1
|
Tang L, Zheng Y, Lu H, Qiu Y, Wang H, Liao H, Xie W. Tissue-specific transcriptomic analysis reveals the molecular mechanisms responsive to cold stress in Poa crymophila, and development of EST-SSR markers linked to cold tolerance candidate genes. BMC PLANT BIOLOGY 2025; 25:360. [PMID: 40102740 PMCID: PMC11921722 DOI: 10.1186/s12870-025-06383-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 03/11/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND Poa crymophila is a perennial, cold-tolerant, native grass species, widely distributed in the Qinghai-Tibet Plateau. However, the tissue-specific regulatory mechanisms and key regulatory genes underlying its cold tolerance remain poorly characterized. Therefore, in this study, based on the screening and evaluation of cold tolerance of four Poa species, the cold tolerance mechanism of P. crymophila's roots, stems, and leaves and its cold tolerance candidate genes were investigated through physiological and transcriptomic analyses. RESULTS Results of the present study suggested that the cold tolerance of the four Poa species was in the following order: P. crymophila > P. botryoides > P. pratensis var. anceps > P. pratensis. Cold stress significantly changed the physiological characteristics of roots, stems, and leaves of P. crymophila in this study. In addition, the transcriptome results showed that 4434, 8793, and 14,942 differentially expressed genes (DEGs) were identified in roots, stems, and leaves, respectively; however, 464 DEGs were commonly identified in these three tissues. KEGG enrichment analysis showed that these DEGs were mainly enriched in the phenylpropanoid biosynthesis pathway (roots), photosynthesis pathway (stems and leaves), circadian rhythm-plant pathway (stems and leaves), starch and sucrose metabolism pathway (roots, stems, and leaves), and galactose metabolism pathway (roots, stems, and leaves). A total of 392 candidate genes involved in Ca2+ signaling, ROS scavenging system, hormones, circadian clock, photosynthesis, and transcription factors (TFs) were identified in P. crymophila. Weighted gene co-expression network analysis (WGCNA) identified nine hub genes that may be involved in P. crymophila cold response. A total of 200 candidate gene-based EST-SSRs were developed and characterized. Twenty-nine polymorphic EST-SSRs primers were finally used to study genetic diversity of 40 individuals from four Poa species with different cold tolerance characteristics. UPGMA cluster and STRUCTURE analysis showed that the 40 Poa individuals were clustered into three major groups, individual plant with similar cold tolerance tended to group together. Notably, markers P37 (PcGA2ox3) and P148 (PcERF013) could distinguish P. crymophila from P. pratensis var. anceps, P. pratensis, and P. botryoides. CONCLUSIONS This study provides new insights into the molecular mechanisms underlying the cold tolerance of P. crymophila, and also lays a foundation for molecular marker-assisted selection for cold tolerance improvement in Poa species.
Collapse
Affiliation(s)
- Liuban Tang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yuying Zheng
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Huanhuan Lu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yongsen Qiu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Huizhi Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Haoqin Liao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Wengang Xie
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| |
Collapse
|
2
|
Wei H, Wang Z, Wang J, Mao X, He W, Hu W, Tang M, Chen H. Mycorrhizal and non-mycorrhizal perennial ryegrass roots exhibit differential regulation of lipid and Ca 2+ signaling pathways in response to low and high temperature stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109099. [PMID: 39260265 DOI: 10.1016/j.plaphy.2024.109099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Lipids and Ca2+ are involved as intermediate messengers in temperature-sensing signaling pathways. Arbuscular mycorrhizal (AM) symbiosis is a mutualistic symbiosis between fungi and terrestrial plants that helps host plants cope with adverse environmental conditions. Nonetheless, the regulatory mechanisms of lipid- and Ca2+-mediated signaling pathways in mycorrhizal plants under cold and heat stress have not been determined. The present work focused on investigating the lipid- and Ca2+-mediated signaling pathways in arbuscular mycorrhizal (AM) and non-mycorrhizal (NM) roots under temperature stress and determining the role of Ca2+ levels in AM symbiosis and temperature stress tolerance in perennial ryegrass (Lolium perenne L.) Compared with NM plants, AM symbiosis increased phosphatidic acid (PA) and Ca2+ signaling in the roots of perennial ryegrass, increasing the expression of genes associated with low temperature (LT) stress, including LpICE1, LpCBF3, LpCOR27, LpCOR47, LpIRI, and LpAFP, and high temperature (HT) stress, including LpHSFC1b, LpHSFC2b, LpsHSP17.8, LpHSP22, LpHSP70, and LpHSP90, under LT and HT conditions. These effects result in modulated antioxidant enzyme activities, reduced lipid peroxidation, and suppressed growth inhibition caused by LT and HT stresses. Furthermore, exogenous Ca2+ application enhanced AM symbiosis, leading to the upregulation of Ca2+ signaling pathway genes in roots and ultimately promoting the growth of perennial ryegrass under LT and HT stresses. These findings shed light on lipid and Ca2+ signal transduction in AM-associated plants under LT and HT stresses, emphasizing that Ca2+ enhances cold and heat tolerance in mycorrhizal plants.
