 5400, Jardim Botânico, 90610-000, Porto Alegre, RS, Brazil
| | - Guilherme Maurício Soares de Souza
- Ionic Implantation Laboratory, Institute of Physics, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, 91501-970, Porto Alegre, RS, Brazil
| | - Johnny Ferraz Dias
- Ionic Implantation Laboratory, Institute of Physics, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, 91501-970, Porto Alegre, RS, Brazil
| | - Dione Silva Corrêa
- Product and Development Research Center, Lutheran University of Brazil (ULBRA), Av. Farroupilha, 8001, 92425-900, Canoas, RS, Brazil
| | - Juliana da Silva
- Laboratory of Genetic Toxicology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health), Lutheran University of Brazil (ULBRA), Av. Farroupilha, 8001, Building 22 (4th floor), 92425-900, Canoas, RS, Brazil; Laboratory of Genetic Toxicology, PPGSDH, La Salle University (UniLaSalle), Av. Victor Barreto, 2288, 92010-000, Canoas, RS, Brazil.
| |
Collapse
|
11
|
Dalzochio T, Zwetsch BG, Simões LAR, de Souza MS, Gehlen G, da Silva LB. Combination of Water Quality Parameters and Bioassays for the Assessment of Two Rivers, Southern Brazil. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:678-684. [PMID: 34773480 DOI: 10.1007/s00128-021-03408-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
In the present study, water physicochemical and microbiological parameters, as well as bioassays using Allium cepa L. seeds and the fish species Astyanax jacuhiensis were used to assess the water quality of two rivers - Ilha River and Paranhana River -, located in southern Brazil. Water samples were collected at the source and mouth of the rivers and then, laboratory experiments were performed. The results evidenced high levels of aluminum and iron in water samples collected at the four sampling sites. The micronucleus (MN) test in fish showed significant difference in the frequencies of nuclear abnormalities (NA) in the mouth of the Paranhana River in comparison to control group in one sampling period, whereas the A. cepa test evidenced significant spatial differences in cytotoxicity between the source and mouth of both rivers. Therefore, these data evidence the poor water quality of the rivers studied as well as the potential toxicity to the aquatic organisms.
Collapse
Affiliation(s)
- Thaís Dalzochio
- Programa de Pós-Graduação em Qualidade Ambiental, Universidade Feevale, RS 239, 2755, Novo Hamburgo, RS, 93525-075, Brazil.
| | - Bruna G Zwetsch
- Curso de Ciências Biológicas, Universidade Feevale, Novo Hamburgo, Brazil
| | | | | | - Günther Gehlen
- Programa de Pós-Graduação em Qualidade Ambiental, Universidade Feevale, RS 239, 2755, Novo Hamburgo, RS, 93525-075, Brazil
| | - Luciano B da Silva
- Programa de Pós-Graduação em Qualidade Ambiental, Universidade Feevale, RS 239, 2755, Novo Hamburgo, RS, 93525-075, Brazil
| |
Collapse
|
12
|
Pollution Characteristics and Risk Prediction of Endocrine Disruptors in Lakes of Wuhan. TOXICS 2022; 10:toxics10020093. [PMID: 35202278 PMCID: PMC8880694 DOI: 10.3390/toxics10020093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 02/14/2022] [Indexed: 02/05/2023]
Abstract
As a new and ubiquitous trace organic pollutant, endocrine-disrupting compounds (EDCs) can cause endocrine-disrupting effects on organisms even at low levels. However, little information is available on the resource and assessment of EDC risks in the water environment. The study area was selected based on the paucity of information on the pollution status of inland lakes. Wuhan has numerous and diverse types of lakes which receive micropollutants from different pathways. In this study, the spatial distribution, occurrence, quantity and ecological risks of EDCs in 12 lakes were investigated. Five EDCs, including 17-alpha-ethinylestradiol (17α-EE2), estrone (E1), β-estradiol (β-E2), estriol (E3) and bisphenol A (BPA) were detected in surface waters. The distribution of EDC content in the lakes was ordered as follows: exurban zone < suburban area < urban areas. The pollution sources in remote lakes mainly included agricultural and aquaculture wastewater, while those in suburban and urban areas included domestic or industrial wastewater. Areas with higher EDC content were frequently related to agricultural activities, aquaculture water or dense populations. Water quality parameters, including dissolved oxygen, pH and water temperature, were significantly related to the occurrence and distribution of EDCs in the lakes. Risk assessment demonstrated that the occurrence of EDCs posed minimum to medium risk to aquatic organisms in the lakes. The results showed that the lakes faced a threat hormone pollution though it was at lower doses and, thus, the ecological risk of EDCs should be considered in future environmental policies and decisions in China.
