1
|
Jiang R, Su J, Xu L, Yang L, Sui S. Screening of key regulatory factors in apoptosis of granulosa cells in healthy and atretic pig follicles based on RNA-seq. Gene 2025:149514. [PMID: 40250537 DOI: 10.1016/j.gene.2025.149514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/19/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
The molecular mechanism underlying abnormal follicular atresia remains to be elucidated. Research conducted to date has indicated that ovarian granulosa cell (GC) apoptosis is a significant contributor to follicular atresia. Abnormalities in follicular atresia can result in decreased reproductive efficiency in pigs. It is evident that comparative studies focusing on healthy, early atresia and progressively atresia follicles, particularly from the perspective of follicular atresia induced by ovarian GC apoptosis, have not yet been reported. Specifically, the use of RNA-seq technology to systematically analyse differentially expressed genes and associated signaling pathways in GCs at different stages of atresia remains unexplored. The research was divided into three distinct groups: control, early atresia, and progressively atresia. Key genes and signaling pathways were elucidated through RNA-seq. A Venn diagram revealed 86 overlapping genes that were upregulated during early atresia and downregulated during progressively atresia. Additionally, another 47 overlapping genes were found to be downregulated during early atresia and upregulated during progressively atresia. These 133 overlapping genes were significantly enriched in multiple KEGG pathways. Additionally, in conjunction with the key gene-related network diagram, 6 signaling pathways related to ovarian GC apoptosis were further screened out. These pathways include ovarian steroidogenesis, progesterone-mediated oocyte maturation, gonadotropin-releasing hormone signaling pathway, RIG-I-like receptor signaling pathway, NOD-like receptor signaling pathway, and chemokine signaling pathway. Altogether, 12 key genes were identified: SCARB1, IGF1, PRKACA, ADCY6, LDLR, PLD1, CXCL10, IRF7, ISG15, RNase L, OAS2, and STAT1. Six of these genes were randomly selected for qRT-PCR verification, and their expression levels were found to be consistent with the sequencing results. Consequently, the identification of key regulatory factors involved in the apoptotic process provides a theoretical foundation for investigating the mechanisms underlying abnormal follicular atresia in pigs.
Collapse
Affiliation(s)
- Rong Jiang
- College of Public Health, Dali University, Dali 671000, China
| | - Jingjing Su
- Management Department of Laboratory, Dali University, Dali 671000, China
| | - Linjie Xu
- College of Public Health, Dali University, Dali 671000, China
| | - Lilian Yang
- College of Public Health, Dali University, Dali 671000, China
| | - Shiyan Sui
- College of Public Health, Dali University, Dali 671000, China.
| |
Collapse
|
2
|
Zhang J, Zhang C, Meng S, Wang H, Liu D, Guo L, Miao Z. Evaluation of the Effects of Acorns on the Meat Quality and Transcriptome Profile of Finishing Yuxi Pigs. Animals (Basel) 2025; 15:614. [PMID: 40075897 PMCID: PMC11898127 DOI: 10.3390/ani15050614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
In this study, we explored the effects of dietary acorn on the meat quality and transcriptome profile of finishing Yuxi pigs. A total of 90 pigs (99.60 ± 1.63 kg) were randomly assigned to three groups: the control group fed a commercial diet (CN), and two treatment groups fed 100 (AC1) and 300 (AC2) g/kg of acorns, respectively. Each group contained five replicates with six pigs per replicate. After a 120-day treatment period, the AC2 group showed significantly higher pH24h, a*, intramuscular fat, and umami amino acid and significantly lower L*, cooking loss, and shear force than the CN group (p < 0.05). Further, the AC2 group showed significantly increased glycogen, ATP, and ADP, creatine kinase activity, and myofiber density and significantly decreased glycolytic potential, lactic acid, and lactate dehydrogenase, malate dehydrogenase, phosphofructokinase muscle, and pyruvate kinase activities (p < 0.05). The mRNA levels of MYH7, MYH2, and MYH1 were significantly upregulated in the AC2 group (p < 0.05). A transcriptome analysis further revealed significant differences in gene expression patterns between the AC2 and CN groups. These findings suggest that dietary acorns at 300 g/kg improve pork quality by inducing the conversion of myofiber types and regulating glycolysis.
Collapse
Affiliation(s)
- Jinzhou Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (J.Z.); (C.Z.); (S.M.); (H.W.); (D.L.)
| | - Chuankuan Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (J.Z.); (C.Z.); (S.M.); (H.W.); (D.L.)
| | - Shuaitao Meng
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (J.Z.); (C.Z.); (S.M.); (H.W.); (D.L.)
| | - Heming Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (J.Z.); (C.Z.); (S.M.); (H.W.); (D.L.)
| | - Dongyang Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (J.Z.); (C.Z.); (S.M.); (H.W.); (D.L.)
| | - Liping Guo
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China;
| | - Zhiguo Miao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (J.Z.); (C.Z.); (S.M.); (H.W.); (D.L.)
| |
Collapse
|
3
|
Ahmed Z, Xiang W, Wang F, Nawaz M, Kuthu ZH, Lei C, Xu D. Whole-genome resequencing deciphers patterns of genetic diversity, phylogeny, and evolutionary dynamics in Kashmir cattle. Anim Genet 2024; 55:511-526. [PMID: 38726735 DOI: 10.1111/age.13434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 07/04/2024]
Abstract
Kashmir cattle, which were kept by local pastoralists for centuries, are exceptionally resilient and adaptive to harsh environments. Despite its significance, the genomic characteristics of this cattle breed remain elusive. This study utilized whole genome sequences of Kashmir cattle (n = 20; newly sequenced) alongside published whole genomes of 32 distinct breeds and seven core cattle populations (n = 135). The analysis identified ~25.87 million biallelic single nucleotide polymorphisms in Kashmir cattle, predominantly in intergenic and intron regions. Population structure analyses revealed distinct clustering patterns of Kashmir cattle with proximity to the South Asian, African and Chinese indicine cattle populations. Genetic diversity analysis of Kashmir cattle demonstrated lower inbreeding and greater nucleotide diversity than analyzed global breeds. Homozygosity runs indicated less consanguineous mating in Kashmir cattle compared with European taurine breeds. Furthermore, six selection sweep detection methods were used within Kashmir cattle and other cattle populations to identify genes associated with vital traits, including immunity (BOLA-DQA5, BOLA-DQB, TNFAIP8L, FCRL4, AOAH, HIF1AN, FBXL3, MPEG1, CDC40, etc.), reproduction (GOLGA4, BRWD1, OSBP2, LEO1 ADCY5, etc.), growth (ADPRHL1, NRG2, TCF12, TMOD4, GBP4, IGF2, RSPO3, SCD, etc.), milk composition (MRPS30 and CSF1) and high-altitude adaptation (EDNRA, ITPR2, AGBL4 and SCG3). These findings provide essential genetic insights into the characteristics and establish the foundation for the scientific conservation and utilization of Kashmir cattle breed.
Collapse
Affiliation(s)
- Zulfiqar Ahmed
- College of Animal Science and Technology, Huazhong Agriculture University, Wuhan, China
- NCLBG&G, Department of Livestock and Poultry Production, Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Weixuan Xiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Fuwen Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Mohsin Nawaz
- NCLBG&G, Department of Livestock and Poultry Production, Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Zulfiqar Hussan Kuthu
- NCLBG&G, Department of Livestock and Poultry Production, Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Dequan Xu
- College of Animal Science and Technology, Huazhong Agriculture University, Wuhan, China
| |
Collapse
|
4
|
Wang C, Chen C, Lei B, Qin S, Zhang Y, Li K, Zhang S, Liu Y. Constructing eRNA-mediated gene regulatory networks to explore the genetic basis of muscle and fat-relevant traits in pigs. Genet Sel Evol 2024; 56:28. [PMID: 38594607 PMCID: PMC11003151 DOI: 10.1186/s12711-024-00897-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 04/03/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Enhancer RNAs (eRNAs) play a crucial role in transcriptional regulation. While significant progress has been made in understanding epigenetic regulation mediated by eRNAs, research on the construction of eRNA-mediated gene regulatory networks (eGRN) and the identification of critical network components that influence complex traits is lacking. RESULTS Here, employing the pig as a model, we conducted a comprehensive study using H3K27ac histone ChIP-seq and RNA-seq data to construct eRNA expression profiles from multiple tissues of two distinct pig breeds, namely Enshi Black (ES) and Duroc. In addition to revealing the regulatory landscape of eRNAs at the tissue level, we developed an innovative network construction and refinement method by integrating RNA-seq, ChIP-seq, genome-wide association study (GWAS) signals and enhancer-modulating effects of single nucleotide polymorphisms (SNPs) measured by self-transcribing active regulatory region sequencing (STARR-seq) experiments. Using this approach, we unraveled eGRN that significantly influence the growth and development of muscle and fat tissues, and identified several novel genes that affect adipocyte differentiation in a cell line model. CONCLUSIONS Our work not only provides novel insights into the genetic basis of economic pig traits, but also offers a generalizable approach to elucidate the eRNA-mediated transcriptional regulation underlying a wide spectrum of complex traits for diverse organisms.
Collapse
Affiliation(s)
- Chao Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, People's Republic of China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, People's Republic of China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Choulin Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, People's Republic of China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, People's Republic of China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Bowen Lei
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, People's Republic of China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, People's Republic of China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shenghua Qin
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, People's Republic of China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, People's Republic of China
| | - Yuanyuan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, People's Republic of China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, People's Republic of China
- School of Life Sciences, Henan University, Kaifeng, 475004, People's Republic of China
- Shenzhen Research Institute of Henan University, Shenzhen, 518000, People's Republic of China
| | - Kui Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, People's Republic of China
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, People's Republic of China
| | - Song Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, People's Republic of China.
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, People's Republic of China.
| | - Yuwen Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, People's Republic of China.
- Innovation Group of Pig Genome Design and Breeding, Research Centre for Animal Genome, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, People's Republic of China.