Collapse
Affiliation(s)
- Hongjian Wei
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhihao Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jiajin Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xinjie Mao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Wenyuan He
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Wentao Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Wang Q, Wu J, Di G, Zhao Q, Gao C, Zhang D, Wang J, Shen Z, Han W. Identification of Cold Tolerance Transcriptional Regulatory Genes in Seedlings of Medicago sativa L. and Medicago falcata L. Int J Mol Sci 2024; 25:10345. [PMID: 39408674 PMCID: PMC11476818 DOI: 10.3390/ijms251910345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Alfalfa species Medicago sativa L. (MS) and Medicago falcata L. (MF), globally prominent perennial leguminous forages, hold substantial economic value. However, our comprehension of the molecular mechanisms governing their resistance to cold stress remains limited. To address this knowledge gap, we scrutinized and compared MS and MF cold-stress responses at the molecular level following 24 h and 120 h low-temperature exposure (4 °C). Our study revealed that MF had superior physiological resilience to cold stress compared with MS, and its morphology was healthier under cold stress, and its malondialdehyde content and superoxide dismutase activity increased, first, and then decreased, while the soluble sugar content continued to accumulate. Transcriptome analysis showed that after 120 h of exposure, there were different gene-expression patterns between MS and MF, including 1274 and 2983 genes that were continuously up-regulated, respectively, and a total of 923 genes were included, including star cold-resistant genes such as ICE1 and SIP1. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed numerous inter-species differences in sustained cold-stress responses. Notably, MS-exclusive genes included a single transcription factor (TF) gene and several genes associated with a single DNA repair-related pathway, whereas MF-exclusive genes comprised nine TF genes and genes associated with 14 pathways. Both species exhibited high-level expression of genes encoding TFs belonging to AP2-EREBP, ARR-B, and bHLH TF families, indicating their potential roles in sustaining cold resistance in alfalfa-related species. These findings provide insights into the molecular mechanisms governing cold-stress responses in MS and MF, which could inform breeding programs aimed at enhancing cold-stress resistance in alfalfa cultivars.
Collapse
Affiliation(s)
- Qi Wang
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (Q.W.); (J.W.); (C.G.); (D.Z.); (J.W.); (Z.S.)
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Jianzhong Wu
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (Q.W.); (J.W.); (C.G.); (D.Z.); (J.W.); (Z.S.)
| | - Guili Di
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - Qian Zhao
- Cultivation and Farming Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - Chao Gao
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (Q.W.); (J.W.); (C.G.); (D.Z.); (J.W.); (Z.S.)
| | - Dongmei Zhang
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (Q.W.); (J.W.); (C.G.); (D.Z.); (J.W.); (Z.S.)
| | - Jianli Wang
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (Q.W.); (J.W.); (C.G.); (D.Z.); (J.W.); (Z.S.)
| | - Zhongbao Shen
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (Q.W.); (J.W.); (C.G.); (D.Z.); (J.W.); (Z.S.)
| | - Weibo Han
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (Q.W.); (J.W.); (C.G.); (D.Z.); (J.W.); (Z.S.)
| |
Collapse
|
4
|
Wang X, Miao J, Kang W, Shi S. Exogenous application of salicylic acid improves freezing stress tolerance in alfalfa. FRONTIERS IN PLANT SCIENCE 2023; 14:1091077. [PMID: 36968407 PMCID: PMC10034032 DOI: 10.3389/fpls.2023.1091077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Freezing stress is one of the most detrimental environmental factors that can seriously impact the growth, development, and distribution of alfalfa (Medicago sativa L.). Exogenous salicylic acid (SA) has been revealed as a cost-effective method of improving defense against freezing stress due to its predominant role in biotic and abiotic stress resistance. However, how the molecular mechanisms of SA improve freezing stress resistance in alfalfa is still unclear. Therefore, in this study, we used leaf samples of alfalfa seedlings pretreatment with 200 μM and 0 μM SA, which were exposed to freezing stress (-10°C) for 0, 0.5, 1, and 2h and allowed to recover at normal temperature in a growth chamber for 2 days, after which we detect the changes in the phenotypical, physiological, hormone content, and performed a transcriptome analysis to explain SA influence alfalfa in freezing stress. The results demonstrated that exogenous SA could improve the accumulation of free SA in alfalfa leaves primarily through the phenylalanine ammonia-lyase pathway. Moreover, the results of transcriptome analysis revealed that the mitogen-activated protein kinase (MAPK) signaling pathway-plant play a critical role in SA alleviating freezing stress. In addition, the weighted gene co-expression network analysis (WGCNA) found that MPK3, MPK9, WRKY22 (downstream target gene of MPK3), and TGACG-binding factor 1 (TGA1) are candidate hub genes involved in freezing stress defense, all of which are involved in the SA signaling pathway. Therefore, we conclude that SA could possibly induce MPK3 to regulate WRKY22 to participate in freezing stress to induced gene expression related to SA signaling pathway (NPR1-dependent pathway and NPR1-independent pathway), including the genes of non-expresser of pathogenesis-related gene 1 (NPR1), TGA1, pathogenesis-related 1 (PR1), superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), glutathione-S-transferase (GST), and heat shock protein (HSP). This enhanced the production of antioxidant enzymes such as SOD, POD, and APX, which increases the freezing stress tolerance of alfalfa plants.
Collapse
|
5
|
Zhang X, Yang H, Li M, Bai Y, Chen C, Guo D, Guo C, Shu Y. A Pan-Transcriptome Analysis Indicates Efficient Downregulation of the FIB Genes Plays a Critical Role in the Response of Alfalfa to Cold Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:3148. [PMID: 36432878 PMCID: PMC9692835 DOI: 10.3390/plants11223148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/25/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Alfalfa (Medicago sativa L.) is a perennial forage legume that is widely distributed throughout the world, and cold stress is an important environmental factor limiting the growth and production of alfalfa in cold regions. However, little is known of the molecular mechanisms regarding cold tolerance in alfalfa. Here, we conducted physiological metabolism assays and pan-transcriptome sequencing on eight cultivars of alfalfa under cold stress conditions. The results of the RNA-seq analysis showed that the genes are "oxidoreductase activity" and "transcription regulator activity", suggesting that genes with such functions are more likely to play important roles in the response to cold stress by alfalfa. In addition, to identify specific gene modules and hub genes in response to alfalfa cold stress, we applied weighted gene co-expression network (WGCNA) analyses to the RNA-seq data. Our results indicate that the modules of genes that focus on the ATPase complex, ribosome biogenesis, are more likely to be involved in the alfalfa response to cold stress. It is important to note that we identified two fibronectin (FIB) genes as hub genes in alfalfa in response to cold stress and that they negatively regulate alfalfa response to chilling stress, and it is possible that dormant alfalfa is more effective at down-regulating FIB expression and therefore more resistant to cold stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Changhong Guo
- Correspondence: (C.G.); (Y.S.); Tel.: +86-451-8806-0576 (Y.S. & C.G.)
