1
|
Sousa MDB, Pereira ML, Cruz FPN, Romano LH, Albuquerque YR, Correia RO, Oliveira FM, Primo FL, Baptista-Neto Á, Sousa CP, Anibal FF, Moraes LAB, Badino AC. Red biocolorant from endophytic Talaromyces minnesotensis: production, properties, and potential applications. Appl Microbiol Biotechnol 2023; 107:3699-3716. [PMID: 37083969 DOI: 10.1007/s00253-023-12491-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 04/22/2023]
Abstract
Fungal colorants are gradually entering the global color market, given their advantages of being less harmful to human health, as well as having greater stability and biotechnological potential, compared to other natural sources. The present work concerns the isolation and identification of an endophytic filamentous fungus, together with the chemical characterization and assessment of the fluorescence, toxicity, stability, and application potential of its synthesized red colorant. The endophytic fungus was isolated from Hymenaea courbaril, a tree from the Brazilian savannah, and was identified as Talaromyces minnesotensis by phenotypic and genotypic characterization. Submerged cultivation of the fungus resulted in the production of approximately 12 AU500 of a red biocolorant which according to LC-DAD-MS analysis is characterized by being a complex mixture of molecules of the azaphilone class. Regarding cytotoxicity assays, activity against human hepatoblastoma (HepG2) cells was only observed at concentrations above 5.0 g L-1, while antimicrobial effects against pathogenic bacteria and yeast occurred at concentrations above 50.0 g L-1. The biocolorant showed high stability at neutral pH values and low temperatures (10 to 20 °C) and high half-life values (t1/2), which indicates potential versatility for application in different matrices, as observed in tests using detergent, gelatin, enamel, paint, and fabrics. The results demonstrated that the biocolorant synthesized by Talaromyces minnesotensis has potential for future biotechnological applications. KEY POINTS: • An endophytic fungus, which was isolated and identified, synthesize a red colorant. • The colorant showed fluorescence property, low toxicity, and application potential. • The red biocolorant was highly stable at pH 8.0 and temperatures below 20°C.
Collapse
Affiliation(s)
- Marina D B Sousa
- Graduate Program of Chemical Engineering, Department of Chemical Engineering, Federal University of São Carlos, C.P. 676, São Carlos, São Paulo, 13565-905, Brazil
| | - Murilo L Pereira
- Chemical Engineering Undergraduate Course, Department of Chemical Engineering, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Felipe P N Cruz
- Graduate Program of Biotechnology, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
- Laboratory of Microbiology and Biomolecules - LaMiB, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Luis H Romano
- Graduate Program of Biotechnology, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
- Laboratory of Microbiology and Biomolecules - LaMiB, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Yulli R Albuquerque
- Graduate Program of Biotechnology, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
- Laboratory of Inflammation and Infectious Diseases - LIDI, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Ricardo O Correia
- Graduate Program of Biotechnology, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
- Laboratory of Inflammation and Infectious Diseases - LIDI, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Fernanda M Oliveira
- Graduate Program of Chemistry, Laboratory of Mass Spectrometry Applied to Natural Products, Chemistry Department, School of Philosophy, Sciences and Languages, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernando L Primo
- Department of Engineering of Bioprocess and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, 14800-903, Brazil
| | - Álvaro Baptista-Neto
- Department of Engineering of Bioprocess and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, 14800-903, Brazil
| | - Cristina P Sousa
- Graduate Program of Biotechnology, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
- Laboratory of Microbiology and Biomolecules - LaMiB, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Fernanda F Anibal
- Graduate Program of Biotechnology, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
- Laboratory of Inflammation and Infectious Diseases - LIDI, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Luiz Alberto B Moraes
- Graduate Program of Chemistry, Laboratory of Mass Spectrometry Applied to Natural Products, Chemistry Department, School of Philosophy, Sciences and Languages, University of São Paulo, Ribeirão Preto, Brazil
| | - Alberto C Badino
- Graduate Program of Chemical Engineering, Department of Chemical Engineering, Federal University of São Carlos, C.P. 676, São Carlos, São Paulo, 13565-905, Brazil.