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan, 528226, People's Republic of China.
| |
Collapse
|
5
|
Shen J, Jin X, Hao Z, Wang J, Hu J, Liu X, Li S, Zhao F, Li M, Zhao Z, Shi B, Ren C. Identification and screening of circular RNAs during adipogenic differentiation of ovine preadipocyte by RNA-seq. J Anim Sci 2024; 102:skae042. [PMID: 38364365 PMCID: PMC10939429 DOI: 10.1093/jas/skae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/08/2024] [Indexed: 02/18/2024] Open
Abstract
Circular RNAs (circRNAs) are a class of non-coding RNAs that play important roles in preadipocyte differentiation and adipogenesis. However, little is known about genome-wide identification, expression profile, and function of circRNAs in sheep. To investigate the role of circRNAs during ovine adipogenic differentiation, the subcutaneous adipose tissue of Tibetan rams was collected in June 2022. Subsequently, the preadipocytes were immediately isolated from collected adipose tissue and then induced to begin differentiation. The adipocytes samples cultured on days 0, 2, and 8 of preadipocytes differentiation were used to perform RNA sequencing (RNA-seq) analysis to construct the expression profiles of circRNAs. Subsequently, the function of differentially expressed circRNAs was investigated by performing the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of their parent genes. Finally, a circRNAs-miRNAs-mRNAs network involved in adipogenic differentiation was been analyzed. As a result, a total of 6,449 candidate circRNAs were identified in ovine preadipocytes. Of these circRNAs identified, 63 candidate circRNAs were differentially expressed among the three differentiation stages and their parent genes were mainly enriched in acetyl-CoA metabolic process, positive regulation of lipid biosynthetic process, positive regulation of steroid biosynthetic process, and focal adhesion pathway (P < 0.05). Based on a circRNAs-miRNAs-mRNAs regulatory network constructed, circ_004977, circ_006132 and circ_003788 were found to function as competing endogenous RNAs (ceRNAs) to regulate ovine preadipocyte differentiation and lipid metabolism. The results provide an improved understanding of functions and molecular mechanisms of circRNAs underlying ovine adipogenesis in sheep.
Collapse
Affiliation(s)
- Jiyuan Shen
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiayang Jin
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhiyun Hao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Fangfang Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Mingna Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhidong Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Bingang Shi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Chunyan Ren
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
6
|
Mohan NH, Pathak P, Buragohain L, Deka J, Bharati J, Das AK, Thomas R, Singh R, Sarma DK, Gupta VK, Das BC. Comparative muscle transcriptome of Mali and Hampshire breeds of pigs: a preliminary study. Anim Biotechnol 2023; 34:3946-3961. [PMID: 37587839 DOI: 10.1080/10495398.2023.2244988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Muscle development is an important priority of pig breeding programs. There is a considerable variation in muscularity between the breeds, but the regulation mechanisms of genes underlying myogenesis are still unclear. Transcriptome data from two breeds of pigs with divergent muscularity (Mali and Hampshire) were integrated with histology, immunofluorescence and meat yield to identify differences in myogenesis during the early growth phase. The muscle transcriptomics analysis revealed 17,721 common, 1413 and 1115 unique transcripts to Hampshire and Mali, respectively. This study identified 908 differentially expressed genes (p < 0.05; log2FC > ±1) in the muscle samples, of which 550 were upregulated and 358 were downregulated in Hampshire pigs, indicating differences in physiological process related to muscle function and development. Expression of genes related to myoblast fusion (MYMK), skeletal muscle satellite cell proliferation (ANGPT1, CDON) and growth factors (HGF, IGF1, IGF2) were higher in Hampshire than Mali, even though transcript levels of several other myogenesis-related genes (MYF6, MYOG, MSTN) were similar. The number of fibers per fascicle and the expression of myogenic marker proteins (MYOD1, MYOG and PAX7) were more in Hampshire as compared to Mali breed of pig, supporting results of transcriptome studies. The results suggest that differences in muscularity between breeds could be related to the regulation of myoblast fusion and myogenic activities. The present study will help to identify genes that could be explored for their utility in the selection of animals with different muscularities.
Collapse
Affiliation(s)
| | | | | | - Juri Deka
- ICAR-National Research Centre on Pig, Guwahati, Assam, India
| | - Jaya Bharati
- ICAR-National Research Centre on Pig, Guwahati, Assam, India
| | - Anil Kumar Das
- ICAR-National Research Centre on Pig, Guwahati, Assam, India
| | | | - Rajendra Singh
- ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | | | | | | |
Collapse
|
7
|
Ludwiczak A, Kasprowicz-Potocka M, Zaworska-Zakrzewska A, Składanowska-Baryza J, Rodriguez-Estevez V, Sanz-Fernandez S, Diaz-Gaona C, Ferrari P, Pedersen LJ, Couto MYR, Revilla I, Sell-Kubiak E. Husbandry practices associated with extensification in European pig production and their effects on pork quality. Meat Sci 2023; 206:109339. [PMID: 37716226 DOI: 10.1016/j.meatsci.2023.109339] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 07/27/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023]
Abstract
This review has been developed as part of the mEATquality project with the main objective to examine the types of extensification practices used in European pig husbandry and their effect on intrinsic meat quality. Literature search has resulted in 679 references in total, from which 53 showed a strict compliance with the goals of this review: 1) the use of local European breeds and their crossbreds (22 papers); 2) addition of forage to diet (9 papers); 3) increased space allowance (3 papers); 4) enrichment of environment (19 papers). The evaluation of selected extensification factors showed that not all of them have a clear impact on meat quality, and are often confounded. The most clear differences were observed when comparing autochthonous with commercial breeds, and systems with access to pastures or woodlands vs. indoor housing. Despite many studies focusing on the extensification of husbandry practices, some of the factors cannot be confirmed to have a direct effect on pork intrinsic quality.
Collapse
Affiliation(s)
- Agnieszka Ludwiczak
- Department of Animal Breeding and Product Quality Assessment, Poznań University of Life Sciences, Słoneczna 1, Suchy Las 62-002, Poland.
| | | | - Anita Zaworska-Zakrzewska
- Department of Animal Nutrition, Poznań University of Life Sciences, Wołyńska 33, Poznań 60-637, Poland.
| | - Joanna Składanowska-Baryza
- Department of Animal Breeding and Product Quality Assessment, Poznań University of Life Sciences, Słoneczna 1, Suchy Las 62-002, Poland.
| | - Vicente Rodriguez-Estevez
- Department of Animal Production, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Campus de Rabanales, Córdoba 14014, Spain.
| | - Santos Sanz-Fernandez
- Department of Animal Production, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Campus de Rabanales, Córdoba 14014, Spain.
| | - Cipriano Diaz-Gaona
- Department of Animal Production, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Campus de Rabanales, Córdoba 14014, Spain.
| | - Paolo Ferrari
- Research Centre for Animal Production (CRPA), Viale Timavo, 43/2, Reggio Emilia 42121, Italy.
| | - Lene Juul Pedersen
- Department of Animal Science, Aarhus University, Blichers Allé 20, Tjele 8830, Denmark.
| | | | - Isabel Revilla
- Food Technology Area, University of Salamanca, Escuela Politécnica Superior de Zamora, Avda. Requejo 33, Zamora 49022, Spain.
| | - Ewa Sell-Kubiak
- Department of Genetics and Animal Breeding, Poznań University of Life Sciences, Wołyńska 33, Poznań 60-637, Poland.
| |
Collapse
|
8
|
Yang Y, Wang X, Wang S, Chen Q, Li M, Lu S. Identification of Potential Sex-Specific Biomarkers in Pigs with Low and High Intramuscular Fat Content Using Integrated Bioinformatics and Machine Learning. Genes (Basel) 2023; 14:1695. [PMID: 37761835 PMCID: PMC10531182 DOI: 10.3390/genes14091695] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Intramuscular fat (IMF) content is a key determinant of pork quality. Controlling the genetic and physiological factors of IMF and the expression patterns of various genes is important for regulating the IMF content and improving meat quality in pig breeding. Growing evidence has suggested the role of genetic factors and breeds in IMF deposition; however, research on the sex factors of IMF deposition is still lacking. The present study aimed to identify potential sex-specific biomarkers strongly associated with IMF deposition in low- and high-IMF pig populations. The GSE144780 expression dataset of IMF deposition-related genes were obtained from the Gene Expression Omnibus. Initially, differentially expressed genes (DEGs) were detected in male and female low-IMF (162 DEGs, including 64 up- and 98 down-regulated genes) and high-IMF pigs (202 DEGs, including 147 up- and 55 down-regulated genes). Moreover, hub genes were screened via PPI network construction. Furthermore, hub genes were screened for potential sex-specific biomarkers using the least absolute shrinkage and selection operator machine learning algorithm, and sex-specific biomarkers in low-IMF (troponin I (TNNI1), myosin light chain 9(MYL9), and serpin family C member 1(SERPINC1)) and high-IMF pigs (CD4 molecule (CD4), CD2 molecule (CD2), and amine oxidase copper-containing 2(AOC2)) were identified, and then verified by quantitative real-time PCR (qRT-PCR) in semimembranosus muscles. Additionally, the gene set enrichment analysis and single-sample gene set enrichment analysis of hallmark gene sets were collectively performed on the identified biomarkers. Finally, the transcription factor-biomarker and lncRNA-miRNA-mRNA (biomarker) networks were predicted. The identified potential sex-specific biomarkers may provide new insights into the molecular mechanisms of IMF deposition and the beneficial foundation for improving meat quality in pig breeding.
Collapse
Affiliation(s)
| | | | | | | | | | - Shaoxiong Lu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (X.W.); (S.W.); (Q.C.); (M.L.)
| |
Collapse
|
9
|
Xiong L, Pei J, Bao P, Wang X, Guo S, Cao M, Kang Y, Yan P, Guo X. The Effect of the Feeding System on Fat Deposition in Yak Subcutaneous Fat. Int J Mol Sci 2023; 24:ijms24087381. [PMID: 37108542 PMCID: PMC10138426 DOI: 10.3390/ijms24087381] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Fat deposition is very important to the growth and reproduction of yaks. In this study, the effect of the feeding system on fat deposition in yaks was explored by transcriptomics and lipidomics. The thickness of the subcutaneous fat in yaks under stall (SF) and graze feeding (GF) was evaluated. The transcriptomes and lipidomes of the subcutaneous fat in yaks under different feeding systems were detected by RNA-sequencing (RNA-Seq) and non-targeted lipidomics based on ultrahigh-phase liquid chromatography tandem mass spectrometry (UHPLC-MS), respectively. The differences in lipid metabolism were explored, and the function of differentially expressed genes (DEGs) was evaluated by gene ontology (GO) and Kyoto encyclopedia of genes and genome (KEGG) analysis. Compared with GF yaks, SF yaks possessed stronger fat deposition capacity. The abundance of 12 triglycerides (TGs), 3 phosphatidylethanolamines (PEs), 3 diglycerides (DGs), 2 sphingomyelins (SMs) and 1 phosphatidylcholine (PC) in the subcutaneous fat of SF and GF yaks was significantly different. Under the mediation of the cGMP-PKG signaling pathway, the blood volume of SF and GF yaks may be different, which resulted in the different concentrations of precursors for fat deposition, including non-esterified fatty acid (NEFA), glucose (GLU), TG and cholesterol (CH). The metabolism of C16:0, C16:1, C17:0, C18:0, C18:1, C18:2 and C18:3 in yak subcutaneous fat was mainly realized under the regulation of the INSIG1, ACACA, FASN, ELOVL6 and SCD genes, and TG synthesis was regulated by the AGPAT2 and DGAT2 genes. This study will provide a theoretical basis for yak genetic breeding and healthy feeding.