Collapse
|
13
|
Chen L, Maqbool T, Hou C, Fu W, Zhang X. Mechanistic study of oxidative removal of bisphenol A by pristine nanocatalyst Mn3O4/peroxymonosulfate. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119882] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
14
|
Renganathan J, S IUH, Ramakrishnan K, Ravichandran MK, Philip L. Spatio-temporal distribution of pharmaceutically active compounds in the River Cauvery and its tributaries, South India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149340. [PMID: 34399341 DOI: 10.1016/j.scitotenv.2021.149340] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/24/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceutically active compounds (PhACs) present in the environment are a great threat to human well-being and the ecosystem. Eventhough recognized as the pharmacy of the world", studies addressing the distribution of PhACs in the Indian environment are scarce. Hence, in the current study, selected PhACs, heavy metals (HMs), and physicochemical parameters (PCPs) were measured from the surface waters of the River Cauvery during the pre- and post-monsoon. PhACs such as caffeine, carbamazepine, and diclofenac were detected in most samples, whereas topiramate, ibuprofen, and verapamil were found only in few stations. In contrast, the distribution of ciprofloxacin, atenolol, and isoprenaline was strongly influenced by the seasonal pattern (p < 0.05). PhACs such as loperamide, glafenine, erythromycin, and gemfibrozil were not detected during the study. Distribution of PhACs based on average concentration (ng/L) are, CBZ (205.62) > CAF (114.09) > DCF (28.51) > CIP (25.23) > ATL (18.86) > IPL (13.91) > PPL (11.26) > TCS (10.39) > IBF (7.34) > TPT (3.09) > VPL (1.16). Bivariate and multivariate statistical analyses have revealed a positive correlation expressed by the majority of the PhACs with PCPs (COD, TOC), nutrients (TN, TP), and HMs (Pb, Mn, Ni) in the range from 0.540** to 0.961**(p < 0.01). Whereas, DO revealed negative correlation with most of the parameters in the range from -0.559** to -0.831** (p < 0.01). A high average concentration of PhACs was recorded in the upstream (52.08 ng/L) and wastewater discharge points (55.60 ng/L). Further, the environmental risk assessment study has identified the higher risk exhibited by TCS (RQ: 3.29) and CAF (RQ: 38.82) on algae and Daphnia respectively. The study portrays the distribution of emerging contaminants in the River Cauvery and its tributaries and also delivers preliminary data about the distribution of isoprenaline, topiramate, verapamil, and perindopril in the Indian freshwater system.
Collapse
Affiliation(s)
- Jayakumar Renganathan
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology, Chennai, Tamil Nadu 600 036, India
| | - Insamam Ul Huq S
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology, Chennai, Tamil Nadu 600 036, India
| | - Kamaraj Ramakrishnan
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology, Chennai, Tamil Nadu 600 036, India
| | - Manthiram Karthik Ravichandran
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology, Chennai, Tamil Nadu 600 036, India
| | - Ligy Philip
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology, Chennai, Tamil Nadu 600 036, India.