| |
Collapse
|
2
|
Digestive enzymes inhibition, antioxidant and antiglycation activities of phenolic compounds from jabuticaba (Plinia cauliflora) peel. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
3
|
Samota MK, Sharma M, Kaur K, Sarita, Yadav DK, Pandey AK, Tak Y, Rawat M, Thakur J, Rani H. Onion anthocyanins: Extraction, stability, bioavailability, dietary effect, and health implications. Front Nutr 2022; 9:917617. [PMID: 35967791 PMCID: PMC9363841 DOI: 10.3389/fnut.2022.917617] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Anthocyanins are high-value compounds, and their use as functional foods and their natural colorant have potential health benefits. Anthocyanins seem to possess antioxidant properties, which help prevent neuronal diseases and thereby exhibit anti-inflammatory, chemotherapeutic, cardioprotective, hepatoprotective, and neuroprotective activities. They also show different therapeutic effects against various chronic diseases. Anthocyanins are present in high concentrations in onion. In recent years, although both conventional and improved methods have been used for extraction of anthocyanins, nowadays, improved methods are of great importance because of their higher yield and stability of anthocyanins. In this review, we compile anthocyanins and their derivatives found in onion and the factors affecting their stability. We also analyze different extraction techniques of anthocyanins. From this point of view, it is very important to be precisely aware of the impact that each parameter has on the stability and subsequently potentiate its bioavailability or beneficial health effects. We present up-to-date information on bioavailability, dietary effects, and health implications of anthocyanins such as antioxidant, antidiabetic, anticancerous, antiobesity, cardioprotective, and hepatoprotective activities.
Collapse
Affiliation(s)
- Mahesh Kumar Samota
- Horticulture Crop Processing (HCP) Division, ICAR-Central Institute of Post-Harvest Engineering & Technology (CIPHET), Punjab, India
| | - Madhvi Sharma
- Post Graduate Department of Biotechnology, Khalsa College, Amritsar, Punjab, India
| | - Kulwinder Kaur
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Sarita
- College of Agriculture, Agriculture University, Jodhpur, Rajasthan, India
| | - Dinesh Kumar Yadav
- Division of Environmental Soil Science, ICAR-Indian Institute of Soil Science (IISS), Bhopal, MP, India
| | - Abhay K Pandey
- Department of Mycology and Microbiology, Tea Research Association-North Bengal Regional R & D Center, Nagrakata, West Bengal, India
| | - Yamini Tak
- Agricultural Research Station (ARS), Agriculture University, Kota, Rajasthan, India
| | - Mandeep Rawat
- Department of Horticulture, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Julie Thakur
- Department of Botany, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Heena Rani
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
4
|
Santos EM, Sánchez-Ortega I, Lorenzo JM, Domínguez R, Munekata PES, Falfán-Cortés RN, Ibarra IS, Rangel-Vargas E. Use of Hibiscus sabdariffa Calyxes in Meat Products. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.876042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In the search for new ingredients that counteract some of the problems associated with the consumption of meat and meat products like high contents of saturated fat, salt, cholesterol, the absence of dietary fiber, and the presence of synthetic additives, Hibiscus sabdariffa calyxes have shown good colorant, antimicrobial, and antioxidant properties. This research paper studies the use of H. sabdariffa roselle calyxes directly or by means of extracts in meat and meat products. Although its application is incipient, the results are promising. The vibrant red color of the calyxes makes calyxes suitable for their use in meat products even though the concentration must be optimized since the acid taste can detract from the overall acceptance. The antimicrobial properties contribute to safer meat products, and antioxidant effects, helping to extend the shelf life of meat products and reducing oxidative processes. Nonetheless, achieving the desired effects is still challenging since several factors can affect these functional properties.