Collapse
Affiliation(s)
- Lin Xiong
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Jie Pei
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Pengjia Bao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Xingdong Wang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Shaoke Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Mengli Cao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Yandong Kang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Xian Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| |
Collapse
|
10
|
Wei C, Zeng H, Zhong Z, Cai X, Teng J, Liu Y, Zhao Y, Wu X, Li J, Zhang Z. Integration of non-additive genome-wide association study with a multi-tissue transcriptome analysis of growth and carcass traits in Duroc pigs. Animal 2023; 17:100817. [PMID: 37196577 DOI: 10.1016/j.animal.2023.100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 05/19/2023] Open
Abstract
Growth and carcass traits are of economic importance in the pig production, which affect pork quality and profitability of finishing pig production. This study used whole-genome and transcriptome sequencing technologies to identify potential candidate genes affecting growth and carcass traits in Duroc pigs. The medium (50-60 k) single nucleotide polymorphism (SNP) arrays of 4 154 Duroc pigs from three populations were imputed to whole-genome sequence data, yielding 10 463 227 markers on 18 autosomes. The dominance heritabilities estimated for growth and carcass traits ranged from 0.000 ± 0.041 to 0.161 ± 0.054. Using non-additive genome-wide association study (GWAS), we identified 80 dominance quantitative trait loci for growth and carcass traits at genome-wide significance (false discovery rate < 5%), 15 of which were also detected in our additive GWAS. After fine mapping, 31 candidate genes for dominance GWAS were annotated, and 8 of them were highlighted that have been previously reported to be associated with growth and development (e.g. SNX14, RELN and ENPP2), autosomal recessive diseases (e.g. AMPH, SNX14, RELN and CACNB4) and immune response (e.g. UNC93B1 and PPM1D). By integrating the lead SNPs with RNA-seq data of 34 pig tissues from the Pig Genotype-Tissue Expression project (https://piggtex.farmgtex.org/), we found that the rs691128548, rs333063869, and rs1110730611 have significantly dominant effects for the expression of SNX14, AMPH and UNC93B1 genes in tissues related to growth and development for pig, respectively. Finally, the identified candidate genes were significantly enriched for biological processes involved in the cell and organ development, lipids catabolic process and phosphatidylinositol 3-kinase signalling (P < 0.05). These results provide new molecular markers for meat production and quality selection of pig as well as basis for deciphering the genetic mechanisms of growth and carcass traits.
Collapse
Affiliation(s)
- Chen Wei
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China
| | - Haonan Zeng
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China
| | - Zhanming Zhong
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xiaodian Cai
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China
| | - Jingyan Teng
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yuqiang Liu
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China
| | - Yunxiang Zhao
- School of Life Science and Engineering, Foshan University, Foshan 528225, PR China
| | - Xibo Wu
- Guangxi Guiken Yongxin Animal Husbandry Group Co. Ltd, Nanning 530000, PR China
| | - Jiaqi Li
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China
| | - Zhe Zhang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, PR China.
| |
Collapse
|
11
|
Nosková A, Mehrotra A, Kadri NK, Lloret-Villas A, Neuenschwander S, Hofer A, Pausch H. Comparison of two multi-trait association testing methods and sequence-based fine mapping of six additive QTL in Swiss Large White pigs. BMC Genomics 2023; 24:192. [PMID: 37038103 PMCID: PMC10084639 DOI: 10.1186/s12864-023-09295-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/04/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Genetic correlations between complex traits suggest that pleiotropic variants contribute to trait variation. Genome-wide association studies (GWAS) aim to uncover the genetic underpinnings of traits. Multivariate association testing and the meta-analysis of summary statistics from single-trait GWAS enable detecting variants associated with multiple phenotypes. In this study, we used array-derived genotypes and phenotypes for 24 reproduction, production, and conformation traits to explore differences between the two methods and used imputed sequence variant genotypes to fine-map six quantitative trait loci (QTL). RESULTS We considered genotypes at 44,733 SNPs for 5,753 pigs from the Swiss Large White breed that had deregressed breeding values for 24 traits. Single-trait association analyses revealed eleven QTL that affected 15 traits. Multi-trait association testing and the meta-analysis of the single-trait GWAS revealed between 3 and 6 QTL, respectively, in three groups of traits. The multi-trait methods revealed three loci that were not detected in the single-trait GWAS. Four QTL that were identified in the single-trait GWAS, remained undetected in the multi-trait analyses. To pinpoint candidate causal variants for the QTL, we imputed the array-derived genotypes to the sequence level using a sequenced reference panel consisting of 421 pigs. This approach provided genotypes at 16 million imputed sequence variants with a mean accuracy of imputation of 0.94. The fine-mapping of six QTL with imputed sequence variant genotypes revealed four previously proposed causal mutations among the top variants. CONCLUSIONS Our findings in a medium-size cohort of pigs suggest that multivariate association testing and the meta-analysis of summary statistics from single-trait GWAS provide very similar results. Although multi-trait association methods provide a useful overview of pleiotropic loci segregating in mapping populations, the investigation of single-trait association studies is still advised, as multi-trait methods may miss QTL that are uncovered in single-trait GWAS.
Collapse
Affiliation(s)
- A Nosková
- ETH Zürich, Universitätstrasse 2, 8092, Zürich, Switzerland.
| | - A Mehrotra
- ETH Zürich, Universitätstrasse 2, 8092, Zürich, Switzerland
| | - N K Kadri
- ETH Zürich, Universitätstrasse 2, 8092, Zürich, Switzerland
| | | | | | - A Hofer
- SUISAG, Allmend 10, 6204, Sempach, Switzerland
| | - H Pausch
- ETH Zürich, Universitätstrasse 2, 8092, Zürich, Switzerland
| |
Collapse
|
12
|
Ramos Z, Garrick DJ, Blair HT, Vera B, Ciappesoni G, Kenyon PR. Genomic Regions Associated with Wool, Growth and Reproduction Traits in Uruguayan Merino Sheep. Genes (Basel) 2023; 14:167. [PMID: 36672908 PMCID: PMC9858812 DOI: 10.3390/genes14010167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The aim of this study was to identify genomic regions and genes associated with the fiber diameter (FD), clean fleece weight (CFW), live weight (LW), body condition score (BCS), pregnancy rate (PR) and lambing potential (LP) of Uruguayan Merino sheep. Phenotypic records of approximately 2000 mixed-age ewes were obtained from a Merino nucleus flock. Genome-wide association studies were performed utilizing single-step Bayesian analysis. For wool traits, a total of 35 genomic windows surpassed the significance threshold (PVE ≥ 0.25%). The proportion of the total additive genetic variance explained by those windows was 4.85 and 9.06% for FD and CFW, respectively. There were 42 windows significantly associated with LWM, which collectively explained 43.2% of the additive genetic variance. For BCS, 22 relevant windows accounted for more than 40% of the additive genetic variance, whereas for the reproduction traits, 53 genomic windows (24 and 29 for PR and LP, respectively) reached the suggestive threshold of 0.25% of the PVE. Within the top 10 windows for each trait, we identified several genes showing potential associations with the wool (e.g., IGF-1, TGFB2R, PRKCA), live weight (e.g., CAST, LAP3, MED28, HERC6), body condition score (e.g., CDH10, TMC2, SIRPA, CPXM1) or reproduction traits (e.g., ADCY1, LEPR, GHR, LPAR2) of the mixed-age ewes.
Collapse
Affiliation(s)
- Zully Ramos
- School of Agriculture and Environment, Massey University, Palmerston North 4410, New Zealand
| | - Dorian J. Garrick
- School of Agriculture and Environment, Massey University, Palmerston North 4410, New Zealand
| | - Hugh T. Blair
- School of Agriculture and Environment, Massey University, Palmerston North 4410, New Zealand
| | - Brenda Vera
- National Research Program on Meat and Wool Production, Instituto Nacional de Investigación Agropecuaria, INIA Las Brujas, Ruta 48 Km 10, Canelones 90100, Uruguay
| | - Gabriel Ciappesoni
- National Research Program on Meat and Wool Production, Instituto Nacional de Investigación Agropecuaria, INIA Las Brujas, Ruta 48 Km 10, Canelones 90100, Uruguay
| | - Paul R. Kenyon
- School of Agriculture and Environment, Massey University, Palmerston North 4410, New Zealand
| |
Collapse
|
13
|
Zequan X, Yonggang S, Heng X, Yaodong W, Xin M, Dan L, Li Z, Tingting D, Zirong W. Transcriptome-based analysis of early post-mortem formation of pale, soft, and exudative (PSE) pork. Meat Sci 2022; 194:108962. [PMID: 36126390 DOI: 10.1016/j.meatsci.2022.108962] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 07/02/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
Abstract
Pale, soft, and exudative (PSE) meat can cause consumer dissatisfaction and economic losses. This study determined meat quality, glycolytic enzyme activity, and differential gene expression in the longissimus lumborum (LL) and semimembranosus (SM) of normal and PSE pork carcasses. The SM did not result in PSE meat. Hexokinase, lactate dehydrogenase, and pyruvate kinase activities were lower in the SM of PSE carcasses than in the normal carcasses. Functional enrichment analysis revealed that immune, inflammatory, and muscle fibre genes were significantly enriched in PSE pork. More specifically, PPP1R3G and MSS51 may be key genes regulating pork quality in the SM. Meanwhile, the differential expression of PLVAB, ADIPOQ, LEP, MYH4, MYH7, MYL3, MYL6B, FOS, ATF3, and HSPA6 may induce PSE formation in the LL. These results may provide insights into PSE pork formation mechanisms and reveal candidate genes for improving meat quality after validation.