| |
Collapse
|
15
|
Bobde P, Patel RK, Panchal D, Sharma A, Sharma AK, Dhodapkar RS, Pal S. Utilization of layered double hydroxides (LDHs) and their derivatives as photocatalysts for degradation of organic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:59551-59569. [PMID: 34508320 DOI: 10.1007/s11356-021-16296-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Direct or indirect discharge of wastes containing organic pollutants have contributed to the environmental pollution globally. Decontamination of highly polluted natural resources such as water using an effective treatment is a great challenge for public health and environmental protection. Photodegradation of organic pollutants using efficient photocatalyst has attracted extensive interest due to their stability, effectiveness towards degradation efficiency, energy, and cost efficiency. Among various photocatalysts, layered double hydroxides (LDHs) and their derivatives have shown great potential towards photodegradation of organic pollutants. Herein, we review the mechanism, key factors, and performance of LDHs and their derivatives for the photodegradation of organic pollutants. LDH-based photocatalysts are classified into three different categories namely unmodified LDHs, modified LDHs, and calcined LDHs. Each LDH category is reviewed separately in terms of their photodegradation efficiency and kinetics of degradation. In addition, the effect of photocatalyst dose, pH, and initial concentration of pollutant as well as photocatalytic mechanisms are also summarized. Lastly, the stability and reusability of different photocatalysts are discussed. Challenges related to modeling the LDHs and its derivatives are addressed in order to improve their functional capacity.
Collapse
Affiliation(s)
- Prakash Bobde
- Department of Research & Development, Energy Acres Building, University of Petroleum & Energy Studies (UPES), Bidholi, Dehradun, Uttarakhand, 248007, India
- Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, 440020, India
| | - Ravi Kumar Patel
- Incubation, Energy Acres Building, University of Petroleum & Energy Studies (UPES), Bidholi, Dehradun, Uttarakhand, 248007, India
| | - Deepak Panchal
- Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Abhishek Sharma
- Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amit Kumar Sharma
- Centre for Alternate Energy Research, University of Petroleum and Energy Studies (UPES), Bidholi, Dehradun, Uttarakhand, 248007, India
| | - Rita S Dhodapkar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Director's Research Cell, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, 440020, India
| | - Sukdeb Pal
- Wastewater Technology Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, 440020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
16
|
Scopel CFV, Sousa C, Machado MRF, Santos WGD. BPA toxicity during development of zebrafish embryo. BRAZ J BIOL 2021; 81:437-447. [DOI: 10.1590/1519-6984.230562] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/23/2019] [Indexed: 11/22/2022] Open
Abstract
Abstract Bisphenol A (BPA) is a monomer used in the production of polycarbonate, a polymer commonly found in plastics, epoxy resins and thermal papers. The presence of BPA in food, water, air and dust has been of great concern in recent years not only due to environmental and ecological issues but also because of its supposed risk to public health related to its mutagenic and carcinogenic potential. In this study we evaluated the toxicity of bisphenol A in zebrafish embryos (Danio rerio) and determined the 50% lethal concentration (LC50) of this chemical. BPA was used at concentrations ranging from 1 μM to 100 μM in E3 medium/0.5% dimethylsulfoxide (DMSO) from previously prepared stock solutions in 100% DMSO. Controls included embryos exposed only to E3 medium or supplemented with 0.5% DMSO. Camptothecin (CPT), a known inhibitor of cell proliferation was used as positive control at a concentration of 0.001 μM in E3 medium/0.5% DMSO. Adults zebrafish were placed for breeding a day before the experimental set up, then, viable embryos were collected and selected for use. Experiments were carried out in triplicates, according to specifications from Organization for Economic Cooperation and Development (OECD). One embryo/well (25 embryos per concentration) was distributed in 96 well microplates in presence or absence of the chemicals. The plates were kept in BOD incubators with a controlled temperature of 28.5 ºC and with photoperiod of 14 h light:10 h dark. After 24h, 48h, 72h and 96h exposure, the exposed embryos were evaluated according to the following parameters: mortality, coagulation, rate of heartbeat, hatching and presence of morphological abnormalities. Photography was obtained by photomicroscopy. Apoptosis was evaluated by DNA ladder assay. DNA was extracted by phenol:chloroform method and analyzed by 2% agarose gel electrophoresis. DNA fragments were visualized after ethidium bromide staining in ultraviolet transilluminator. The LC50 determined for BPA was 70 μM after 24 hours, 72 μM after 48 hours, 47 μM after 72 hours and 31 μM after 96 hours exposure. BPA induced morphological and physiological alterations such as yolk sac and pericardial edema, hatching delay or inhibition, spine deformation, decreasing in heartbeat rate and mortality. In conclusion, this study demonstrated that BPA induced marked malformations in zebrafish embryos at concentrations above 25 μM corroborating the current concerns related to the widespread presence of BPA in the air, food and water used by humans as well as in the bodily fluids and tissues.