| | - Yongjun Shu
- Correspondence: (C.G.); (Y.S.); Tel.: +86-451-8806-0576 (Y.S. & C.G.)
| |
Collapse
|
6
|
Kumar P, Singh J, Kaur G, Adunola PM, Biswas A, Bazzer S, Kaur H, Kaur I, Kaur H, Sandhu KS, Vemula S, Kaur B, Singh V, Tseng TM. OMICS in Fodder Crops: Applications, Challenges, and Prospects. Curr Issues Mol Biol 2022; 44:5440-5473. [PMID: 36354681 PMCID: PMC9688858 DOI: 10.3390/cimb44110369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 09/08/2024] Open
Abstract
Biomass yield and quality are the primary targets in forage crop improvement programs worldwide. Low-quality fodder reduces the quality of dairy products and affects cattle's health. In multipurpose crops, such as maize, sorghum, cowpea, alfalfa, and oat, a plethora of morphological and biochemical/nutritional quality studies have been conducted. However, the overall growth in fodder quality improvement is not on par with cereals or major food crops. The use of advanced technologies, such as multi-omics, has increased crop improvement programs manyfold. Traits such as stay-green, the number of tillers per plant, total biomass, and tolerance to biotic and/or abiotic stresses can be targeted in fodder crop improvement programs. Omic technologies, namely genomics, transcriptomics, proteomics, metabolomics, and phenomics, provide an efficient way to develop better cultivars. There is an abundance of scope for fodder quality improvement by improving the forage nutrition quality, edible quality, and digestibility. The present review includes a brief description of the established omics technologies for five major fodder crops, i.e., sorghum, cowpea, maize, oats, and alfalfa. Additionally, current improvements and future perspectives have been highlighted.
Collapse
Affiliation(s)
- Pawan Kumar
- Agrotechnology Division, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur 176061, India
- Department of Genetics and Plant Breeding, CCS Haryana Agricultural University, Hisar 125004, India
| | - Jagmohan Singh
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India
- Krishi Vigyan Kendra, Guru Angad Dev Veterinary and Animal Science University, Barnala 148107, India
| | - Gurleen Kaur
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | | | - Anju Biswas
- Agronomy Department, University of Florida, Gainesville, FL 32611, USA
| | - Sumandeep Bazzer
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, WA 57007, USA
| | - Harpreet Kaur
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88001, USA
| | - Ishveen Kaur
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Harpreet Kaur
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Karansher Singh Sandhu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA
| | - Shailaja Vemula
- Agronomy Department, UF/IFAS Research and Education Center, Belle Glade, FL 33430, USA
| | - Balwinder Kaur
- Department of Entomology, UF/IFAS Research and Education Center, Belle Glade, FL 33430, USA
| | - Varsha Singh
- Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS 39759, USA
| | - Te Ming Tseng
- Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS 39759, USA
| |
Collapse
|
7
|
Xing X, Liu M, Jiang F, Zhou R, Bai Y, Wei H, Zhang D, Wei J, Wu Z. Abscisic acid induces the expression of AsKIN during the recovery period of garlic cryopreservation. PLANT CELL REPORTS 2022; 41:1955-1973. [PMID: 36066602 DOI: 10.1007/s00299-022-02894-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Abscisic acid induced the expression of AsKIN during the recovery period of garlic cryopreservation. AsKIN was identified as a gene involved in cold and osmotic stress resistance. Cryopreservation has been proven to be effective in removing viruses from garlic. However, oxidative damage in cryopreservation has a significant impact on the survival after preservation. Abscisic acid (ABA) has been shown to reduce oxidative stress and promote the survival after cryopreservation. However, it is not clear which genes play important roles in this process. In this study, we added ABA to the dehydration step and analyzed the transcriptomic divergences between the ABA-treated group and the control group in three cryogenic steps (dehydration, unloading and recovery). By short time-series expression miner (STEM) analysis and weighted gene co-expression network analysis (WGCNA), the recovery step was identified as the period of significant changes in gene expression levels in cryopreservation. The addition of ABA promoted the upregulated expression of microtubule-related genes in the recovery step. We further identified AsKIN as a hub gene in the recovery step and verified its function. The results showed that overexpression of AsKIN enhanced the tolerance of Arabidopsis to oxidative stress in cryopreservation, influenced the expression of genes in response to cold and osmotic stress and promoted plant growth after stress. The AsKIN gene is likely to be involved in the plant response to cold stress and osmotic stress. These results reveal the molecular mechanisms of ABA in cryopreservation and elucidate the potential biological functions of the kinesin-14 subfamily.
Collapse
Affiliation(s)
- Xiaodong Xing
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Min Liu
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Fangling Jiang
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Rong Zhou
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Yunhe Bai
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Hanyu Wei
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Deng Zhang
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Jingjing Wei
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Zhen Wu
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China.