Collapse
Affiliation(s)
- Xu Zequan
- College of Food Science and Pharmaceutics, Xinjiang Agricultural University, Urumqi, Xinjiang, China; Tecon Biology Ltd., Urumqi, Xinjiang, China
| | - Shao Yonggang
- College of Animal Science, Xinjiang Agricultural University, Xinjiang, China
| | - Xu Heng
- Tecon Biology Ltd., Urumqi, Xinjiang, China
| | | | - Ma Xin
- College of Food Science and Pharmaceutics, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Liu Dan
- College of Food Science and Pharmaceutics, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Zhang Li
- College of Food Science and Pharmaceutics, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Du Tingting
- College of Food Science and Pharmaceutics, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Wang Zirong
- College of Food Science and Pharmaceutics, Xinjiang Agricultural University, Urumqi, Xinjiang, China.
| |
Collapse
|
14
|
Le Bon M, Tötemeyer S, Emes RD, Mellits KH. Gut transcriptome reveals differential gene expression and enriched pathways linked to immune activation in response to weaning in pigs. Front Genet 2022; 13:961474. [DOI: 10.3389/fgene.2022.961474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Weaning represents one of the most critical periods in pig production associated with increase in disease risk, reduction in performance and economic loss. Physiological changes faced by piglets during the weaning period have been well characterised, however little is currently known about the underlying molecular pathways involved in these processes. As pig meat remains one of the most consumed sources of protein worldwide, understanding how these changes are mediated is critical to improve pig production and consequently sustainable food production globally. In this study, we evaluated the effect of weaning on transcriptomic changes in the colon of healthy piglets over time using an RNA-sequencing approach. The findings revealed a complex and coordinated response to weaning with the majority of genes found to be rapidly differentially expressed within 1 day post weaning. Multiple genes and pathways affected by weaning in the colon were associated with immune regulation, cell signalling and bacterial defence. NOD-like receptors, Toll-like receptor and JAK-STAT signalling pathways were amongst the pathways significantly enriched. Immune activation was evidenced by the enrichment of pathways involved in interferon response, cytokines interactions, oxidoreductase activities and response to microbial invasion. Biosynthesis of amino acids, in particular arginine, was also amongst the most enriched KEGG pathways in weaned pigs, reinforcing the critical role of arginine in gut homeostasis under stress conditions. Overall, transcriptomic and physiological results suggest that pigs going through the weaning transition undergo a transient period of inflammatory state with a temporary breakdown of barrier functions in the gut. These findings could provide valuable tools to monitor host response post weaning, and may be of particular relevance for the investigation and development of intervention strategies aimed to reduce antibiotic use and improve pig health and performance.
Collapse
|
15
|
Ji K, Jiao D, Yang G, Degen AA, Zhou J, Liu H, Wang W, Cong H. Transcriptome analysis revealed potential genes involved in thermogenesis in muscle tissue in cold-exposed lambs. Front Genet 2022; 13:1017458. [PMID: 36338953 PMCID: PMC9634817 DOI: 10.3389/fgene.2022.1017458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/05/2022] [Indexed: 11/28/2022] Open
Abstract
Cold tolerance is an important trait for sheep raised at high altitudes. Muscle tissue, comprising 30–40% of the total body mass, produces heat during cold exposure. However, little is known about the genetic mechanisms of this tissue and its role in thermogenesis in lambs. We examined genes in skeletal muscle tissue in a cold-adapted sheep breed, Altay, and a cold-intolerant sheep breed, Hu, when exposed to low air temperature. Three ewe-lambs of each breed were maintained at −5°C and three ewe-lambs of each breed were maintained at 20°C. After cold exposure for 25 days, the longissimus dorsi of each lamb was collected, and transcriptome profiles were sequenced and analyzed. The results of RNA-seq showed that the average reads among the four groups were 11.0 Gbase. The genome mapping rate averaged 88.1% and the gene mapping rate averaged 82.5%. The analysis of differentially expressed genes (DEGs) indicated that the peroxisome proliferator-activated receptors (PPAR), cAMP, and calcium signaling pathways and muscle contraction in muscle tissue were linked to thermogenesis in cold-exposed lambs. Furthermore, PCK1 (phosphoenolpyruvate carboxykinase1) increased glyceroneogenesis in cold-exposed Altay lambs, and APOC3 (apolipoprotein C3), LPL (lipoprotein lipase), and FABP4 (fatty acid binding protein 4, adipocyte) were involved in the intake and transport of free fatty acids. In Hu sheep, cAMP biosynthesis from ATP hydrolysis was regulated by ADCY10 (adenylate cyclase) and ADORA2a (adenosine A2a receptor). Skeletal muscle contraction was regulated by MYL2 (myosin light chain 2). In conclusion, cold exposure altered the expression level of genes involved in heat production in muscle tissue. Some potential mechanisms were revealed, including calcium ion transport in the calcium signaling pathway, fatty acid metabolism in the PPAR signaling pathway, and cAMP biosynthesis in the cAMP signaling pathway. This study implied that skeletal muscle plays an important role in thermoregulation in lambs.
Collapse
Affiliation(s)
- Kaixi Ji
- Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dan Jiao
- Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Guo Yang
- Key Laboratory of Stress Physiology and Ecology of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- *Correspondence: Guo Yang,
| | - Abraham Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of Negev, Beer Sheva, Israel
| | - Jianwei Zhou
- State Key Laboratory of Grassland and Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Hu Liu
- College of Ecology, Lanzhou University, Lanzhou, China
| | - Wenqiang Wang
- College of Ecology, Lanzhou University, Lanzhou, China
| | - Haitao Cong
- Dongying Modern Animal Husbandry Development Service Center, Dongying, China
| |
Collapse
|
16
|
Xu Z, Wu J, Zhou J, Zhang Y, Qiao M, Sun H, Li Z, Li L, Chen N, Oyelami FO, Peng X, Mei S. Integration of ATAC-seq and RNA-seq analysis identifies key genes affecting intramuscular fat content in pigs. Front Nutr 2022; 9:1016956. [PMID: 36276837 PMCID: PMC9581296 DOI: 10.3389/fnut.2022.1016956] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Meat quality is one of the most important economic traits in pig breeding and production, and intramuscular fat (IMF) content is the major factor in improving meat quality. The IMF deposition in pigs is influenced by transcriptional regulation, which is dependent on chromatin accessibility. However, how chromatin accessibility plays a regulatory role in IMF deposition in pigs has not been reported. Xidu black is a composite pig breed with excellent meat quality, which is an ideal research object of this study. In this study, we used the assay for transposase-accessible chromatin using sequencing (ATAC-seq) and RNA sequencing (RNA-seq) analysis to identify the accessible chromatin regions and key genes affecting IMF content in Xidu black pig breed with extremely high and low IMF content. First, we identified 21,960 differential accessible chromatin peaks and 297 differentially expressed genes. The motif analysis of differential peaks revealed several potential cis-regulatory elements containing binding sites for transcription factors with potential roles in fat deposition, including Mef2c, CEBP, Fra1, and AP-1. Then, by integrating the ATAC-seq and RNA-seq analysis results, we found 47 genes in the extremely high IMF (IMF_H) group compared with the extremely low IMF (IMF_L) group. For these genes, we observed a significant positive correlation between the differential gene expression and differential ATAC-seq signal (r2 = 0.42). This suggests a causative relationship between chromatin remodeling and the resulting gene expression. We identified several candidate genes (PVALB, THRSP, HOXA9, EEPD1, HOXA10, and PDE4B) that might be associated with fat deposition. Through the PPI analysis, we found that PVALB gene was the top hub gene. In addition, some pathways that might regulate fat cell differentiation and lipid metabolism, such as the PI3K-Akt signaling pathway, MAPK signaling pathway, and calcium signaling pathway, were significantly enriched in the ATAC-seq and RNA-seq analysis. To the best of our knowledge, our study is the first to use ATAC-seq and RNA-seq to examine the mechanism of IMF deposition from a new perspective. Our results provide valuable information for understanding the regulation mechanism of IMF deposition and an important foundation for improving the quality of pork.
Collapse
Affiliation(s)
- Zhong Xu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Junjing Wu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Jiawei Zhou
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Yu Zhang
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Mu Qiao
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Hua Sun
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Zipeng Li
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Lianghua Li
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Nanqi Chen
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | | | - Xianwen Peng
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China,*Correspondence: Xianwen Peng,
| | - Shuqi Mei
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China,Shuqi Mei,
| |
Collapse
|
17
|
Liu H, Hou L, Zhou W, Wang B, Han P, Gao C, Niu P, Zhang Z, Li Q, Huang R, Li P. Genome-Wide Association Study and FST Analysis Reveal Four Quantitative Trait Loci and Six Candidate Genes for Meat Color in Pigs. Front Genet 2022; 13:768710. [PMID: 35464836 PMCID: PMC9023761 DOI: 10.3389/fgene.2022.768710] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Meat color is the primary criterion by which consumers evaluate meat quality. However, there are a few candidate genes and molecular markers of meat color that were reported for pig molecular breeding. The purpose of the present study is to identify the candidate genes affecting meat color and provide the theoretical basis for meat color molecular breeding. A total of 306 Suhuai pigs were slaughtered, and meat color was evaluated at 45 min and 24 h after slaughter by CIELAB color space. All individuals were genotyped using GeneSeek GGP-Porcine 80K SNP BeadChip. The genomic estimated breeding values (GEBVs), heritability, and genetic correlation of meat color were calculated by DMU software. The genome-wide association studies (GWASs) and the fixation index (FST) tests were performed to identify SNPs related to meat color, and the candidate genes within 1 Mb upstream and downstream of significant SNPs were screened by functional enrichment analysis. The heritability of L* 45 min, L* 24 h, a* 45 min, a* 24 h, b* 45 min, and b* 24 h was 0.20, 0.16, 0.30, 0.13, 0.29, and 0.22, respectively. The genetic correlation between a* (a* 45 min and a* 24 h) and L* (L* 45 min and L* 24 h) is strong, whereas the genetic correlation between b* 45 min and b* 24 h is weak. Forty-nine significant SNPs associated with meat color were identified through GWAS and FST tests. Among these SNPs, 34 SNPs were associated with L* 45 min within a 5-Mb region on Sus scrofa chromosome 11 (SSC11); 22 SNPs were associated with a* 45 min within a 14.72-Mb region on SSC16; six SNPs were associated with b* 45 min within a 4.22-Mb region on SSC13; 11 SNPs were associated with b* 24 h within a 2.12-Mb region on SSC3. These regions did not overlap with meat color–associated QTLs reported previously. Moreover, six candidate genes (HOMER1, PIK3CG, PIK3CA, VCAN, FABP3, and FKBP1B), functionally related to muscle development, phosphatidylinositol phosphorylation, and lipid binding, were detected around these significant SNPs. Taken together, our results provide a set of potential molecular markers for the genetic improvement of meat color in pigs.