Collapse
|
5
|
High-Performance Extraction Process of Anthocyanins from Jussara (Euterpe edulis) Using Deep Eutectic Solvents. Processes (Basel) 2022. [DOI: 10.3390/pr10030615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
New strategies for obtaining target bioactive compounds and natural pigments with the use of “green solvents” are consistently being developed, and deep eutectic solvents are (DES) a great alternative. This work established the significant variables and models for anthocyanin extraction, using DES and experimental design, of Euterpe edulis Mart. (jussara) fruit pulp, an endangered palm tree from the Brazilian Atlantic Forest. From a screening of seven initially tested DES, choline chloride/xylitol-based solvents had the best results with up to 42% increase in the total anthocyanin yield compared to methanolic extraction. Antioxidant assays also revealed a maximum antioxidant capacity of 198.93 mmol Trolox/100 g dry weight basis. The DES extract showed slower degradation to heat at 60° and 90 °C (2.5 times) and indoor constant light source (1.9 times) than methanolic extracts. The optimal extract also revealed slight inhibition of S. enterica and S. aureus growth in the agar plate.
Collapse
|
6
|
A stability-indicating HPLC-UV method for the quantification of anthocyanin in Roselle ( Hibiscus Sabdariffa L.) spray-dried extract, oral powder, and lozenges. Heliyon 2022; 8:e09177. [PMID: 35368538 PMCID: PMC8971634 DOI: 10.1016/j.heliyon.2022.e09177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/17/2021] [Accepted: 03/17/2022] [Indexed: 11/22/2022] Open
Abstract
Hibiscus sabdariffa L. (H.S.) plant and its calyces have received much attention from researchers because of their potential medicinal and nutritional values. Calyces are the major source of anthocyanin in this plant. Therefore, a well-developed, efficient, and accurate analytical method is needed to assure proper standardization and control the quality of H.S. plant herbal and nutraceutical products. The objective of this work is to develop a simple, rapid, stability-indicating HPLC-UV method for the quantitative determination of anthocyanin in spray-dried aqueous extract (SDE), oral powder, and compressible lozenges formulations using Delphinidin-3-O-sambubioside (Dp3S) as a marker compound. The chromatographic conditions were optimized using Eclipse plus® C18 column. The mobile phase comprised water acidified with 0.2% formic acid (FA) and acetonitrile (ACN) (90:10, v/v) using a gradient system at a flow rate of 0.8 mL/min. The detection wavelength was 525 nm. The column was maintained at 45 °C, and the injection volume was 15 μL. The developed method was validated according to the international conference of harmonization (ICH) guidelines for linearity, detection and quantitation limits, accuracy, precision, specificity, and robustness. Forced degradation studies under acid, base, oxidation, heat, and U.V light, were performed on the pure compound, extract, and the H.S. developed formulations. Significant degradation of the compound was observed under all tested conditions except U.V. light, where degradation was minimum. There was no interference from impurities, degradation products, or excipients at the retention time of Dp3S 3.2 min indicating the specificity of the method. The developed method was statistically confirmed to be accurate, precise, and reproducible. This simple, rapid, and specific method can be employed efficiently to determine anthocyanin in H.S. plant extract and nutraceutical products.
Collapse
|
7
|
Ruscinc N, Morocho-Jácome AL, Martinez RM, Magalhães WV, Escudeiro CC, Giarolla J, Rosado C, Velasco MVR, Baby AR. Vaccinium myrtillus L. extract associated with octocrylene, bisoctrizole and titanium dioxide: in vitro and in vivo tests to evaluate safety and efficacy. J Cosmet Dermatol 2022; 21:4765-4774. [PMID: 35029052 DOI: 10.1111/jocd.14779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/10/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The harmful effects induced by ultraviolet exposition and the significant increment in skin cancer diagnosis confirm the necessity to develop effective and safe sunscreens. Limited efficacy and cutaneous adverse reactions of traditional formulations drove the incorporation of natural extracts into multifunctional sunscreens. Vaccinium myrtillus L. extract (VME), that contains anthocyanins and flavonoids, is a potential candidate for such systems. METHODS Considering that, we performed in vitro and in vivo tests to evaluate the sun protection factor (SPF), photostability and safety of sunscreen samples containing VME. RESULTS As main results, the SPF was reduced in both in vitro and in vivo evaluation in the presence of VME, nonetheless, the samples were photostable and safe. CONCLUSION Further investigation is required to better understand the unexpected effects of VME over photoprotection, decreasing the SPF value. As a conclusion, even with interesting findings, we highlight the importance of case-by-case investigations to develop multifunctional bioactive sunscreens.