| |
Collapse
|
8
|
Zhang X, Yang H, Li M, Chen C, Bai Y, Guo D, Guo C, Shu Y. Time-course RNA-seq analysis provides an improved understanding of genetic regulation in response to cold stress from white clover ( Trifolium repens L.). BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2108339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Xueqi Zhang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, PR China
| | - Huanhuan Yang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, PR China
| | - Manman Li
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, PR China
| | - Chao Chen
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, PR China
| | - Yan Bai
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, PR China
| | - Donglin Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, PR China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, PR China
| | - Yongjun Shu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, PR China
| |
Collapse
|
9
|
Wang X, Kang W, Wu F, Miao J, Shi S. Comparative Transcriptome Analysis Reveals New Insight of Alfalfa ( Medicago sativa L.) Cultivars in Response to Abrupt Freezing Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:798118. [PMID: 35432429 PMCID: PMC9010130 DOI: 10.3389/fpls.2022.798118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/14/2022] [Indexed: 05/04/2023]
Abstract
Freezing stress is a major limiting environmental factor that affects the productivity and distribution of alfalfa (Medicago sativa L.). There is growing evidence that enhancing freezing tolerance through resistance-related genes is one of the most efficient methods for solving this problem, whereas little is known about the complex regulatory mechanism of freezing stress. Herein, we performed transcriptome profiling of the leaves from two genotypes of alfalfa, freezing tolerance "Gannong NO.3" and freezing-sensitive "WL326GZ" exposure to -10°C to investigate which resistance-related genes could improve the freezing tolerance. Our results showed that a total of 121,366 genes were identified, and there were 7,245 differentially expressed genes (DEGs) between the control and treated leaves. In particular, the DEGs in "Gannong NO.3" were mainly enriched in the metabolic pathways and biosynthesis of secondary metabolites, and most of the DEGs in "WL326GZ" were enriched in the metabolic pathways, the biosynthesis of secondary metabolites, and plant-pathogen interactions. Moreover, the weighted gene co-expression network analysis (WGCNA) showed that ATP-binding cassette (ABC) C subfamily genes were strongly impacted by freezing stress, indicating that ABCC8 and ABCC3 are critical to develop the freezing tolerance. Moreover, our data revealed that numerous Ca2+ signal transduction and CBF/DREB1 pathway-related genes were severely impacted by the freezing resistance, which is believed to alleviate the damage caused by freezing stress. Altogether, these findings contribute the comprehensive information to understand the molecular mechanism of alfalfa adaptation to freezing stress and further provide functional candidate genes that can adapt to abiotic stress.
Collapse
Affiliation(s)
| | | | | | - Jiamin Miao
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| | - Shangli Shi
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
10
|
Hwarari D, Guan Y, Ahmad B, Movahedi A, Min T, Hao Z, Lu Y, Chen J, Yang L. ICE-CBF-COR Signaling Cascade and Its Regulation in Plants Responding to Cold Stress. Int J Mol Sci 2022; 23:ijms23031549. [PMID: 35163471 PMCID: PMC8835792 DOI: 10.3390/ijms23031549] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 12/19/2022] Open
Abstract
Cold stress limits plant geographical distribution and influences plant growth, development, and yields. Plants as sessile organisms have evolved complex biochemical and physiological mechanisms to adapt to cold stress. These mechanisms are regulated by a series of transcription factors and proteins for efficient cold stress acclimation. It has been established that the ICE-CBF-COR signaling pathway in plants regulates how plants acclimatize to cold stress. Cold stress is perceived by receptor proteins, triggering signal transduction, and Inducer of CBF Expression (ICE) genes are activated and regulated, consequently upregulating the transcription and expression of the C-repeat Binding Factor (CBF) genes. The CBF protein binds to the C-repeat/Dehydration Responsive Element (CRT/DRE), a homeopathic element of the Cold Regulated genes (COR gene) promoter, activating their transcription. Transcriptional regulations and post-translational modifications regulate and modify these entities at different response levels by altering their expression or activities in the signaling cascade. These activities then lead to efficient cold stress tolerance. This paper contains a concise summary of the ICE-CBF-COR pathway elucidating on the cross interconnections with other repressors, inhibitors, and activators to induce cold stress acclimation in plants.
Collapse
Affiliation(s)
- Delight Hwarari
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (D.H.); (Y.G.); (B.A.); (A.M.); (T.M.)
| | - Yuanlin Guan
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (D.H.); (Y.G.); (B.A.); (A.M.); (T.M.)
| | - Baseer Ahmad
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (D.H.); (Y.G.); (B.A.); (A.M.); (T.M.)
| | - Ali Movahedi
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (D.H.); (Y.G.); (B.A.); (A.M.); (T.M.)
| | - Tian Min
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (D.H.); (Y.G.); (B.A.); (A.M.); (T.M.)
| | - Zhaodong Hao
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Z.H.); (Y.L.)
| | - Ye Lu
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Z.H.); (Y.L.)
| | - Jinhui Chen
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Z.H.); (Y.L.)
- Correspondence: (J.C.); (L.Y.)
| | - Liming Yang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (D.H.); (Y.G.); (B.A.); (A.M.); (T.M.)
- Correspondence: (J.C.); (L.Y.)
| |
Collapse
|
11
|
Adhikari L, Makaju SO, Lindstrom OM, Missaoui AM. Mapping freezing tolerance QTL in alfalfa: based on indoor phenotyping. BMC PLANT BIOLOGY 2021; 21:403. [PMID: 34488630 PMCID: PMC8419964 DOI: 10.1186/s12870-021-03182-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 08/18/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Winter freezing temperature impacts alfalfa (Medicago sativa L.) persistence and seasonal yield and can lead to the death of the plant. Understanding the genetic mechanisms of alfalfa freezing tolerance (FT) using high-throughput phenotyping and genotyping is crucial to select suitable germplasm and develop winter-hardy cultivars. Several clones of an alfalfa F1 mapping population (3010 x CW 1010) were tested for FT using a cold chamber. The population was genotyped with SNP markers identified using genotyping-by-sequencing (GBS) and the quantitative trait loci (QTL) associated with FT were mapped on the parent-specific linkage maps. The ultimate goal is to develop non-dormant and winter-hardy alfalfa cultivars that can produce extended growth in the areas where winters are often mild. RESULTS Alfalfa FT screening method optimized in this experiment comprises three major steps: clone preparation, acclimation, and freezing test. Twenty clones of each genotype were tested, where 10 samples were treated with freezing temperature, and 10 were used as controls. A moderate positive correlation (r ~ 0.36, P < 0.01) was observed between indoor FT and field-based winter hardiness (WH), suggesting that the indoor FT test is a useful indirect selection method for winter hardiness of alfalfa germplasm. We detected a total of 20 QTL associated with four traits; nine for visual rating-based FT, five for percentage survival (PS), four for treated to control regrowth ratio (RR), and two for treated to control biomass ratio (BR). Some QTL positions overlapped with WH QTL reported previously, suggesting a genetic relationship between FT and WH. Some favorable QTL from the winter-hardy parent (3010) were from the potential genic region for a cold tolerance gene CBF. The BLAST alignment of a CBF sequence of M. truncatula, a close relative of alfalfa, against the alfalfa reference showed that the gene's ortholog resides around 75 Mb on chromosome 6. CONCLUSIONS The indoor freezing tolerance selection method reported is useful for alfalfa breeders to accelerate breeding cycles through indirect selection. The QTL and associated markers add to the genomic resources for the research community and can be used in marker-assisted selection (MAS) for alfalfa cold tolerance improvement.