Collapse
Affiliation(s)
| | - C. Sousa
- Universidade Federal de Goiás, Brasil
| | | | | |
Collapse
|
17
|
Catenza CJ, Farooq A, Shubear NS, Donkor KK. A targeted review on fate, occurrence, risk and health implications of bisphenol analogues. CHEMOSPHERE 2021; 268:129273. [PMID: 33352513 DOI: 10.1016/j.chemosphere.2020.129273] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/16/2020] [Accepted: 12/08/2020] [Indexed: 05/26/2023]
Abstract
Due to its widespread applications and its ubiquitous occurrence in the environment, bisphenol A (BPA) and its alternatives have gained increasing attention, especially in terms of human safety. Like BPA, alternatives such as bisphenol S (BPS), bisphenol F (BPF), and bisphenol AF (BPAF) have also been identified to be endocrine-disrupting chemicals (EDCs). Hence, in this study, we reviewed the literature of BPA and its alternatives mainly published between the period 2018-2020, including their occurrences in the environment, human exposure, and adverse health effects. The review shows that bisphenols are prevalent in the environment with BPA, BPS, and BPF being the most ubiquitous in the environment worldwide, though BPA remains the most abundant bisphenol. However, the levels of BPS and BPF in different environmental media have been constantly increasing and their fates and health risks are being evaluated. The studies show that humans and animals are exposed to bisphenols in many different ways through inhalation and ingestion and the exposure can have serious health effects. Urinary bisphenols (BPs) levels were frequently reported to be positively associated with different health problems such as cancer, infertility, cardiovascular diseases, diabetes and neurodegenerative diseases. Our literature study also shows that BPs generate reactive oxygen species and disrupt various signalling pathways, which could lead to the development of chronic diseases. Activated carbon-based and chitosan-based sorbents have been widely utilized in the removal of BPA in aqueous solutions. In addition, enzymes and microorganisms have also been getting much attention due to their high removal efficiencies.
Collapse
Affiliation(s)
- Cyrene J Catenza
- Department of Physical Sciences, Thompson Rivers University, 805 TRU Way, Kamloops, BC, V2C 0C8, Canada
| | - Amna Farooq
- Department of Physical Sciences, Thompson Rivers University, 805 TRU Way, Kamloops, BC, V2C 0C8, Canada
| | - Noor S Shubear
- Department of Physical Sciences, Thompson Rivers University, 805 TRU Way, Kamloops, BC, V2C 0C8, Canada
| | - Kingsley K Donkor
- Department of Physical Sciences, Thompson Rivers University, 805 TRU Way, Kamloops, BC, V2C 0C8, Canada.