Collapse
Affiliation(s)
- Nadia Ruscinc
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Ana Lucía Morocho-Jácome
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Renata Miliani Martinez
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | | | - Jeanine Giarolla
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Catarina Rosado
- CBIOS - Universidade Lusófona's Research Center for Biosciences and Health Technologies, Lisbon, Portugal
| | | | - André Rolim Baby
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
8
|
Enaru B, Drețcanu G, Pop TD, Stǎnilǎ A, Diaconeasa Z. Anthocyanins: Factors Affecting Their Stability and Degradation. Antioxidants (Basel) 2021; 10:antiox10121967. [PMID: 34943070 PMCID: PMC8750456 DOI: 10.3390/antiox10121967] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/27/2021] [Accepted: 12/08/2021] [Indexed: 01/16/2023] Open
Abstract
Anthocyanins are secondary metabolites and water-soluble pigments belonging to the phenolic group, with important functions in nature such as seed dispersal, pollination and development of plant organs. In addition to these important roles in plant life, anthocyanins are also used as natural pigments in various industries, due to the color palette they can produce from red to blue and purple. In addition, recent research has reported that anthocyanins have important antioxidant, anticancer, anti-inflammatory and antimicrobial properties, which can be used in the chemoprevention of various diseases such as diabetes, obesity and even cancer. However, anthocyanins have a major disadvantage, namely their low stability. Thus, their stability is influenced by a number of factors such as pH, light, temperature, co-pigmentation, sulfites, ascorbic acid, oxygen and enzymes. As such, this review aims at summarizing the effects of these factors on the stability of anthocyanins and their degradation. From this point of view, it is very important to be precisely aware of the impact that each parameter has on the stability of anthocyanins, in order to minimize their negative action and subsequently potentiate their beneficial health effects.
Collapse
|
9
|
Salar FJ, Periago PM, Agulló V, García-Viguera C, Fernández PS. High Hydrostatic Pressure vs. Thermal Pasteurization: The Effect on the Bioactive Compound Profile of a Citrus Maqui Beverage. Foods 2021; 10:2416. [PMID: 34681464 PMCID: PMC8535227 DOI: 10.3390/foods10102416] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 12/20/2022] Open
Abstract
The effects of high hydrostatic pressure (HHP) compared to thermal pasteurization (TP) were studied in healthy citrus-maqui beverages. The impact of the processing technologies on the microbiological and phytochemical profile was assessed by applying two HHP treatments at 450 and 600 MPa for 180 s and TP at 85 °C for 15 s. The shelf life under refrigeration (4 °C) and room temperature (20 °C) was monitored for 90 days. All treatments ensured microbiological stability at both storage temperatures. Aside from that, the physicochemical parameters were not significantly different after processing or throughout the storage period. Regarding color parameters, an increase in the reddish coloration was observed during storage for those beverages treated by HHP. In general, phenolic compounds were little affected by the processing technique, even when treatment under HHP was more stable than by TP during storage. On the other hand, vitamin C showed great degradation after processing under any condition. It can be concluded that HHP is an effective alternative to thermal treatments, achieving effective microbial inactivation and extending the shelf life of the juices by contributing to a better preservation of color and bioactive compounds.
Collapse
Affiliation(s)
- Francisco J. Salar
- Phytochemistry and Healthy Foods Lab (LabFAS), Department of Food Science and Technology, (CEBAS-CSIC), University Campus of Espinardo, Edif. 25, 30100 Murcia, Spain; (F.J.S.); (V.A.)
| | - Paula M. Periago
- Agronomic Engineering Department, Universidad Politécnica de Cartagena (UPCT), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain; (P.M.P.); (P.S.F.)
- Associated Unit of Food Quality and Risk Assessment CEBAS-CSIC/UPCT, 30100 Murcia, Spain
| | - Vicente Agulló
- Phytochemistry and Healthy Foods Lab (LabFAS), Department of Food Science and Technology, (CEBAS-CSIC), University Campus of Espinardo, Edif. 25, 30100 Murcia, Spain; (F.J.S.); (V.A.)
| | - Cristina García-Viguera
- Phytochemistry and Healthy Foods Lab (LabFAS), Department of Food Science and Technology, (CEBAS-CSIC), University Campus of Espinardo, Edif. 25, 30100 Murcia, Spain; (F.J.S.); (V.A.)