Collapse
Affiliation(s)
- Laxman Adhikari
- Institute of Plant Breeding, Genetics and Genomics, The University of Georgia, Athens, GA, USA
| | - Shiva O Makaju
- Institute of Plant Breeding, Genetics and Genomics, The University of Georgia, Athens, GA, USA
| | | | - Ali M Missaoui
- Institute of Plant Breeding, Genetics and Genomics, The University of Georgia, Athens, GA, USA.
- Department of Crop and Soil Sciences, The University of Georgia, Athens, GA, USA.
| |
Collapse
|
12
|
Jiang M, Ma LL, Huang HA, Ke SW, Gui CS, Ning XY, Zhang XQ, Zhong TX, Xie XM, Chen S. Overexpression of SgGH3.1 from Fine-Stem Stylo ( Stylosanthes guianensis var. intermedia) Enhances Chilling and Cold Tolerance in Arabidopsis thaliana. Genes (Basel) 2021; 12:1367. [PMID: 34573349 PMCID: PMC8469043 DOI: 10.3390/genes12091367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/23/2022] Open
Abstract
Stylosanthes (stylo) species are commercially significant tropical and subtropical forage and pasture legumes that are vulnerable to chilling and frost. However, little is known about the molecular mechanisms behind stylos' responses to low temperature stress. Gretchen-Hagen 3 (GH3) proteins have been extensively investigated in many plant species for their roles in auxin homeostasis and abiotic stress responses, but none have been reported in stylos. SgGH3.1, a cold-responsive gene identified in a whole transcriptome profiling study of fine-stem stylo (S. guianensis var. intermedia) was further investigated for its involvement in cold stress tolerance. SgGH3.1 shared a high percentage of identity with 14 leguminous GH3 proteins, ranging from 79% to 93%. Phylogenetic analysis classified SgGH3.1 into Group Ⅱ of GH3 family, which have been proven to involve with auxins conjugation. Expression profiling revealed that SgGH3.1 responded rapidly to cold stress in stylo leaves. Overexpression of SgGH3.1 in Arabidopsis thaliana altered sensitivity to exogenous IAA, up-regulated transcription of AtCBF1-3 genes, activated physiological responses against cold stress, and enhanced chilling and cold tolerances. This is the first report of a GH3 gene in stylos, which not only validated its function in IAA homeostasis and cold responses, but also gave insight into breeding of cold-tolerant stylos.
Collapse
Affiliation(s)
- Ming Jiang
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (M.J.); (L.-L.M.); (H.-A.H.); (C.-S.G.); (X.-Y.N.); (X.-Q.Z.); (T.-X.Z.)
- Guangdong Engineering Research Center for Grassland Science, Guangzhou 510642, China
| | - Long-Long Ma
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (M.J.); (L.-L.M.); (H.-A.H.); (C.-S.G.); (X.-Y.N.); (X.-Q.Z.); (T.-X.Z.)
- Guangdong Engineering Research Center for Grassland Science, Guangzhou 510642, China
| | - Huai-An Huang
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (M.J.); (L.-L.M.); (H.-A.H.); (C.-S.G.); (X.-Y.N.); (X.-Q.Z.); (T.-X.Z.)
- Guangdong Engineering Research Center for Grassland Science, Guangzhou 510642, China
| | - Shan-Wen Ke
- Gansu Engineering Laboratory of Applied Mycology, Hexi University, Zhangye 734000, China;
| | - Chun-Sheng Gui
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (M.J.); (L.-L.M.); (H.-A.H.); (C.-S.G.); (X.-Y.N.); (X.-Q.Z.); (T.-X.Z.)
- Guangdong Engineering Research Center for Grassland Science, Guangzhou 510642, China
| | - Xin-Yi Ning
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (M.J.); (L.-L.M.); (H.-A.H.); (C.-S.G.); (X.-Y.N.); (X.-Q.Z.); (T.-X.Z.)
- Guangdong Engineering Research Center for Grassland Science, Guangzhou 510642, China
- Department of Ornamental Horticulture, College of Horticulture, Nanjing Agriculture University, Nanjing 210095, China
| | - Xiang-Qian Zhang
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (M.J.); (L.-L.M.); (H.-A.H.); (C.-S.G.); (X.-Y.N.); (X.-Q.Z.); (T.-X.Z.)
- Guangdong Engineering Research Center for Grassland Science, Guangzhou 510642, China
| | - Tian-Xiu Zhong
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (M.J.); (L.-L.M.); (H.-A.H.); (C.-S.G.); (X.-Y.N.); (X.-Q.Z.); (T.-X.Z.)
