1
|
Gu P, Xie L, Chen T, Yang Q, Zhang X, Liu R, Guo J, Wei R, Li D, Jiang Y, Chen Y, Gong W, Chen P. An engineered Escherichia coli Nissle strain prevents lethal liver injury in a mouse model of tyrosinemia type 1. J Hepatol 2024; 80:454-466. [PMID: 37952766 DOI: 10.1016/j.jhep.2023.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/13/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND & AIMS Hereditary tyrosinemia type 1 (HT1) results from the loss of fumarylacetoacetate hydrolase (FAH) activity and can lead to lethal liver injury. Therapeutic options for HT1 remain limited. In this study, we aimed to construct an engineered bacterium capable of reprogramming host metabolism and thereby provide a potential alternative approach for the treatment of HT1. METHODS Escherichia coli Nissle 1917 (EcN) was engineered to express genes involved in tyrosine metabolism in the anoxic conditions that are characteristic of the intestine (EcN-HT). Bodyweight, survival rate, plasma (tyrosine/liver function), H&E staining and RNA sequencing were used to assess its ability to degrade tyrosine and protect against lethal liver injury in Fah-knockout (KO) mice, a well-accepted model of HT1. RESULTS EcN-HT consumed tyrosine and produced L-DOPA (levodopa) in an in vitro system. Importantly, in Fah-KO mice, the oral administration of EcN-HT enhanced tyrosine degradation, reduced the accumulation of toxic metabolites, and protected against lethal liver injury. RNA sequencing analysis revealed that EcN-HT rescued the global gene expression pattern in the livers of Fah-KO mice, particularly of genes involved in metabolic signaling and liver homeostasis. Moreover, EcN-HT treatment was found to be safe and well-tolerated in the mouse intestine. CONCLUSIONS This is the first report of an engineered live bacterium that can degrade tyrosine and alleviate lethal liver injury in mice with HT1. EcN-HT represents a novel engineered probiotic with the potential to treat this condition. IMPACT AND IMPLICATIONS Patients with hereditary tyrosinemia type 1 (HT1) are characterized by an inability to metabolize tyrosine normally and suffer from liver failure, renal dysfunction, neurological impairments, and cancer. Given the overlap and complementarity between the host and microbial metabolic pathways, the gut microbiome provides a potential chance to regulate host metabolism through degradation of tyrosine and reduction of byproducts that might be toxic. Herein, we demonstrated that an engineered live bacterium, EcN-HT, could enhance tyrosine breakdown, reduce the accumulation of toxic tyrosine byproducts, and protect against lethal liver injury in Fah-knockout mice. These findings suggested that engineered live biotherapeutics that can degrade tyrosine in the gut may represent a viable and safe strategy for the prevention of lethal liver injury in HT1 as well as the mitigation of its associated pathologies.
Collapse
Affiliation(s)
- Peng Gu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, 518110, China; Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Li Xie
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Tao Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China; Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, 341000, China
| | - Qin Yang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China; Department of Gastroenterology, The Seventh Affiliated Hospital of Southern Medical University, Foshan, 528000, China
| | - Xianglong Zhang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ruofan Liu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiayin Guo
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Rongjuan Wei
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Dongping Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yong Jiang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ye Chen
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, 518110, China.
| | - Wei Gong
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, 518110, China.
| | - Peng Chen
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, 518110, China; Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China; Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Ubaldi F, Frangella C, Volpini V, Fortugno P, Valeriani F, Romano Spica V. Systematic Review and Meta-Analysis of Dietary Interventions and Microbiome in Phenylketonuria. Int J Mol Sci 2023; 24:17428. [PMID: 38139256 PMCID: PMC10744015 DOI: 10.3390/ijms242417428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/25/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Inborn errors of metabolism (IEMs) comprise a diverse group of monogenic disorders caused by enzyme deficiencies that result either in a toxic accumulation of metabolic intermediates or a shortage of essential end-products. Certain IEMs, like phenylketonuria (PKU), necessitate stringent dietary intervention that could lead to microbiome dysbiosis, thereby exacerbating the clinical phenotype. The objective of this systematic review was to examine the impact of PKU therapies on the intestinal microbiota. This research was conducted following the PRISMA Statement, with data from PubMed, Scopus, ScienceDirect, and Web of Science. A total of 18 articles meeting the inclusion criteria were published from 2011 to 2022. Significant reductions in several taxonomic groups in individuals with PKU when compared to the control group were detected in a quantitative analysis conducted across seven studies. The meta-analysis synthesis indicates a contrast in biodiversity between PKU subjects and the control population. Additionally, the meta-regression results, derived from the Bacillota/Bacteroidota ratio data, suggest a potential influence of diet in adult PKU populations (p = 0.004). It is worth noting that the limited number of studies calls for further research and analysis in this area. Our findings indicate the necessity of enhancing understanding of microbiota variability in reaction to treatments among PKU subjects to design tailored therapeutic and nutritional interventions to prevent complications resulting from microbiota disruption.