| |
Collapse
|
18
|
Faheem M, Bhandari RK. Detrimental Effects of Bisphenol Compounds on Physiology and Reproduction in Fish: A Literature Review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 81:103497. [PMID: 32950715 PMCID: PMC11491272 DOI: 10.1016/j.etap.2020.103497] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/24/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol-A is one of the most studied endocrine-chemicals, which is widely used all over the world in plastic manufacture. Because of its extensive use, it has become one of the most abundant chemical environmental pollutants, especially in aquatic environments. BPA is known to affect fish reproduction via estrogen receptors but many studies advocate that BPA affects almost all aspects of fish physiology. The possible modes of action include genomic, as well as and non-genomic mechanisms, estrogen, androgen, and thyroid receptor-mediated effects. Due to the high detrimental effects of BPA, various analogs of BPA are being used as alternatives. Recent evidence suggests that the analogs of BPA have similar modes of action, with accompanying effects on fish physiology and reproduction. In this review, a detailed comparison of effects produced by BPA and analogs and their mode of action is discussed.
Collapse
|
19
|
Sabino JA, de Sá Salomão AL, de Oliveira Muniz Cunha PM, Coutinho R, Marques M. Occurrence of organic micropollutants in an urbanized sub-basin and ecological risk assessment. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:130-141. [PMID: 33175334 DOI: 10.1007/s10646-020-02304-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
The João Mendes River - an important contributor to the Piratininga/Itaipu lagoon system in Rio de Janeiro State, Brazil - receives untreated sewage from the population occupying the drainage basin with no proper sanitation infrastructure. The present study assessed the ecological risk resulting from the presence of five organic micropollutants (17α-ethynylestradiol, ibuprofen, trimethoprim, sulfamethoxazole, bisphenol A) based on four monitoring campaigns which included three sampling points and one reference area. Chronic ecotoxicity assays were conducted with the bioindicators R. subcapitata, C. dubia and O. niloticus. Estrogenicity was assessed with genetically modified S. cerevisiae based on YES protocol. The Ecological Risk Assessment was conducted based on the Chemical and the Ecotoxicological Lines of Evidence (LoE). In order to analyse the results from different sampling points, principal component analysis (PCA) was performed using a correlation matrix. Micropollutants below limit of detection or in very low concentrations were detected in the reference area; no significant differences were observed when samples from the reference area were compared to the negative controls for the ecotoxicity assays. A PCA including selected variables revealed the latent relationships among the three sampling points (not verified for the reference area), which confirmed the analytical results. An extreme ecological risk index was estimated for all sampling points in all campaigns. The extreme ecological risk index was mostly associated to the high concentrations of 17α-ethynylestradiol and the antibiotic sulfamethoxazole.
Collapse
Affiliation(s)
- Juliana Azevedo Sabino
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University - UERJ, Rua São Francisco Xavier, 524, 5024E, Maracanã, CEP: 20550-900, Rio de Janeiro, RJ, Brazil
| | - André Luís de Sá Salomão
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University - UERJ, Rua São Francisco Xavier, 524, 5024E, Maracanã, CEP: 20550-900, Rio de Janeiro, RJ, Brazil.