- Associated Unit of Food Quality and Risk Assessment CEBAS-CSIC/UPCT, 30100 Murcia, Spain
| | - Pablo S. Fernández
- Agronomic Engineering Department, Universidad Politécnica de Cartagena (UPCT), Paseo Alfonso XIII, 48, 30203 Cartagena, Spain; (P.M.P.); (P.S.F.)
- Associated Unit of Food Quality and Risk Assessment CEBAS-CSIC/UPCT, 30100 Murcia, Spain
| |
Collapse
|
10
|
Oancea S. A Review of the Current Knowledge of Thermal Stability of Anthocyanins and Approaches to Their Stabilization to Heat. Antioxidants (Basel) 2021; 10:1337. [PMID: 34572968 PMCID: PMC8468304 DOI: 10.3390/antiox10091337] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 01/10/2023] Open
Abstract
Anthocyanins are colored valuable biocompounds, of which extraction increases globally, although functional applications are restrained by their limited environmental stability. Temperature is a critical parameter of food industrial processing that impacts on the food matrix, particularly affecting heat-sensitive compounds such as anthocyanins. Due to the notable scientific progress in the field of thermal stability of anthocyanins, an analytical and synthetic integration of published data is required. This review focuses on the molecular mechanisms and the kinetic parameters of anthocyanin degradation during heating, both in extracts and real food matrices. Several kinetic models (Arrhenius, Eyring, Ball) of anthocyanin degradation were studied. Crude extracts deliver more thermally stable anthocyanins than purified ones. A different anthocyanin behavior pattern within real food products subjected to thermal processing has been observed due to interactions with some nutrients (proteins, polysaccharides). The most recent studies on the stabilization of anthocyanins by linkages to other molecules using classical and innovative methods are summarized. Ensuring appropriate thermal conditions for processing anthocyanin-rich food will allow a rational design for the future development of stable functional products, which retain these bioactive molecules and their functionalities to a great extent.
Collapse
Affiliation(s)
- Simona Oancea
- Department of Agricultural Sciences and Food Engineering, "Lucian Blaga" University of Sibiu, 7-9 Dr. Ion Ratiu Street, 550024 Sibiu, Romania
| |
Collapse
|
11
|
Marak S, Shumilina E, Kaushik N, Falch E, Dikiy A. Effect of Different Drying Methods on the Nutritional Value of Hibiscus sabdariffa Calyces as Revealed by NMR Metabolomics. Molecules 2021; 26:molecules26061675. [PMID: 33802805 PMCID: PMC8002443 DOI: 10.3390/molecules26061675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
Red mature calyces of Hibiscus sabdariffa were collected from 16 different locations in Meghalaya, India. Samples were processed using shade drying (SD) and tray drying (TD). NMR spectroscopy was used to assess the metabolic composition of the calyces. In this study, 18 polar metabolites were assigned using 1D and 2D NMR spectra, and 10 of them were quantified. Proximate analysis showed that the TD method is more efficient at reducing moisture and maintaining the ash content of the Hibiscus biomass. NMR metabolomics indicates that the metabolite composition significantly differs between SD and TD samples and is more stable in TD plant processing. The differences in post-harvest drying has a greater impact on the metabolite composition of Hibiscus than the plant location.
Collapse
Affiliation(s)
- Sengnolotha Marak
- Amity Institute of Food Technology, Amity University Uttar Pradesh, Noida 201313, India;
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida 201313, India
| | - Elena Shumilina
- Department of Biotechnology and Food Sciences, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (E.F.); (A.D.)