- Guangdong Engineering Research Center for Grassland Science, Guangzhou 510642, China
| | - Xin-Ming Xie
- Guangdong Engineering Research Center for Grassland Science, Guangzhou 510642, China
| | - Shu Chen
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (M.J.); (L.-L.M.); (H.-A.H.); (C.-S.G.); (X.-Y.N.); (X.-Q.Z.); (T.-X.Z.)
| |
Collapse
|
13
|
Medina CA, Samac DA, Yu LX. Pan-transcriptome identifying master genes and regulation network in response to drought and salt stresses in Alfalfa (Medicago sativa L.). Sci Rep 2021; 11:17203. [PMID: 34446782 PMCID: PMC8390513 DOI: 10.1038/s41598-021-96712-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
Alfalfa is an important legume forage grown worldwide and its productivity is affected by environmental stresses such as drought and high salinity. In this work, three alfalfa germplasms with contrasting tolerances to drought and high salinity were used for unraveling the transcriptomic responses to drought and salt stresses. Twenty-one different RNA samples from different germplasm, stress conditions or tissue sources (leaf, stem and root) were extracted and sequenced using the PacBio (Iso-Seq) and the Illumina platforms to obtain full-length transcriptomic profiles. A total of 1,124,275 and 91,378 unique isoforms and genes were obtained, respectively. Comparative analysis of transcriptomes identified differentially expressed genes and isoforms as well as transcriptional and post-transcriptional modifications such as alternative splicing events, fusion genes and nonsense-mediated mRNA decay events and non-coding RNA such as circRNA and lncRNA. This is the first time to identify the diversity of circRNA and lncRNA in response to drought and high salinity in alfalfa. The analysis of weighted gene co-expression network allowed to identify master genes and isoforms that may play important roles on drought and salt stress tolerance in alfalfa. This work provides insight for understanding the mechanisms by which drought and salt stresses affect alfalfa growth at the whole genome level.
Collapse
Affiliation(s)
- Cesar Augusto Medina
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA, 99350, USA
| | - Deborah A Samac
- United States Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, 1991 Upper Buford Circle, 495 Borlaug Hall St, Paul, MN, 55108, USA
| | - Long-Xi Yu
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA, 99350, USA.
| |
Collapse
|
14
|
Blanco-Pastor JL, Liberal IM, Sakiroglu M, Wei Y, Brummer EC, Andrew RL, Pfeil BE. Annual and perennial Medicago show signatures of parallel adaptation to climate and soil in highly conserved genes. Mol Ecol 2021; 30:4448-4465. [PMID: 34217151 DOI: 10.1111/mec.16061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022]
Abstract
Human induced environmental change may require rapid adaptation of plant populations and crops, but the genomic basis of environmental adaptation remain poorly understood. We analysed polymorphic loci from the perennial crop Medicago sativa (alfalfa or lucerne) and the annual legume model species M. truncatula to search for a common set of candidate genes that might contribute to adaptation to abiotic stress in both annual and perennial Medicago species. We identified a set of candidate genes of adaptation associated with environmental gradients along the distribution of the two Medicago species. Candidate genes for each species were detected in homologous genomic linkage blocks using genome-environment (GEA) and genome-phenotype association analyses. Hundreds of GEA candidate genes were species-specific, of these, 13.4% (M. sativa) and 24% (M. truncatula) were also significantly associated with phenotypic traits. A set of 168 GEA candidates were shared by both species, which was 25.4% more than expected by chance. When combined, they explained a high proportion of variance for certain phenotypic traits associated with adaptation. Genes with highly conserved functions dominated among the shared candidates and were enriched in gene ontology terms that have shown to play a central role in drought avoidance and tolerance mechanisms by means of cellular shape modifications and other functions associated with cell homeostasis. Our results point to the existence of a molecular basis of adaptation to abiotic stress in Medicago determined by highly conserved genes and gene functions. We discuss these results in light of the recently proposed omnigenic model of complex traits.
Collapse
Affiliation(s)
- José Luis Blanco-Pastor
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden.,INRAE, Centre Nouvelle-Aquitaine-Poitiers, UR4 (URP3F), Lusignan, France
| | - Isabel M Liberal
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden.,Real Jardín Botánico de Madrid (RJB-CSIC), Madrid, Spain
| | - Muhammet Sakiroglu
- Department of Bioengineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| | - Yanling Wei
- Plant Breeding Center, Department of Plant Sciences, University of California, Davis, Davis, CA, USA
| | - E Charles Brummer
- Plant Breeding Center, Department of Plant Sciences, University of California, Davis, Davis, CA, USA
| | - Rose L Andrew
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Bernard E Pfeil
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
15
|
Wang Q, Shi H, Huang R, Ye R, Luo Y, Guo Z, Lu S. AIR12 confers cold tolerance through regulation of the CBF cold response pathway and ascorbate homeostasis. PLANT, CELL & ENVIRONMENT 2021; 44:1522-1533. [PMID: 33547695 DOI: 10.1111/pce.14020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Auxin induced in root culture (AIR12) is a single gene in Arabidopsis and codes for a mono-heme cytochrome b, but it is unknown whether plant AIR12 is involved in abiotic stress responses. MfAIR12 was identified from Medicago falcata that is legume germplasm with great cold tolerance. Transcript levels of MfAIR12 and its homolog MtAIR12 from Medicago truncatula was induced under low temperature. Overexpression of MfAIR12 led to the accumulation of H2 O2 in apoplast and enhanced cold tolerance, which was blocked by H2 O2 scavengers, indicating that the increased cold tolerance was dependent upon the accumulated H2 O2 . In addition, declined cold tolerance was observed in Arabidopsis mutant air12, which could be restored by expressing MfAIR12. Compared to the wild type, higher levels of ascorbic acid and ascorbate redox state, as well as transcripts of the C repeat/dehydration responsive element-binding factor (CBF) transcription factors and their downstream cold-responsive genes, were observed in MfAIR12 transgenic lines, but lower levels of those in air12 mutant. It is suggested AIR12 confers cold tolerance as a result of the altered H2 O2 in the apoplast that is signaling in the regulation of CBF cold response pathway and ascorbate homeostasis.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Haifan Shi
- College of Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Risheng Huang
- College of Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Rong Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yurong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Shaoyun Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
16
|
Liu YS, Geng JC, Sha XY, Zhao YX, Hu TM, Yang PZ. Effect of Rhizobium Symbiosis on Low-Temperature Tolerance and Antioxidant Response in Alfalfa ( Medicago sativa L.). FRONTIERS IN PLANT SCIENCE 2019; 10:538. [PMID: 31114600 PMCID: PMC6503086 DOI: 10.3389/fpls.2019.00538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/08/2019] [Indexed: 05/04/2023]
Abstract
Low temperature-induced stress is a major environmental factor limiting the growth and development of plants. Alfalfa (Medicago sativa L.) is a legume well known for its tolerance of extreme environments. In this study, we sought to experimentally investigate the role of rhizobium symbiosis in alfalfa's performance under a low-temperature stress condition. To do this, alfalfa "Ladak+" plants carrying active nodules (AN), inactive nodules (IN), or no nodules (NN) were exposed to an imposed low temperature stress and their survivorship calculated. The antioxidant defense responses, the accumulation of osmotic regulation substances, the cell membrane damage, and the expression of low temperature stress-related genes were determined in both the roots and the shoots of alfalfa plants. We found that more plants with AN survived than those with IN or NN under the same low temperature-stress condition. Greater activity of oxidation protective enzymes was observed in the AN and IN groups, conferring higher tolerance to low temperature in these plants. In addition, rhizobia nodulation also enhanced alfalfa's ability to tolerate low temperature by altering the expression of regulatory and metabolism-associated genes, which resulted in the accumulation of soluble proteins and sugars in the nodulated plants. Taken together, the findings of this study indicate that rhizobium inoculation offers a practical way to promote the persistence and growth potential of alfalfa "Ladak+" in cold areas.