| | - Priscila Maria de Oliveira Muniz Cunha
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University - UERJ, Rua São Francisco Xavier, 524, 5024E, Maracanã, CEP: 20550-900, Rio de Janeiro, RJ, Brazil
| | - Rodrigo Coutinho
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University - UERJ, Rua São Francisco Xavier, 524, 5024E, Maracanã, CEP: 20550-900, Rio de Janeiro, RJ, Brazil
| | - Marcia Marques
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University - UERJ, Rua São Francisco Xavier, 524, 5024E, Maracanã, CEP: 20550-900, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
20
|
Li S, Wen J, He B, Wang J, Hu X, Liu J. Occurrence of caffeine in the freshwater environment: Implications for ecopharmacovigilance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114371. [PMID: 32217417 DOI: 10.1016/j.envpol.2020.114371] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/18/2020] [Accepted: 03/12/2020] [Indexed: 05/08/2023]
Abstract
Owing to the substantial consumption of caffeinated food, beverages, and medicines worldwide, caffeine is considered the most representative pharmaceutically active compound (PhAC) pollutant based on its high abundance in the environment and its suitability as an indicator of the anthropogenic inputs of PhACs in water bodies. This review presents a worldwide analysis of 132 reports of caffeine residues in freshwater environments. The results indicated that more than 70% of the studies reported were from Asia and Europe, which have densely populated and industrially developed areas. However, caffeine pollution was also found to affect areas isolated from human influence, such as Antarctica. In addition, the maximum concentrations of caffeine in raw wastewater, treated wastewater, river, drinking water, groundwater, lake, catchment, reservoir, and rainwater samples were reported to be 3.60 mg/L, 55.5, 19.3, 3.39, 0.683, 174, 44.6, 4.87, and 5.40 μg/L, respectively. The seasonal variation in caffeine residues in the freshwater environment has been demonstrated. In addition, despite the fact that there was a small proportion of wastewater treatment plants in which the elimination rates of caffeine were below 60%, wastewater treatment is generally believed to have a high caffeine removal efficiency. From a pharmacy perspective, we proposed to adopt effective measures to minimize the environmental risks posed by PhACs, represented by caffeine, through a new concept known as ecopharmacovigilance (EPV). Some measures of EPV aimed at caffeine pollution have been advised, as follows: improving knowledge and perceptions about caffeine pollution among the public; listing caffeine as a high-priority PhAC pollutant, which should be targeted in EPV practices; promoting green design and production, rational consumption, and environmentally preferred disposal of caffeinated medicines, foods, and beverages; implementing intensive EPV measures in high-risk areas and during high-risk seasons; and integrating EPV into wastewater treatment programs.
Collapse
Affiliation(s)
- Shulan Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jing Wen
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Bingshu He
- Hubei Province Woman and Child Hospital, Wuhan, 430070, China
| | - Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Xianmin Hu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Juan Liu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
| |
Collapse
|
21
|
Faheem M, Adeel M, Khaliq S, Lone KP, El-Din-H-Sayed A. Bisphenol-A induced antioxidants imbalance and cytokines alteration leading to immune suppression during larval development of Labeo rohita. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:26800-26809. [PMID: 32382907 DOI: 10.1007/s11356-020-08959-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Recently, the oxidative stress and immunotoxicity biomarkers have been extensively used in embryotoxicity using fish embryos as promising models especially after exposure to chemical-like environmental estrogens. Bisphenol-A (BPA) is an estrogenic endocrine disruptor and is ubiquitous in the aquatic environment. Larvae of Labeo rohita were exposed to low concentrations of BPA (10, 100, 1000 μg/l) for 21 days. Innate immune system, antioxidants parameters, and developmental alterations were used as biomarkers. Exposure to BPA caused developmental abnormalities including un-inflated swim bladder, delayed yolk sac absorption, spinal curvature, and edema of pericardium. Lipid peroxidation increased and activity of catalase (p < 0.05), superoxide dismutase (p < 0.05), and glutathione peroxidase (p < 0.01) decreased after exposure to BPA. Level of reduced glutathione also decreased (p < 0.05) in BPA-exposed group. Lower expression of tumor necrosis factor-α (p < 0.05) and interferon-γ (p < 0.001) was observed in BPA-exposed groups while expression of interleukin-10 increased (p < 0.05) in larvae exposed to 10 μg/l BPA. Moreover, exposure of BPA caused a concentration-dependent increase in expression of heat shock protein 70 (p < 0.05). The present study showed that the exposure to BPA in early life stages of Labeo rohita caused oxidative stress and suppress NF-κB signaling pathway leading to immunosuppression. The results presented here demonstrate the cross talk between heat shock protein 70 and cytokines expression.