- Correspondence: (E.S.); or (N.K.); Tel.: +91-9811392249 (N.K.)
| | - Nutan Kaushik
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida 201313, India
- Correspondence: (E.S.); or (N.K.); Tel.: +91-9811392249 (N.K.)
| | - Eva Falch
- Department of Biotechnology and Food Sciences, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (E.F.); (A.D.)
| | - Alexander Dikiy
- Department of Biotechnology and Food Sciences, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway; (E.F.); (A.D.)
| |
Collapse
|
12
|
Methodologies in the Analysis of Phenolic Compounds in Roselle (Hibiscus sabdariffa L.): Composition, Biological Activity, and Beneficial Effects on Human Health. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7020035] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Roselle (Hibiscus sabdariffa L.), as an edible flower, has long provided an array of positive effects on human health. This benefit is a result of phenolic compounds that are naturally present mainly in the calyx. Plentiful medicinal remedies and functional foods based on this flower are available worldwide, as supported by the studies of phenolic compounds in recent decades. This paper aims to provide a comprehensive review of the composition, biological activity, and beneficial effects on human health of phenolic compounds in roselle. This review was performed in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. A structured search in the published literature for phenolics compositions in roselle was required prior to the evaluation on the validity of the reported analytical methods. Reliable identification and quantification of phenolic compounds in roselle can be achieved by employing the proper extraction and separation methods. With ample alternative analytical methods discussed here, this review provided an aid for comprehending and selecting the most appropriate method for a particular study. The applications of the analytical methods highlighted indicated that phenolic acids, flavonoids, and their derivatives have been identified and quantified in roselle with a range of biological activities and beneficial effects on human health. It was also disclosed that the composition and concentration of phenolic compounds in roselle vary due to the growth factors, cultivars, and environmental influence. Finally, apart from the research progress carried out with roselle during the last ten years, this review also proposed relevant future works.
Collapse
|
13
|
Escobar-Ortiz A, Castaño-Tostado E, Rocha-Guzmán NE, Gallegos-Infante JA, Reynoso-Camacho R. Anthocyanins extraction from Hibiscus sabdariffa and identification of phenolic compounds associated with their stability. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:110-119. [PMID: 32608089 DOI: 10.1002/jsfa.10620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/06/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND One of the main disadvantages of red pigments used in foods is their low extraction yield and storage stability. Roselle flowers are sources of anthocyanins; however, these are unstable during storage, but this could be improved with phenolic compounds, which establish bonds with the anthocyanins. The aim of this work was to identify conditions to improve the extraction efficiency and color stability of Hibiscus sabdariffa extract and, furthermore, to identify the phenolic compounds associated with color stability of roselle. RESULTS The temperature of extraction (35 and 75 °C), the time of extraction (15 and 60 min), type of acid (acetic and citric), percentage of acid (0.5 and 2.0%) and the water:ethanol ratio (20:80 and 80:20) did not affect the yield of anthocyanins; only the solid:solvent ratio had an effect in the anthocyanin extraction yield. The extraction with 80% ethanol decreased up to 50% the anthocyanin degradation in the extracts stored at 4, 25, 35, 45, and 80 °C. Phenolic acids and flavonoids were quantified by ultrahigh-performance liquid chromatography coupled with triple quadrupole electrospray ionization mass spectrometry. These compounds were analyzed using principal component analysis, and the H. sabdariffa extract, with greater stability, was found to be associated with the presence of quercetin, myricetin, kaempferol 3-O-glucose, ellagic acid, and rutin. CONCLUSION H. sabdariffa extract with increased color stability was extracted with a higher proportion of ethanol and the improvement in the color stability was attributed to the co-extraction of phenolic compounds, principally flavonoids that could interact with anthocyanins and stabilize them. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Alexandro Escobar-Ortiz
- Departamento de Investigación y Posgrado en Alimentos (DIPA), Facultad de Química, Universidad Autónoma de Querétaro, C.U., Cerro de las Campanas S/N, Querétaro, 76010, Mexico
| | - Eduardo Castaño-Tostado