Collapse
Affiliation(s)
- Hang Liu
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
- Huaian Academy, Nanjing Agricultural University, Huaian, China
- Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Liming Hou
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
- Huaian Academy, Nanjing Agricultural University, Huaian, China
| | - Wuduo Zhou
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
| | - Binbin Wang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
- Huaian Academy, Nanjing Agricultural University, Huaian, China
| | - Pingping Han
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
| | - Chen Gao
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
- Huaian Academy, Nanjing Agricultural University, Huaian, China
| | - Peipei Niu
- Huaian Academy, Nanjing Agricultural University, Huaian, China
| | - Zongping Zhang
- Huaian Academy, Nanjing Agricultural University, Huaian, China
| | - Qiang Li
- Huaiyin Pig Breeding Farm of Huaian City, Huaian, China
| | - Ruihua Huang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
- Huaian Academy, Nanjing Agricultural University, Huaian, China
| | - Pinghua Li
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
- Huaian Academy, Nanjing Agricultural University, Huaian, China
- *Correspondence: Pinghua Li,
| |
Collapse
|
18
|
Xu J, Jiang AM, Zhang C, Zheng Y, Zhang T, Zhou L. Potential of eight mutations for marker-assisted breeding in Chinese Lulai black pigs. CANADIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1139/cjas-2021-0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Molecular marker-assisted selection (MAS) provides an efficient tool for pig breeding. In this study, according to the literature, we selected eight effective or causal mutations from eight functional genes, including five causal mutations in PHKG1 (rs330928088), MUC13 (rs319699771), IGF2 (g.3072G>A), VRTN (g.20311_20312ins291) and MYH3 (XM_013981330.2:g.-1805_-1810del) genes, and three effective mutations in LIPE (rs328830166), LEPR (rs45435518) and MC4R (rs81219178) genes, to investigate the potential breeding effect of them in 418 Lulai pigs. The linear model was used to analyze the association between mutations and intramuscular fat (IMF) content, average backfat thickness (ABT) and muscle moisture percent (MMP). The results revealed that among the four effective mutations, only the mutation in the LEPR gene, which affect IMF deposition, was significantly associated with IMF content. However, the other molecular markers were not significantly associated with the affected traits reported in previous studies, and these mutations are ineffective for MAS in the Lulai black pig population. Therefore, causal mutations in PHKG1, IGF2 and VRTN genes, and an effective mutation in LEPR gene could be used as effective breeding makers for MAS in Lulai pigs. These results can provide helpful information for further breeding in Lulai black pigs.
Collapse
Affiliation(s)
- Jing Xu
- Qingdao Agricultural University, 98431, Qingdao, China, 266109
| | - Ai mei Jiang
- Jiaozhou City Bureau of Agriculture and Rural Affairs, Qingdao, China
| | | | | | - Tingrong Zhang
- Qingdao Agricultural University, 98431, Qingdao, China, 266109
| | - Lisheng Zhou
- Qingdao Agricultural University, 98431, Qingdao, China, 266109
| |
Collapse
|
19
|
Sanchez D, Ganfornina MD. The Lipocalin Apolipoprotein D Functional Portrait: A Systematic Review. Front Physiol 2021; 12:738991. [PMID: 34690812 PMCID: PMC8530192 DOI: 10.3389/fphys.2021.738991] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022] Open
Abstract
Apolipoprotein D is a chordate gene early originated in the Lipocalin protein family. Among other features, regulation of its expression in a wide variety of disease conditions in humans, as apparently unrelated as neurodegeneration or breast cancer, have called for attention on this gene. Also, its presence in different tissues, from blood to brain, and different subcellular locations, from HDL lipoparticles to the interior of lysosomes or the surface of extracellular vesicles, poses an interesting challenge in deciphering its physiological function: Is ApoD a moonlighting protein, serving different roles in different cellular compartments, tissues, or organisms? Or does it have a unique biochemical mechanism of action that accounts for such apparently diverse roles in different physiological situations? To answer these questions, we have performed a systematic review of all primary publications where ApoD properties have been investigated in chordates. We conclude that ApoD ligand binding in the Lipocalin pocket, combined with an antioxidant activity performed at the rim of the pocket are properties sufficient to explain ApoD association with different lipid-based structures, where its physiological function is better described as lipid-management than by long-range lipid-transport. Controlling the redox state of these lipid structures in particular subcellular locations or extracellular structures, ApoD is able to modulate an enormous array of apparently diverse processes in the organism, both in health and disease. The new picture emerging from these data should help to put the physiological role of ApoD in new contexts and to inspire well-focused future research.
Collapse
Affiliation(s)
- Diego Sanchez
- Instituto de Biologia y Genetica Molecular, Unidad de Excelencia, Universidad de Valladolid-Consejo Superior de Investigaciones Cientificas, Valladolid, Spain
| | - Maria D Ganfornina
- Instituto de Biologia y Genetica Molecular, Unidad de Excelencia, Universidad de Valladolid-Consejo Superior de Investigaciones Cientificas, Valladolid, Spain
| |
Collapse
|
20
|
Pig Genomics and Genetics. Genes (Basel) 2021; 12:genes12111692. [PMID: 34828298 PMCID: PMC8623580 DOI: 10.3390/genes12111692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 11/23/2022] Open
|
21
|
Identification and Validation of Marketing Weight-Related SNP Markers Using SLAF Sequencing in Male Yangzhou Geese. Genes (Basel) 2021; 12:genes12081203. [PMID: 34440377 PMCID: PMC8393582 DOI: 10.3390/genes12081203] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/17/2022] Open
Abstract
Growth performance is a complex economic trait for avian production. The swan goose (Anser cygnoides) has never been exploited genetically like chickens or other waterfowl species such as ducks. Traditional phenotypic selection is still the main method for genetic improvement of geese body weight. In this study, specific locus amplified fragment sequencing (SLAF-seq) with bulked segregant analysis (BSA) was conducted for discovering and genotyping single nucleotide polymorphisms (SNPs) associated with marketing weight trait in male geese. A total of 149,045 SNPs were obtained from 427,093 SLAF tags with an average sequencing depth of 44.97-fold and a Q30 value of 93.26%. After SNPs' filtering, a total of 12,917 SNPs were included in the study. The 31 highest significant SNPs-which had different allelic frequencies-were further validated by individual-based AS-PCR genotyping in two populations. The association between 10 novel SNPs and the marketing weight of male geese was confirmed. The 10 significant SNPs were involved in linear regression model analysis, which confirmed single-SNP associations and revealed three types of SNP networks for marketing weight. The 10 significant SNPs were located within or close to 10 novel genes, which were identified. The qPCR analysis showed significant difference between genotypes of each SNP in seven genes. Developed SLAF-seq and identified genes will enrich growth performance studies, promoting molecular breeding applications to boost the marketing weight of Chinese geese.
Collapse
|
22
|
Xiong L, Pei J, Chu M, Wu X, Kalwar Q, Yan P, Guo X. Fat Deposition in the Muscle of Female and Male Yak and the Correlation of Yak Meat Quality with Fat. Animals (Basel) 2021; 11:ani11072142. [PMID: 34359275 PMCID: PMC8300776 DOI: 10.3390/ani11072142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 02/06/2023] Open
Abstract
This study aimed to explore the differences in fat deposition between female (FYs) and male yaks (MYs). Compared with MYs, the tenderness, L*, marbling, absolute content of fat, and most fatty acids (FAs) of longissimus dorsi (LD) in FYs were higher or better (p < 0.05), whereas the relative content of polyunsaturated fatty acids (PUFAs) and n-3 PUFAs were lower (p < 0.01). The absolute content of fat, C18:0, cis-C18:2, cis-C18:1, and C24:0 were positively correlated with L*45 min, b*24 h, tenderness, and marbling score of LD in FYs and MYs (p < 0.05), respectively. LPL, FATP2, ELOVL6, HADH, HACD, and PLINS genes play a crucial role in improving the marbling score and tenderness of yak meat. The results of gene expression and protein synthesis showed the effect of gender to FA biosynthesis, FA transport, lipolysis, and FA oxidation in the adipose tissue of yak was realized by the expressions of ME1, SCD, ACSL5, LPL, FABP1, PLIN4, and PLIN2 in peroxisome proliferators-activated receptor (PPAR) signaling. This study established a theoretical basis for the improvement of the meat quality of yak and molecular breeding.
Collapse
Affiliation(s)
- Lin Xiong
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.X.); (J.P.); (M.C.); (X.W.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Jie Pei
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.X.); (J.P.); (M.C.); (X.W.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Min Chu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.X.); (J.P.); (M.C.); (X.W.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Xiaoyun Wu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.X.); (J.P.); (M.C.); (X.W.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
| | - Qudratullah Kalwar
- Department of Animal Reproduction, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan;
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.X.); (J.P.); (M.C.); (X.W.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
- Correspondence: (P.Y.); (X.G.); Tel.: +86-0931-2115288 (P.Y.); +86-0931-2115271 (X.G.)
| | - Xian Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (L.X.); (J.P.); (M.C.); (X.W.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China
- Correspondence: (P.Y.); (X.G.); Tel.: +86-0931-2115288 (P.Y.); +86-0931-2115271 (X.G.)
| |
Collapse
|
23
|
Wu P, Wang K, Zhou J, Chen D, Jiang A, Jiang Y, Zhu L, Qiu X, Li X, Tang G. A combined GWAS approach reveals key loci for socially-affected traits in Yorkshire pigs. Commun Biol 2021; 4:891. [PMID: 34285319 PMCID: PMC8292486 DOI: 10.1038/s42003-021-02416-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023] Open
Abstract
Socially affected traits in pigs are controlled by direct genetic effects and social genetic effects, which can make elucidation of their genetic architecture challenging. We evaluated the genetic basis of direct genetic effects and social genetic effects by combining single-locus and haplotype-based GWAS on imputed whole-genome sequences. Nineteen SNPs and 25 haplotype loci are identified for direct genetic effects on four traits: average daily feed intake, average daily gain, days to 100 kg and time in feeder per day. Nineteen SNPs and 11 haplotype loci are identified for social genetic effects on average daily feed intake, average daily gain, days to 100 kg and feeding speed. Two significant SNPs from single-locus GWAS (SSC6:18,635,874 and SSC6:18,635,895) are shared by a significant haplotype locus with haplotype alleles 'GGG' for both direct genetic effects and social genetic effects in average daily feed intake. A candidate gene, MT3, which is involved in growth, nervous, and immune processes, is identified. We demonstrate the genetic differences between direct genetic effects and social genetic effects and provide an anchor for investigating the genetic architecture underlying direct genetic effects and social genetic effects on socially affected traits in pigs.