Collapse
Affiliation(s)
- Yu-Shi Liu
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | | | - Xu-Yang Sha
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yi-Xin Zhao
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Tian-Ming Hu
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Pei-Zhi Yang
- Department of Grassland Science, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
17
|
Kenchanmane Raju SK, Barnes AC, Schnable JC, Roston RL. Low-temperature tolerance in land plants: Are transcript and membrane responses conserved? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 276:73-86. [PMID: 30348330 DOI: 10.1016/j.plantsci.2018.08.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 05/20/2023]
Abstract
Plants' tolerance of low temperatures is an economically and ecologically important limitation on geographic distributions and growing seasons. Tolerance for low temperatures varies significantly across different plant species, and different mechanisms likely act in different species. In order to survive low-temperature stress, plant membranes must maintain their fluidity in increasingly cold and oxidative cellular environments. The responses of different species to low-temperature stress include changes to the types and desaturation levels of membrane lipids, though the precise lipids affected tend to vary by species. Regulation of membrane dynamics and other low-temperature tolerance factors are controlled by both transcriptional and post-transcriptional mechanisms. Here, we review low-temperature induced changes in both membrane lipid composition and gene transcription across multiple related plant species with differing degrees of low-temperature tolerance. We attempt to define a core set of changes for transcripts and lipids across species and treatment variations. Some responses appear to be consistent across all species for which data are available, while many others appear likely to be species or family-specific. Potential rationales are presented, including variance in testing, reporting and the importance of considering the level of stress perceived by the plant.
Collapse
Affiliation(s)
- Sunil Kumar Kenchanmane Raju
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA; Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Allison C Barnes
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - James C Schnable
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA; Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Rebecca L Roston
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA.
| |
Collapse
|
18
|
Zhou Q, Luo D, Chai X, Wu Y, Wang Y, Nan Z, Yang Q, Liu W, Liu Z. Multiple Regulatory Networks Are Activated during Cold Stress in Medicago sativa L. Int J Mol Sci 2018; 19:ijms19103169. [PMID: 30326607 PMCID: PMC6214131 DOI: 10.3390/ijms19103169] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/07/2018] [Accepted: 10/10/2018] [Indexed: 12/18/2022] Open
Abstract
Cultivated alfalfa (Medicago sativa L.) is one of the most important perennial legume forages in the world, and it has considerable potential as a valuable forage crop for livestock. However, the molecular mechanisms underlying alfalfa responses to cold stress are largely unknown. In this study, the transcriptome changes in alfalfa under cold stress at 4 °C for 2, 6, 24, and 48 h (three replicates for each time point) were analyzed using the high-throughput sequencing platform, BGISEQ-500, resulting in the identification of 50,809 annotated unigenes and 5283 differentially expressed genes (DEGs). Metabolic pathway enrichment analysis demonstrated that the DEGs were involved in carbohydrate metabolism, photosynthesis, plant hormone signal transduction, and the biosynthesis of amino acids. Moreover, the physiological changes of glutathione and proline content, catalase, and peroxidase activity were in accordance with dynamic transcript profiles of the relevant genes. Additionally, some transcription factors might play important roles in the alfalfa response to cold stress, as determined by the expression pattern of the related genes during 48 h of cold stress treatment. These findings provide valuable information for identifying and characterizing important components in the cold signaling network in alfalfa and enhancing the understanding of the molecular mechanisms underlying alfalfa responses to cold stress.