- Departamento de Investigación y Posgrado en Alimentos (DIPA), Facultad de Química, Universidad Autónoma de Querétaro, C.U., Cerro de las Campanas S/N, Querétaro, 76010, Mexico
| | - Nuria Elizabeth Rocha-Guzmán
- Departamento de Ingenierías Química y Bioquímica, Unidad de Posgrado, Investigación y Desarrollo Tecnológico (UPIDET), TecNM/Instituto Tecnológico de Durango, Durango, Mexico
| | - José Alberto Gallegos-Infante
- Departamento de Ingenierías Química y Bioquímica, Unidad de Posgrado, Investigación y Desarrollo Tecnológico (UPIDET), TecNM/Instituto Tecnológico de Durango, Durango, Mexico
| | - Rosalía Reynoso-Camacho
- Departamento de Investigación y Posgrado en Alimentos (DIPA), Facultad de Química, Universidad Autónoma de Querétaro, C.U., Cerro de las Campanas S/N, Querétaro, 76010, Mexico
| |
Collapse
|
14
|
Preparation and Characterization of Double-Layered Microcapsules Containing Nano-SiO2. INT J POLYM SCI 2021. [DOI: 10.1155/2021/6675278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The double-layered microencapsulation technology has been used in many fields. In this study, the double-layered microencapsulated anthocyanin of Passiflora edulis shells (APESs) was prepared via complex coacervation using gelatin and gum Arabic as the first wall materials (single-layered microcapsules (SMs)) and using gum Arabic containing nano-SiO2 as the second wall material (double-layered microcapsules (DMs)/nano-SiO2) to enhance the stability of the core material. Properties of microcapsules were analyzed on the basis of EE, morphology, scanning electron microscopy (SEM), droplet size, moisture content, and differential scanning calorimetry (DSC). The results showed that the EE values of SMs, DMs, and DMs/nano-SiO2 were 96.12%, 97.24%, and 97.85%, respectively. DMs/nano-SiO2 had the lowest moisture content (2.17%). The average droplet size of DMs/nano-SiO2 (34.93 μm) was higher than those of SMs and DMs. DSC indicated that the melting temperature of DMs/nano-SiO2 was 73.61°C and 45.33°C higher than those of SMs and DMs, respectively. SEM demonstrated that DMs/nano-SiO2 had the smoothest surface compared with the other two kinds of microcapsules. The storage stability of APESs and their microcapsules indicated that the stability of the microcapsules was improved by adding DMs/nano-SiO2 into the wall material of microcapsules. These results indicated double-layered microcapsules containing silica nanoparticles contribute to the stability of the core material.
Collapse
|
15
|
Noirbent G, Brunel D, Bui TT, Péralta S, Aubert PH, Gigmes D, Dumur F. D–A dyads and A–D–A triads based on ferrocene: push–pull dyes with unusual behaviours in solution. NEW J CHEM 2021. [DOI: 10.1039/d1nj01680f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Ferrocene has been extensively used for the design of chromophores with reversible electrochemical properties.
Collapse
Affiliation(s)
| | - Damien Brunel
- Aix Marseille Univ
- CNRS
- ICR UMR 7273
- F-13397 Marseille
- France
| | | | | | | | - Didier Gigmes
- Aix Marseille Univ
- CNRS
- ICR UMR 7273
- F-13397 Marseille
- France
| | - Frédéric Dumur
- Aix Marseille Univ
- CNRS
- ICR UMR 7273
- F-13397 Marseille
- France
| |
Collapse
|
16
|
Santos MCD, Bicas JL. Natural blue pigments and bikaverin. Microbiol Res 2020; 244:126653. [PMID: 33302226 DOI: 10.1016/j.micres.2020.126653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/26/2020] [Accepted: 11/13/2020] [Indexed: 10/22/2022]
Abstract
In last years, the main studied microbial sources of natural blue pigments have been the eukaryotic algae, Rhodophytes and Cryptophytes, and the cyanobacterium Arthrospira (Spirulina) platensis, responsible for the production of phycocyanin, one of the most important blue compounds approved for food and cosmetic use. Recent research also includes the indigoidine pigment from the bacteria Erwinia, Streptomyces and Photorhabdus. Despite these advances, there are still few options of microbial blue pigments reported so far, but the interest in these products is high due to the lack of stable natural blue pigments in nature. Filamentous fungi are particularly attractive for their ability to produce pigments with a wide range of colors. Bikaverin is a red metabolite present mainly in species of the genus Fusarium. Although originally red, the biomass containing bikaverin changes its color to blue after heat treatment, through a mechanism still unknown. In addition to the special behavior of color change by thermal treatment, bikaverin has beneficial biological properties, such as antimicrobial and antiproliferative activities, which can expand its use for the pharmaceutical and medical sectors. The present review addresses the production natural blue pigments and focuses on the properties of bikaverin, which can be an important source of blue pigment with potential applications in the food industry and in other industrial sectors.