Collapse
Affiliation(s)
- Pingxian Wu
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Kai Wang
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Jie Zhou
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Dejuan Chen
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Anan Jiang
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Yanzhi Jiang
- grid.80510.3c0000 0001 0185 3134College of Life Science, Sichuan Agricultural University, Yaan, Sichuan China
| | - Li Zhu
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Xiaotian Qiu
- grid.410634.4National Animal Husbandry Service, Beijing, Beijing, China
| | - Xuewei Li
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Guoqing Tang
- grid.80510.3c0000 0001 0185 3134Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan China
| |
Collapse
|
24
|
Wang Q, Wang Q, Melak S, Lin X, Wei W, Zhang L, Chen J. A novel c.-652C>T mutation in UCHL1 gene is associated with the growth performance in Yangzhou goose. Poult Sci 2021; 100:101089. [PMID: 34051408 PMCID: PMC8165569 DOI: 10.1016/j.psj.2021.101089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 12/22/2020] [Accepted: 03/01/2021] [Indexed: 12/17/2022] Open
Abstract
As a member of the ubiquitin-dependent proteasome degradation pathway, Ubiquitin carboxyl-terminal hydrolase-L1 (UCHL1) plays a key role in post-translational modification and protein degradation, and it is extensive and important for the regulation of various biological functions of the organism. However, its function remains unclear in goose growth performance. In this study, the full-length genomic DNA and coding region of UCHL1 gene was firstly cloned and characterized in Yangzhou goose. Tissue expression profile revealed that UCHL1 was exclusively expressed in brain and gonads. A novel single nucleotide polymorphisms c.-652C>T which is significantly related to 64-d body weight of Yangzhou goose was found in UCHL1 promoter region by comparative sequencing. Correlation analysis in a population of 405 geese showed that TT genotype individuals had higher body weight than CC individuals in male, but not in female geese. Dual-luciferase reporter assay indicated that the single nucleotide polymorphisms c.-652C>T is located at the core promoter region of UCHL1, and the promoter transcription activity was significantly increased (P < 0.01) when allele C changed to T. Geese with TT genotype had higher mRNA level of UCHL1 in brain tissue than those of CC genotype (P < 0.01). Compared with CC individuals, neuropeptide Y and AdipoR1 mRNA level was significantly higher in TT individuals (P < 0.05), while FAS mRNA level was lower in the TT individuals (P < 0.05). In summary, we identify a novel mutation in the promoter of UCHL1 gene, which can alter transcriptional activity of UCHL1 gene, and affect the growth performance of male goose.
Collapse
Affiliation(s)
- Qin Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Qiushi Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Sherif Melak
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiangsheng Lin
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lifan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jie Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
25
|
Salehian-Dehkordi H, Xu YX, Xu SS, Li X, Luo LY, Liu YJ, Wang DF, Cao YH, Shen M, Gao L, Chen ZH, Glessner JT, Lenstra JA, Esmailizadeh A, Li MH, Lv FH. Genome-Wide Detection of Copy Number Variations and Their Association With Distinct Phenotypes in the World's Sheep. Front Genet 2021; 12:670582. [PMID: 34093663 PMCID: PMC8175073 DOI: 10.3389/fgene.2021.670582] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/31/2021] [Indexed: 11/19/2022] Open
Abstract
Copy number variations (CNVs) are a major source of structural variation in mammalian genomes. Here, we characterized the genome-wide CNV in 2059 sheep from 67 populations all over the world using the Ovine Infinium HD (600K) SNP BeadChip. We tested their associations with distinct phenotypic traits by conducting multiple independent genome-wide tests. In total, we detected 7547 unique CNVs and 18,152 CNV events in 1217 non-redundant CNV regions (CNVRs), covering 245 Mb (∼10%) of the whole sheep genome. We identified seven CNVRs with frequencies correlating to geographical origins and 107 CNVRs overlapping 53 known quantitative trait loci (QTLs). Gene ontology and pathway enrichment analyses of CNV-overlapping genes revealed their common involvement in energy metabolism, endocrine regulation, nervous system development, cell proliferation, immune, and reproduction. For the phenotypic traits, we detected significantly associated (adjusted P < 0.05) CNVRs harboring functional candidate genes, such as SBNO2 for polycerate; PPP1R11 and GABBR1 for tail weight; AKT1 for supernumerary nipple; CSRP1, WNT7B, HMX1, and FGFR3 for ear size; and NOS3 and FILIP1 in Wadi sheep; SNRPD3, KHDRBS2, and SDCCAG3 in Hu sheep; NOS3, BMP1, and SLC19A1 in Icelandic; CDK2 in Finnsheep; MICA in Romanov; and REEP4 in Texel sheep for litter size. These CNVs and associated genes are important markers for molecular breeding of sheep and other livestock species.
Collapse
Affiliation(s)
- Hosein Salehian-Dehkordi
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Ya-Xi Xu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Song-Song Xu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Xin Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Ling-Yun Luo
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ya-Jing Liu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dong-Feng Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Yin-Hong Cao
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Min Shen
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Lei Gao
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Ze-Hui Chen
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Joseph T Glessner
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Ali Esmailizadeh
- Department of Animal Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Meng-Hua Li
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Feng-Hua Lv
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
26
|
Ma Z, Jiang K, Wang D, Wang Z, Gu Z, Li G, Jiang R, Tian Y, Kang X, Li H, Liu X. Comparative analysis of hypothalamus transcriptome between laying hens with different egg-laying rates. Poult Sci 2021; 100:101110. [PMID: 34102485 PMCID: PMC8187251 DOI: 10.1016/j.psj.2021.101110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/30/2020] [Accepted: 03/02/2021] [Indexed: 12/27/2022] Open
Abstract
Egg-laying performance is one of the most important economic traits in the poultry industry. Commercial layers can lay one egg almost every day during their peak-laying period. However, many Chinese indigenous chicken breeds show a relatively low egg-laying rate, even during their peak-laying period. To understand what makes the difference in egg production, we compared the hypothalamus transcriptome profiles of Lushi blue-shelled-egg chickens (LBS), a Chinese indigenous breed with low egg-laying rate and Rhode Island Red chickens (RIR), a commercial layer with relatively high egg-laying rate using RNA-seq. A total of 753 differentially expressed genes (DEGs) were obtained. Of these DEGs, 38 genes were enriched in 2 Gene Ontology (GO) terms, namely reproduction term and the reproductive process term, and 6 KEGG pathways, namely Wnt signaling pathway, Oocyte meiosis, GnRH signaling pathway, Thyroid hormone signaling pathway, Thyroid hormone synthesis and MAPK signaling pathway, which have been long known to be involved in egg production regulation. To further determine the core genes from the 38 DEGs, protein-protein interaction (PPI) network, co-expression network and transcriptional regulatory network analyses were carried out. After integrated analysis and experimental validation, 4 core genes including RAC1, MRE11A, MAP7 and SOX5 were identified as the potential core genes that are responsible for the laying-rate difference between the 2 breeds. These findings paved the way for future investigating the mechanism of egg-laying regulation and enriched the chicken reproductive regulation theory.
Collapse
Affiliation(s)
- Zheng Ma
- College of Animal Science, Henan Agricultural University, Zhengzhou 450046, China; School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Keren Jiang
- College of Animal Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Dandan Wang
- College of Animal Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhang Wang
- College of Animal Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhenzhen Gu
- School of life Sciences and Technology, Xinjiang University, Urumqi 830046, China
| | - Guoxi Li
- College of Animal Science, Henan Agricultural University, Zhengzhou 450046, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450046, China
| | - Ruirui Jiang
- College of Animal Science, Henan Agricultural University, Zhengzhou 450046, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science, Henan Agricultural University, Zhengzhou 450046, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science, Henan Agricultural University, Zhengzhou 450046, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450046, China
| | - Hong Li
- College of Animal Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science, Henan Agricultural University, Zhengzhou 450046, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
27
|
Zappaterra M, Gioiosa S, Chillemi G, Zambonelli P, Davoli R. Dissecting the Gene Expression Networks Associated with Variations in the Major Components of the Fatty Acid Semimembranosus Muscle Profile in Large White Heavy Pigs. Animals (Basel) 2021; 11:ani11030628. [PMID: 33673460 PMCID: PMC7997476 DOI: 10.3390/ani11030628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The amount and fatty acid composition of intramuscular fat are important features for the qualitative characteristics of processed and fresh meat products, but the knowledge of the key molecular drivers controlling these traits is still scant. To this aim, the present study investigated the co-expression networks of genes related to variations in the major fatty acids deposited in pig Semimembranosus muscle. Palmitic and palmitoleic acid contents were associated with a downregulation of genes involved in autophagy, mitochondrial fusion, and mitochondrial activity, suggesting that the deposition of these fatty acids may be enhanced in muscles with a reduced mitochondrial function. A higher proportion of oleic acid and a reduction in the percentages of n-6 and n-3 polyunsaturated fatty acids were related to changes in the mRNA levels of genes involved in Mitogen-Activated Protein Kinase (MAPK) signaling. The obtained results indicated gene expression networks and new candidate genes associated with the studied traits. Further studies are needed to confirm our results and identify in the discussed genes molecular markers for future selection schemes aimed at improving pork nutritional and technological quality. Furthermore, as pigs are considered reliable animal models for several human conditions, the obtained results may also be of interest for improving the knowledge of the molecular pathways associated with obesity and diabetes. Abstract To date, high-throughput technology such as RNA-sequencing has been successfully applied in livestock sciences to investigate molecular networks involved in complex traits, such as meat quality. Pork quality depends on several organoleptic, technological, and nutritional characteristics, and it is also influenced by the fatty acid (FA) composition of intramuscular fat (IMF). To explore the molecular networks associated with different IMF FA compositions, the Semimembranosus muscle (SM) from two groups of Italian Large White (ILW) heavy pigs divergent for SM IMF content was investigated using transcriptome analysis. After alignment and normalization, the obtained gene counts were used to perform the Weighted Correlation Network Analysis (WGCNA package in R environment). Palmitic and palmitoleic contents showed association with the same gene modules, comprising genes significantly enriched in autophagy, mitochondrial fusion, and mitochondrial activity. Among the key genes related to these FAs, we found TEAD4, a gene regulating mitochondrial activity that seems to be a promising candidate for further studies. On the other hand, the genes comprised in the modules associated with the IMF contents of oleic, n-6, and n-3 polyunsaturated FAs (PUFAs) were significantly enriched in Mitogen-Activated Protein Kinase (MAPK) signaling, in agreement with previous studies suggesting that several MAPK players may have a primary role in regulating lipid deposition. These results give an insight into the molecular cascade associated with different IMF FA composition in ILW heavy pigs. Further studies are needed to validate the results and confirm whether some of the identified key genes may be effective candidates for pork quality.