Collapse
Affiliation(s)
- Francesca Ubaldi
- Department of Movement, Human, and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (F.U.); (C.F.); (V.V.); (V.R.S.)
| | - Claudia Frangella
- Department of Movement, Human, and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (F.U.); (C.F.); (V.V.); (V.R.S.)
| | - Veronica Volpini
- Department of Movement, Human, and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (F.U.); (C.F.); (V.V.); (V.R.S.)
| | - Paola Fortugno
- Department of Human Sciences for the Promotion of Quality of Life, University San Raffaele, Via di Val Cannuta 247, 00166 Rome, Italy;
- Human Functional Genomics Laboratory, IRCCS San Raffaele Roma, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Federica Valeriani
- Department of Movement, Human, and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (F.U.); (C.F.); (V.V.); (V.R.S.)
| | - Vincenzo Romano Spica
- Department of Movement, Human, and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (F.U.); (C.F.); (V.V.); (V.R.S.)
| |
Collapse
|
3
|
Di Profio E, Magenes VC, Fiore G, Agostinelli M, La Mendola A, Acunzo M, Francavilla R, Indrio F, Bosetti A, D’Auria E, Borghi E, Zuccotti G, Verduci E. Special Diets in Infants and Children and Impact on Gut Microbioma. Nutrients 2022; 14:3198. [PMID: 35956374 PMCID: PMC9370825 DOI: 10.3390/nu14153198] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 02/07/2023] Open
Abstract
Gut microbiota is a complex system that starts to take shape early in life. Several factors influence the rise of microbial gut colonization, such as term and mode of delivery, exposure to antibiotics, maternal diet, presence of siblings and family members, pets, genetics, local environment, and geographical location. Breastfeeding, complementary feeding, and later dietary patterns during infancy and toddlerhood are major players in the proper development of microbial communities. Nonetheless, if dysbiosis occurs, gut microbiota may remain impaired throughout life, leading to deleterious consequences, such as greater predisposition to non-communicable diseases, more susceptible immune system and altered gut-brain axis. Children with specific diseases (i.e., food allergies, inborn errors of metabolism, celiac disease) need a special formula and later a special diet, excluding certain foods or nutrients. We searched on PubMed/Medline, Scopus and Embase for relevant pediatric studies published over the last twenty years on gut microbiota dietary patterns and excluded case reports or series and letters. The aim of this review is to highlight the changes in the gut microbiota in infants and children fed with special formula or diets for therapeutic requirements and, its potential health implications, with respect to gut microbiota under standard diets.
Collapse
Affiliation(s)
- Elisabetta Di Profio
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Vittoria Carlotta Magenes
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Giulia Fiore
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Marta Agostinelli
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Alice La Mendola
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Miriam Acunzo
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Ruggiero Francavilla
- Pediatric Section, Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Flavia Indrio
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Alessandra Bosetti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Enza D’Auria
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Elisa Borghi
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, 20144 Milan, Italy
- Pediatric Clinical Research Center, Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20122 Milan, Italy
| | - Elvira Verduci
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| |
Collapse
|
4
|
Wasim M, Khan HN, Ayesha H, Iqbal M, Tawab A, Irfan M, Kanhai W, Goorden SMI, Stroomer L, Salomons G, Vaz FM, Karnebeek CDMV, Awan FR. Identification of three novel pathogenic mutations in cystathionine beta-synthase gene of Pakistani intellectually disabled patients. J Pediatr Endocrinol Metab 2022; 35:325-332. [PMID: 34905667 DOI: 10.1515/jpem-2021-0508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/19/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Classical homocystinuria (HCU) is an autosomal recessive inborn error of metabolism, which is caused by the cystathionine-β-synthase (CBS: encoded by CBS) deficiency. Symptoms of untreated classical HCU patients include intellectual disability (ID), ectopia lentis and long limbs, along with elevated plasma methionine, and homocysteine. METHODS A total of 429 ID patients (age range: 1.6-23 years) were sampled from Northern areas of Punjab, Pakistan. Biochemical and genetic analyses were performed to find classical HCU disease in ID patients. RESULTS Biochemically, nine patients from seven unrelated families were identified with high levels of plasma methionine and homocysteine. Targeted exonic analysis of CBS confirmed seven causative homozygous mutations; of which three were novel missense mutations (c.451G>T; p.Gly151Trp, c.975G>C; p.Lys325Asn and c.1039 + 1G>T splicing), and four were recurrent variants (c.451 + 1G>A; IVS4 + 1 splicing, c.770C>T; p.Thr257Met, c.808_810del GAG; p.Glu270del and c.752T>C; p.Leu251Pro). Treatment of patients was initiated without further delay with pyridoxine, folic acid, cobalamin, and betaine as well as dietary protein restriction. The immediate impact was noticed in behavioral improvement, decreased irritability, improved black hair color, and socialization. Overall, health outcomes in this disorder depend on the age and symptomatology at the time of treatment initiation. CONCLUSIONS With personalized treatment and care, such patients can reach their full potential of living as healthy a life as possible. This screening study is one of the pioneering initiatives in Pakistan which would help to minimize the burden of such treatable inborn errors of metabolism in the intellectually disabled patients.