Collapse
Affiliation(s)
| | | | - Saba Khaliq
- Department of Physiology and Cell Biology, University of Health Sciences, Lahore, Pakistan
| | - Khalid P Lone
- Department of Zoology, GC University, Lahore, Pakistan
| | | |
Collapse
|
22
|
Reichert G, Hilgert S, Fuchs S, Azevedo JCR. Emerging contaminants and antibiotic resistance in the different environmental matrices of Latin America. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113140. [PMID: 31541833 DOI: 10.1016/j.envpol.2019.113140] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/14/2019] [Accepted: 08/29/2019] [Indexed: 05/24/2023]
Abstract
This review aims to gather and summarize information about the occurrence of emerging contaminants and antibiotic resistance genes in environmental matrices in Latin America. We aim to contribute to future research by compiling a list of priority pollutants adjusted to the needs and characteristics of Latin America, according to the data presented in this study. In order to perform a comprehensive research and secure a representative and unbiased amount of quality data concerning emerging contaminants in Latin America, the research was performed within the Scopus® database in a time frame from 2000 to July 2019. The countries with higher numbers of published articles were Brazil and México, while most studies were performed in the surroundings of Mexico City and in Southern and Southeastern Brazil. The main investigated environmental matrices were drinking water and surface water. The presence of antibiotic resistance was frequently reported, mainly in Brazil. Monitoring efforts should be performed in other countries in Latin America, as well as in other regions of Brazil and México. The suggested priority list for monitoring of emerging contaminants in Latin America covers: di(2-ethylhexyl) phthalate (DEHP), bisphenol-A (BP-A), 4-nonylphenol (4-NP), triclosan (TCS), estrone (E1), estradiol (E2), ethinylestradiol (EE2), tetracycline (TC), amoxicillin (AMOX), norfloxacin (NOR), ampicillin (AMP) and imipenem (IMP). We hope this list serves as a basis for the orientation of the future research and monitoring projects to better understand the distribution and concentration of the listed emerging substances.
Collapse
Affiliation(s)
- Gabriela Reichert
- Department of Hydraulics and Sanitation, Federal University of Parana, Av. Coronel Francisco Heráclito dos Santos, 210, 81531-980, Curitiba PR, Brazil; Capes Foundation, Ministry of Education of Brazil, Brasilia, 70040-020, DF, Brazil.
| | - Stephan Hilgert
- Institute for Water and River Basin Management, Department of Aquatic Environmental Engineering, Karlsruhe Institute of Technology, Gotthard-Franz-Str. 3, Building 50.31, 3rd Floor, 76131 Karlsruhe, Germany
| | - Stephan Fuchs
- Institute for Water and River Basin Management, Department of Aquatic Environmental Engineering, Karlsruhe Institute of Technology, Gotthard-Franz-Str. 3, Building 50.31, 3rd Floor, 76131 Karlsruhe, Germany
| | - Júlio César Rodrigues Azevedo
- Department of Hydraulics and Sanitation, Federal University of Parana, Av. Coronel Francisco Heráclito dos Santos, 210, 81531-980, Curitiba PR, Brazil; Capes Foundation, Ministry of Education of Brazil, Brasilia, 70040-020, DF, Brazil; Department of Chemistry and Biology, Federal Technology University of Paraná, Rua Deputado Heitor Alencar Furtado, 5000, 81280-340, Curitiba PR, Brazil
| |
Collapse
|
23
|
Abstract
The development of civilization entails a growing demand for consumer goods. A side effect of the production and use of these materials is the production of solid waste and wastewater. Municipal and industrial wastewater usually contain a large amount of various organic compounds and are the main source of pollution of the aquatic environment with these substances. Therefore, the search for effective methods of wastewater and other polluted water treatment is an important element of caring for the natural environment. This Special Issue contains nine peer-review articles presenting research on the determination and removal of environmentally hazardous organic compounds from aqueous samples. The presented articles were categorized into three major fields: new approaches to the degradation of water pollutants, new methods of isolation and determination of the emerging organic contaminants (EOCs), and the occurrence of EOCs in the water environment. These articles present only selected issues from a very wide area, which is the removal of organic pollution in water environment, but can serve as important references for future studies.
Collapse
|