Collapse
Affiliation(s)
- Martina Zappaterra
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Fanin 46, I-40127 Bologna, Italy;
- Correspondence: (M.Z.); (R.D.)
| | - Silvia Gioiosa
- CINECA SuperComputing Applications and Innovation Department (SCAI), Via dei Tizii 6, I-00185 Roma, Italy;
| | - Giovanni Chillemi
- Dipartimento per la Innovazione nei sistemi Biologici, Agroalimentari e Forestali (DIBAF), La Tuscia University of Viterbo, Via S. Camillo de Lellis, I-01100 Viterbo, Italy;
| | - Paolo Zambonelli
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Fanin 46, I-40127 Bologna, Italy;
| | - Roberta Davoli
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Fanin 46, I-40127 Bologna, Italy;
- Correspondence: (M.Z.); (R.D.)
| |
Collapse
|
28
|
Han F, Li J, Zhao R, Liu L, Li L, Li Q, He J, Liu N. Identification and co-expression analysis of long noncoding RNAs and mRNAs involved in the deposition of intramuscular fat in Aohan fine-wool sheep. BMC Genomics 2021; 22:98. [PMID: 33526009 PMCID: PMC7852088 DOI: 10.1186/s12864-021-07385-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 01/13/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Intramuscular fat (IMF) content has become one of the most important indicators for measuring meat quality, and levels of IMF are affected by various genes. Long non-coding RNAs (lncRNAs) are widely expressed non-coding RNAs that play an important regulatory role in a variety of biological processes; however, research on the lncRNAs involved in sheep IMF deposition is still in its infancy. Aohan fine-wool sheep (AFWS), one of China's most important meat-hair, dual-purpose sheep breed, provides a great model for studying the role of lncRNAs in the regulation of IMF deposition. We identified lncRNAs by RNA sequencing in Longissimus thoracis et lumborum (LTL) samples of sheep at two ages: 2 months (Mth-2) and 12 months (Mth-12). RESULTS We identified a total of 26,247 genes and 6935 novel lncRNAs in LTL samples of sheep. Among these, 199 mRNAs and 61 lncRNAs were differentially expressed. We then compared the structural characteristics of lncRNAs and mRNAs. We obtained target genes of differentially expressed lncRNAs (DELs) and performed enrichment analyses using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). We found that target mRNAs were enriched in metabolic processes and developmental pathways. One pathway was significantly enriched, namely tight junction. Based on the analysis of critical target genes, we obtained seven candidate lncRNAs that potentially regulated lipid deposition and constructed a lncRNA-mRNA co-expression network that included MSTRG.4051.3-FZD4, MSTRG.16157.3-ULK1, MSTRG.21053.3-PAQR3, MSTRG.19941.2-TPI1, MSTRG.12864.1-FHL1, MSTRG.2469.2-EXOC6 and MSTRG.21381.1-NCOA1. We speculated that these candidate lncRNAs might play a role by regulating the expression of target genes. We randomly selected five mRNAs and five lncRNAs to verify the accuracy of the sequencing data by qRT-PCR. CONCLUSIONS Our study identified the differentially expressed mRNAs and lncRNAs during intramuscular lipid deposition in Aohan fine-wool sheep. The work may widen the knowledge about the annotation of the sheep genome and provide a working basis for investigating intramuscular fat deposition in sheep.
Collapse
Affiliation(s)
- Fuhui Han
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing Li
- Qufu Animal Husbandry and Veterinary Technical Service Center, Qufu, 273100, China
| | - Ranran Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lirong Liu
- China Animal Health and Epidemiology Center, Qingdao, 266032, China
| | - Lanlan Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qian Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jianning He
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Nan Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
29
|
Su R, Qiao X, Gao Y, Li X, Jiang W, Chen W, Fan Y, Zheng B, Zhang Y, Liu Z, Wang R, Wang Z, Wang Z, Wan W, Dong Y, Li J. Draft Genome of the European Mouflon ( Ovis orientalis musimon). Front Genet 2020; 11:533611. [PMID: 33329689 PMCID: PMC7710762 DOI: 10.3389/fgene.2020.533611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 10/26/2020] [Indexed: 11/13/2022] Open
Abstract
Mouflon (Ovis orientalis) with its huge and beautiful horns is considered as one of the ancestors of domesticated sheep. The European mouflon (Ovis orientalis musimon) is in the Asiatic mouflon (O. orientalis) clade. In order to provide novel genome information for mouflon, moreover promote genetic analysis of genus Ovis both domestic and wild, we propose to sequence the mouflon genome. We assembled the highly heterozygous mouflon genome based on Illumina HiSeq platform using the next-generation sequencing technology. Finally, the draft genome we accessed approximately 2.69 Gb (42.15% GC), while N50 sizes of contig and scaffold are 110.1 kb and 10.4 Mb, respectively. The contiguity of this assembly is obviously better than earlier versions. Further analyses predicted 20,814 protein-coding genes in the mouflon genome and 12,390 shared gene families among bovine species. It is estimated that the divergence time between O. orientalis musimon and Ovis aries was 7.6 million years ago. The draft mouflon genome assembly will provide data support and theoretical basis for various investigations of the genus Ovis species in future.
Collapse
Affiliation(s)
- Rui Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Autonomous Region, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Engineering Research Center for Goat Genetics and Breeding, Inner Mongolia Autonomous Region, Hohhot, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xian Qiao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yun Gao
- NOWBIO Technology Co. Ltd, Kunming, China
| | - Xiaokai Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Wei Jiang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Wei Chen
- College of Biological Big Data, Yunnan Agricultural University, Kunming, China
- Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, China
| | - Yixing Fan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Bingwu Zheng
- Daqingshan Wild Animal Park, Hohhot Gardens Management Bureau, Hohhot, China
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Autonomous Region, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Engineering Research Center for Goat Genetics and Breeding, Inner Mongolia Autonomous Region, Hohhot, China
| | - Zhihong Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Autonomous Region, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Engineering Research Center for Goat Genetics and Breeding, Inner Mongolia Autonomous Region, Hohhot, China
| | - Ruijun Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Autonomous Region, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Engineering Research Center for Goat Genetics and Breeding, Inner Mongolia Autonomous Region, Hohhot, China
| | - Zhiying Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Autonomous Region, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Engineering Research Center for Goat Genetics and Breeding, Inner Mongolia Autonomous Region, Hohhot, China
| | - Zhixin Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Autonomous Region, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Engineering Research Center for Goat Genetics and Breeding, Inner Mongolia Autonomous Region, Hohhot, China
| | - Wenting Wan
- Key Laboratory for Space Bioscience and Biotechnology, Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Yang Dong
- College of Biological Big Data, Yunnan Agricultural University, Kunming, China
- Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, China
| | - Jinquan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Autonomous Region, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Engineering Research Center for Goat Genetics and Breeding, Inner Mongolia Autonomous Region, Hohhot, China
| |
Collapse
|
30
|
Gga-miR-3525 Targets PDLIM3 through the MAPK Signaling Pathway to Regulate the Proliferation and Differentiation of Skeletal Muscle Satellite Cells. Int J Mol Sci 2020; 21:ijms21155573. [PMID: 32759823 PMCID: PMC7432556 DOI: 10.3390/ijms21155573] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/24/2020] [Accepted: 07/31/2020] [Indexed: 01/02/2023] Open
Abstract
MicroRNAs (miRNAs) are evolutionarily conserved, small noncoding RNAs that post-transcriptionally regulate expression of their target genes. Emerging evidence demonstrates that miRNAs are important regulators in the development of skeletal muscle satellite cells (SMSCs). Our previous research showed that gga-miR-3525 is differentially expressed in breast muscle of broilers (high growth rate) and layers (low growth rate). In this study, we report a new role for gga-miR-3525 as a myogenic miRNA that regulates skeletal muscle development in chickens. Exogenous increases in the expression of gga-miR-3525 significantly inhibited proliferation and differentiation of SMSCs, whereas the opposite effects were observed in gga-miR-3525 knockdown SMSCs. We confirmed that PDLIM3 (PDZ and LIM domain 3) is a target gene of gga-miR-3525 that can promote proliferation and differentiation of SMSCs. We found that PDLIM3 overexpression elevated the abundance of phosphorylated (p-)p38 protein but that the gga-miR-3525 mimic and p38-MAPK inhibitor (SB203580) weakened the activation of p-p38. Furthermore, treatment with SB203580 reduced the promoting effect of PDLIM3 on SMSC proliferation and differentiation. Overall, our results indicate that gga-miR-3525 regulates the proliferation and differentiation of SMSCs by targeting PDLIM3 via the p38/MAPK signaling pathway in chickens.