Collapse
|
17
|
Coelho Leandro G, Capello C, Luiza Koop B, Garcez J, Rodrigues Monteiro A, Ayala Valencia G. Adsorption-desorption of anthocyanins from jambolan (Syzygium cumini) fruit in laponite® platelets: Kinetic models, physicochemical characterization, and functional properties of biohybrids. Food Res Int 2020; 140:109903. [PMID: 33648205 DOI: 10.1016/j.foodres.2020.109903] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 10/30/2020] [Accepted: 11/07/2020] [Indexed: 01/09/2023]
Abstract
This study aims to develop and characterize biohybrids (BH) based on anthocyanins (ACNs) from jambolan (Syzygium cumini) and laponite® (Lap). ACNs from jambolan fruit were extracted using an acidified water solution at pH 1. ACNs were recovered from extract using Lap as adsorbent between 5 °C and 40 °C. There was no significant effect (p > 0.05) of the temperature on the adsorption process of ACNs. Thus, the process was classified as physical adsorption in heterogeneous sites where ACNs were stabilized by means of van der Waals force, π - π force, and hydrogen bonding on the Lap surface. After adsorption, the BH powder appeared to have an amorphous structure and red color. However, the color changed at pH ≥ 7. In addition, the obtained BH showed antioxidant properties and high stability when exposed to visible light irradiation. This research reports new information about the valorization and application of ACNs from jambolan for food industrial applications.
Collapse
Affiliation(s)
- Gabriel Coelho Leandro
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Cristiane Capello
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Betina Luiza Koop
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Jussara Garcez
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Alcilene Rodrigues Monteiro
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Germán Ayala Valencia
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
18
|
Jurić S, Jurić M, Król-Kilińska Ż, Vlahoviček-Kahlina K, Vinceković M, Dragović-Uzelac V, Donsì F. Sources, stability, encapsulation and application of natural pigments in foods. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1837862] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Slaven Jurić
- Faculty of Agriculture, Department of Chemistry, University of Zagreb, Zagreb, Croatia
| | - Marina Jurić
- Faculty of Pharmacy and Biochemistry, Department of Pharmacognosy, University of Zagreb, Zagreb, Croatia
| | - Żaneta Król-Kilińska
- Department of Functional Food Products Development, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | | | - Marko Vinceković
- Faculty of Agriculture, Department of Chemistry, University of Zagreb, Zagreb, Croatia
| | - Verica Dragović-Uzelac
- Faculty of Food Technology and Biotechnology, Department of Food Engineering, University of Zagreb, Zagreb, Croatia
| | - Francesco Donsì
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
| |
Collapse
|
19
|
Guimarães M, Mateus N, de Freitas V, Cruz L. Improvement of the Color Stability of Cyanidin-3-glucoside by Fatty Acid Enzymatic Acylation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10003-10010. [PMID: 30187750 DOI: 10.1021/acs.jafc.8b03536] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Anthocyanins are water-soluble pigments with limited application in lipophilic matrices such as lipid-based foods and cosmetic formulations. In this work, the liposolubility improvement of cyanidin-3-glucoside (cy3glc) was performed by enzymatic esterification with saturated fatty acids with variable chain lengths, and their thermostabilities were evaluated at different pH values in a lipophilic medium (an aqueous sodium dodecyl sulfate solution) by means of UV-vis spectroscopy. Overall, lipophilic cy3glc derivatives showed improved color stability and lowered sensitivity to thermal degradation than nonmodified cy3glc in an SDS micellar solution between pH 3 and 7.
Collapse
Affiliation(s)
- Marta Guimarães
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências , Universidade do Porto , Rua do Campo Alegre, 687 , 4169-007 Porto , Portugal
| | - Nuno Mateus
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências , Universidade do Porto , Rua do Campo Alegre, 687 , 4169-007 Porto , Portugal
| | - Victor de Freitas
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências , Universidade do Porto , Rua do Campo Alegre, 687 , 4169-007 Porto , Portugal
| | - Luís Cruz
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências , Universidade do Porto , Rua do Campo Alegre, 687 , 4169-007 Porto , Portugal
| |
Collapse
|