Collapse
Affiliation(s)
- Qiang Zhou
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Dong Luo
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Xutian Chai
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Yuguo Wu
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Yanrong Wang
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Zhibiao Nan
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Qingchuan Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100000, China.
| | - Wenxian Liu
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Zhipeng Liu
- The State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| |
Collapse
|
19
|
Dong W, Liu X, Li D, Gao T, Song Y. Transcriptional profiling reveals that a MYB transcription factor MsMYB4 contributes to the salinity stress response of alfalfa. PLoS One 2018; 13:e0204033. [PMID: 30252877 PMCID: PMC6155508 DOI: 10.1371/journal.pone.0204033] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/02/2018] [Indexed: 12/23/2022] Open
Abstract
MYB transcription factors are important regulators of the plant response to abiotic stress. Their participation in the salinity stress of the key forage legume species alfalfa (Medicago sativa) was investigated here by comparing the transcriptomes of the two cultivars Dryland (DL) and Sundory (SD), which differed with respect to their ability to tolerate salinity stress. When challenged by the stress, DL plants were better able than SD ones to scavenge reactive oxygen species. A large number of genes encoding transcription regulators, signal transducers and proteins involved in both primary and secondary metabolism were differentially transcribed in the two cultivars, especially when plants were subjected to salinity stress. The set of induced genes included 17 MYB family of transcription factors, all of which were subsequently isolated. The effect of constitutively expressing these genes on the salinity tolerance expressed by Arabidopsis thaliana was investigated. The introduction of MsMYB4 significantly increased the plants’ salinity tolerance in an abscisic acid-dependent manner. A sub-cellular localization experiment and a transactivation assay indicated that MsMYB4 was deposited in the nucleus and was able to activate transcription in yeast. Based on this information, we propose that the MsMYB4 products is likely directly involved in alfalfa’s response to salinity stress.
Collapse
Affiliation(s)
- Wei Dong
- School of Life Science, Qufu Normal University, Qufu, Shandong, P.R.China
| | - Xijiang Liu
- School of Life Science, Qufu Normal University, Qufu, Shandong, P.R.China
| | - Donglei Li
- School of Life Science, Qufu Normal University, Qufu, Shandong, P.R.China
| | - Tianxue Gao
- School of Life Science, Qufu Normal University, Qufu, Shandong, P.R.China
| | - Yuguang Song
- School of Life Science, Qufu Normal University, Qufu, Shandong, P.R.China
- * E-mail:
| |
Collapse
|
20
|
Adhikari L, Lindstrom OM, Markham J, Missaoui AM. Dissecting Key Adaptation Traits in the Polyploid Perennial Medicago sativa Using GBS-SNP Mapping. FRONTIERS IN PLANT SCIENCE 2018; 9:934. [PMID: 30022989 PMCID: PMC6039623 DOI: 10.3389/fpls.2018.00934] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/11/2018] [Indexed: 05/18/2023]
Abstract
Understanding key adaptation traits is crucial to developing new cultivars with broad adaptations. The main objective of this research is to understand the genetic basis of winter hardiness (WH) and fall dormancy (FD) in alfalfa and the association between the two traits. QTL analysis was conducted in a pseudo-testcross F1 population developed from two cultivars contrasting in FD (3010 with FD = 2 and CW 1010 with FD = 10). The mapping population was evaluated in three replications at two locations (Watkinsville and Blairsville, GA). FD levels showed low to moderate correlations with WH (0.22-0.57). Assessing dormancy in winter is more reliable than in the fall in southern regions with warm winters. The mapping population was genotyped using Genotyping-by-sequencing (GBS). Single dose allele SNPs (SDA) were used for constructing linkage maps. The parental map (CW 1010) consisted of 32 linkage groups spanning 2127.5 cM with 1377 markers and an average marker density of 1.5 cM/SNP. The maternal map (3010) had 32 linkage groups spanning 2788.4 cM with 1837 SDA SNPs with an average marker density of 1.5 cM/SNP. Forty-five significant (P < 0.05) QTLs for FD and 35 QTLs for WH were detected on both male and female linkage maps. More than 75% (22/28) of the dormancy QTL detected from the 3010 parent did not share genomic regions with WH QTLs and more than 70% (12/17) dormancy QTLs detected from CW 1010 parent were localized in different genomic regions than WH QTLs. These results suggest that the two traits have independent inheritance and therefore can be improved separately in breeding programs.
Collapse
Affiliation(s)
- Laxman Adhikari
- Crop and Soil Sciences and Institute of Plant Breeding Genetics and Genomics, Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
| | | | - Jonathan Markham
- Crop and Soil Sciences and Institute of Plant Breeding Genetics and Genomics, Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
| | - Ali M. Missaoui
- Crop and Soil Sciences and Institute of Plant Breeding Genetics and Genomics, Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
| |
Collapse
|
21
|
Zhao K, Zhou Y, Li Y, Zhuo X, Ahmad S, Han Y, Yong X, Zhang Q. Crosstalk of PmCBFs and PmDAMs Based on the Changes of Phytohormones under Seasonal Cold Stress in the Stem of Prunus mume. Int J Mol Sci 2018; 19:ijms19020015. [PMID: 29360732 PMCID: PMC5855539 DOI: 10.3390/ijms19020015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 12/30/2022] Open
Abstract
Plants facing the seasonal variations always need a growth restraining mechanism when temperatures turn down. C-repeat binding factor (CBF) genes work essentially in the cold perception. Despite lots of researches on CBFs, the multiple crosstalk is still interesting on their interaction with hormones and dormancy-associated MADS (DAM) genes in the growth and dormancy control. Therefore, this study highlights roles of PmCBFs in cold-induced dormancy from different orgens. And a sense-response relationship between PmCBFs and PmDAMs is exhibited in this process, jointly regulated by six PmCBFs and PmDAM4-6. Meantime, GA3 and ABA showed negative and positive correlation with PmCBFs expression levels, respectively. We also find a high correlation between IAA and PmDAM1-3. Finally, we display the interaction mode of PmCBFs and PmDAMs, especially PmCBF1-PmDAM1. These results can disclose another view of molecular mechanism in plant growth between cold-response pathway and dormancy regulation together with genes and hormones.
Collapse
Affiliation(s)
- Kai Zhao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083 Beijing, China.
| | - Yuzhen Zhou
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083 Beijing, China.
| | - Yushu Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083 Beijing, China.
| | - Xiaokang Zhuo
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083 Beijing, China.
| | - Sagheer Ahmad
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083 Beijing, China.
| | - Yu Han
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083 Beijing, China.
| | - Xue Yong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083 Beijing, China.
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, 100083 Beijing, China.
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083 Beijing, China.
| |
Collapse
|