Collapse
|
31
|
Analysis of Transcriptome and miRNAome in the Muscle of Bamei Pigs at Different Developmental Stages. Animals (Basel) 2020; 10:ani10071198. [PMID: 32679676 PMCID: PMC7401622 DOI: 10.3390/ani10071198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 06/18/2020] [Accepted: 07/11/2020] [Indexed: 12/25/2022] Open
Abstract
Simple Summary The pigs is the most popular agricultural animal in the world. Muscle growth—which has the highest economic value in pigs—can be regulated by multiple genes and involves complex regulatory mechanisms. It is necessary to understand the dynamics of muscle transcriptome during development to understand the muscle development mechanism. However, the genes and miRNAs that play regulatory roles underlying differences in the meat quality of pigs remain unclear. In the current study, qRT-PCR, miRNA-Seq, and RNA-Seq were applied to analyze and verify muscle tissues of pigs from three different developmental stages and screened genes, miRNAs and pathways related to pig muscle development. This study focused on analyzing the mechanisms of muscle development and uncover the development differences in muscle from embryo to adult. Abstract The growth of skeletal muscle involves complex developmental processes that play an important part in the determinization of pork quality. The investigation of skeletal muscle mRNA or miRNA profiles is especially important for finding molecular approaches to improve meat quality in pig breeding. Therefore, we studied the transcriptome (mRNA and miRNA) profiles of skeletal muscle with RNA-Seq in three developmental stages of pigs: 65-day embryonic (E65), postnatal 0 days (natal) and 10 months (adult). We found 10,035, 9050 and 4841 differentially expressed (DE) genes for natal vs. E65, adult vs. E65 and adult vs. natal, 55, 101 and 85 DE miRNA for natal vs. E65, adult vs. E65 and adult vs. natal, respectively. In addition, the target genes of DE miRNA that was in a negative correlation with the corresponding miRNA in the same comparison group were selected for enrichment analysis. Gene Ontology terms were mainly classified into developmental processes. Pathway analysis revealed enrichment in the Rap1 signaling pathway, citrate cycle and oxidative phosphorylation and carbon. Finally, RT-PCR was employed for validating the level of expression of 11 DE miRNA and 14 DEGs. The transcriptome profiles of skeletal muscle from the different developmental stages of the Bamei pigs were obtained. From these data, hundreds of DE miRNA and mRNA, and the miRNA–mRNA regulatory network can provide valuable insights into further understanding of key molecular mechanisms and improving the meat quality in pig breeding.
Collapse
|
32
|
Zappaterra M, Gioiosa S, Chillemi G, Zambonelli P, Davoli R. Muscle transcriptome analysis identifies genes involved in ciliogenesis and the molecular cascade associated with intramuscular fat content in Large White heavy pigs. PLoS One 2020; 15:e0233372. [PMID: 32428048 PMCID: PMC7237010 DOI: 10.1371/journal.pone.0233372] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
Intramuscular fat content (IMF) is a complex trait influencing the technological and sensorial features of meat products and determining pork quality. Thus, we aimed at analyzing through RNA-sequencing the Semimembranosus muscle transcriptome of Italian Large White pigs to study the gene networks associated with IMF deposition. Two groups of samples were used; each one was composed of six unrelated pigs with extreme and divergent IMF content (0.67 ± 0.09% in low IMF vs. 6.81 ± 1.17% in high IMF groups) that were chosen from 950 purebred individuals. Paired-end RNA sequences were aligned to Sus scrofa genome assembly 11.1 and gene counts were analyzed using WGCNA and DeSeq2 packages in R environment. Interestingly, among the 58 differentially expressed genes (DEGs), several were related to primary cilia organelles (such as Lebercilin 5 gene), in addition to the genes involved in the regulation of cell differentiation, in the control of RNA-processing, and G-protein and ERK signaling pathways. Together with cilia-related genes, we also found in high IMF pigs an over-expression of the Fibroblast Growth Factor 2 (FGF2) gene, which in other animal species was found to be a regulator of ciliogenesis. Four WGCNA gene modules resulted significantly associated with IMF deposition: grey60 (P = 0.003), darkturquoise (P = 0.022), skyblue1 (P = 0.022), and lavenderblush3 (P = 0.030). The genes in the significant modules confirmed the results obtained for the DEGs, and the analysis with “cytoHubba” indicated genes controlling RNA splicing and cell differentiation as hub genes. Among the complex molecular processes affecting muscle fat depots, genes involved in primary cilia may have an important role, and the transcriptional reprogramming observed in high IMF pigs may be related to an FGF-related molecular cascade and to ciliogenesis, which in the literature have been associated with fibro-adipogenic precursor differentiation.
Collapse
Affiliation(s)
- Martina Zappaterra
- Department of Agricultural and Food Sciences (DISTAL), Division of Animal Science, University of Bologna, Bologna, Italy
| | - Silvia Gioiosa
- Super Computing Applications and Innovation Department (SCAI), CINECA, Rome, Italy
| | - Giovanni Chillemi
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, Viterbo, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), CNR, Bari, Italy
| | - Paolo Zambonelli
- Department of Agricultural and Food Sciences (DISTAL), Division of Animal Science, University of Bologna, Bologna, Italy
| | - Roberta Davoli
- Department of Agricultural and Food Sciences (DISTAL), Division of Animal Science, University of Bologna, Bologna, Italy
- Interdepartmental Centre of Agri-food Industrial Research (CIRI-AGRO), University of Bologna, Cesena, Italy
- * E-mail:
| |
Collapse
|
33
|
Hlongwane NL, Hadebe K, Soma P, Dzomba EF, Muchadeyi FC. Genome Wide Assessment of Genetic Variation and Population Distinctiveness of the Pig Family in South Africa. Front Genet 2020; 11:344. [PMID: 32457791 PMCID: PMC7221027 DOI: 10.3389/fgene.2020.00344] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Genetic diversity is of great importance and a prerequisite for genetic improvement and conservation programs in pigs and other livestock populations. The present study provides a genome wide analysis of the genetic variability and population structure of pig populations from different production systems in South Africa relative to global populations. A total of 234 pigs sampled in South Africa and consisting of village (n = 91), commercial (n = 60), indigenous (n = 40), Asian (n = 5) and wild (n = 38) populations were genotyped using Porcine SNP60K BeadChip. In addition, 389 genotypes representing village and commercial pigs from America, Europe, and Asia were accessed from a previous study and used to compare population clustering and relationships of South African pigs with global populations. Moderate heterozygosity levels, ranging from 0.204 for Warthogs to 0.371 for village pigs sampled from Capricorn municipality in Eastern Cape province of South Africa were observed. Principal Component Analysis of the South African pigs resulted in four distinct clusters of (i) Duroc; (ii) Vietnamese; (iii) Bush pig and Warthog and (iv) a cluster with the rest of the commercial (SA Large White and Landrace), village, Wild Boar and indigenous breeds of Koelbroek and Windsnyer. The clustering demonstrated alignment with genetic similarities, geographic location and production systems. The PCA with the global populations also resulted in four clusters that where populated with (i) all the village populations, wild boars, SA indigenous and the large white and landraces; (ii) Durocs (iii) Chinese and Vietnamese pigs and (iv) Warthog and Bush pig. K = 10 (The number of population units) was the most probable ADMIXTURE based clustering, which grouped animals according to their populations with the exception of the village pigs that showed presence of admixture. AMOVA reported 19.92%-98.62% of the genetic variation to be within populations. Sub structuring was observed between South African commercial populations as well as between Indigenous and commercial breeds. Population pairwise F ST analysis showed genetic differentiation (P ≤ 0.05) between the village, commercial and wild populations. A per marker per population pairwise F ST analysis revealed SNPs associated with QTLs for traits such as meat quality, cytoskeletal and muscle development, glucose metabolism processes and growth factors between both domestic populations as well as between wild and domestic breeds. Overall, the study provided a baseline understanding of porcine diversity and an important foundation for porcine genomics of South African populations.
Collapse
Affiliation(s)
- Nompilo Lucia Hlongwane
- Biotechnology Platform, Agricultural Research Council, Onderstepoort, South Africa
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Pietermartizburg, South Africa
| | - Khanyisile Hadebe
- Biotechnology Platform, Agricultural Research Council, Onderstepoort, South Africa
| | - Pranisha Soma
- Animal Production Institute, Agricultural Research Council, Irene, South Africa
| | - Edgar Farai Dzomba
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Pietermartizburg, South Africa
| | | |
Collapse
|
34
|
Piórkowska K, Żukowski K, Tyra M, Szyndler-Nędza M, Szulc K, Skrzypczak E, Ropka-Molik K. The Pituitary Transcriptional Response Related to Feed Conversion in Pigs. Genes (Basel) 2019; 10:genes10090712. [PMID: 31540087 PMCID: PMC6771146 DOI: 10.3390/genes10090712] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022] Open
Abstract
Over the decades, pig breeding objectives have focused on improving the meat content in the carcass without taking into consideration the more effective fattening indicators that affect feed conversion. At present, pig growth traits associated particularly with animal feeding have become crucial due to their economic significance. This is especially evident in countries where pigs are maintained on large farms. The present study indicates that pituitary differentially expressed genes (DEGs) are activated in response to variable feed conversion (FC) in pigs. The experiment included two native Polish breeds: Puławska and Złotnicka White (ZW). The whole pituitary transcriptome was sequenced using next-generation sequencing (NGS) technology. The RNA-seq method identified over 500 and 300 DEGs in the pituitaries of the ZW and the Puławska pig populations, respectively, that were associated with hormonal regulation, notch signaling, and Wnt pathways. Lower FC in the ZW pigs favoured increased fat content in the body and significantly higher prolactin expression. The obtained results indicate that low FC values in pigs are related to slower growth or increased fat content, which suggests various pituitary responses. Therefore, the identified candidate genes were not directly associated with feed conversion values but with other factors. However, the present study delivers new insights into pituitary regulation in pigs.
Collapse
Affiliation(s)
- Katarzyna Piórkowska
- Department of Animal Molecular Biology, National Research Institute of Animal Production, 31-047 Cracow, Poland.
| | - Kacper Żukowski
- Department of Cattle Breeding, National Research Institute of Animal Production, 31-047 Cracow, Poland.
| | - Mirosław Tyra
- Department of Pig Breeding, National Research Institute of Animal Production, 31-047 Cracow, Poland.
| | - Magdalena Szyndler-Nędza
- Department of Pig Breeding, National Research Institute of Animal Production, 31-047 Cracow, Poland.
| | - Karolina Szulc
- Department of Animal Breeding and Product Quality Assessment, Poznań University of Life Sciences, 60-637 Poznań, Poland.
| | - Ewa Skrzypczak
- Department of Animal Breeding and Product Quality Assessment, Poznań University of Life Sciences, 60-637 Poznań, Poland.
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, 31-047 Cracow, Poland.
| |
Collapse
|