Collapse
Affiliation(s)
- Muhammad Wasim
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- NIBGE-College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Haq N Khan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- NIBGE-College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Hina Ayesha
- Department of Pediatrics, Allied & DHQ Hospitals, Faisalabad Medical University (FMU/PMC), Faisalabad, Pakistan
| | - Mazhar Iqbal
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- NIBGE-College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Abdul Tawab
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- NIBGE-College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Muhammad Irfan
- Department of Pediatrics, Allied & DHQ Hospitals, Faisalabad Medical University (FMU/PMC), Faisalabad, Pakistan
| | - Warsha Kanhai
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Duivendrecht, The Netherlands
| | - Susanna M I Goorden
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Duivendrecht, The Netherlands
| | - Lida Stroomer
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Duivendrecht, The Netherlands
| | - Gajja Salomons
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Duivendrecht, The Netherlands
| | - Frederic M Vaz
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Duivendrecht, The Netherlands
- Departments of Pediatrics and Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Clara D M van Karnebeek
- Departments of Pediatrics and Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Fazli R Awan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- NIBGE-College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| |
Collapse
|
5
|
Montanari C, Parolisi S, Borghi E, Putignani L, Bassanini G, Zuvadelli J, Bonfanti C, Tummolo A, Dionisi Vici C, Biasucci G, Burlina A, Carbone MT, Verduci E. Dysbiosis, Host Metabolism, and Non-communicable Diseases: Trialogue in the Inborn Errors of Metabolism. Front Physiol 2021; 12:716520. [PMID: 34588993 PMCID: PMC8475650 DOI: 10.3389/fphys.2021.716520] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Inborn errors of metabolism (IEMs) represent a complex system model, in need of a shift of approach exploring the main factors mediating the regulation of the system, internal or external and overcoming the traditional concept of biochemical and genetic defects. In this context, among the established factors influencing the metabolic flux, i.e., diet, lifestyle, antibiotics, xenobiotics, infectious agents, also the individual gut microbiota should be considered. A healthy gut microbiota contributes in maintaining human health by providing unique metabolic functions to the human host. Many patients with IEMs are on special diets, the main treatment for these diseases. Hence, IEMs represent a good model to evaluate how specific dietary patterns, in terms of macronutrients composition and quality of nutrients, can be related to a characteristic microbiota associated with a specific clinical phenotype (“enterophenotype”). In the present review, we aim at reporting the possible links existing between dysbiosis, a condition reported in IEMs patients, and a pro-inflammatory status, through an altered “gut-liver” cross-talk network and a major oxidative stress, with a repercussion on the health status of the patient, increasing the risk of non-communicable diseases (NCDs). On this basis, more attention should be paid to the nutritional status assessment and the clinical and biochemical signs of possible onset of comorbidities, with the goal of improving the long-term wellbeing in IEMs. A balanced intestinal ecosystem has been shown to positively contribute to patient health and its perturbation may influence the clinical spectrum of individuals with IEMs. For this, reaching eubiosis through the improvement of the quality of dietary products and mixtures, the use of pre-, pro- and postbiotics, could represent both a preventive and therapeutic strategy in these complex diseases.
Collapse
Affiliation(s)
- Chiara Montanari
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Sara Parolisi
- UOS Metabolic and Rare Diseases, AORN Santobono, Naples, Italy
| | - Elisa Borghi
- Department of Health Science, University of Milan, Milan, Italy
| | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Juri Zuvadelli
- Clinical Department of Pediatrics, ASST Santi Paolo e Carlo, San Paolo Hospital, University of Milan, Milan, Italy
| | - Cristina Bonfanti
- Rare Metabolic Disease Unit, Pediatric Department, Fondazione MBBM, San Gerardo Hospital, Monza, Italy
| | - Albina Tummolo
- Metabolic Diseases and Clinical Genetics Unit, Children's Hospital Giovanni XXIII, Bari, Italy
| | | | - Giacomo Biasucci
- Department of Paediatrics & Neonatology, Guglielmo da Saliceto Hospital, Piacenza, Italy
| | - Alberto Burlina
- Division of Inborn Metabolic Diseases, Department of Diagnostic Services, University Hospital of Padua, Padua, Italy
| | | | - Elvira Verduci
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy.,Department of Health Science, University of Milan, Milan, Italy
| |
Collapse
|
6
|
Pena MJ, Pinto A, de Almeida MF, de Sousa Barbosa C, Ramos PC, Rocha S, Guimas A, Ribeiro R, Martins E, Bandeira A, Dias CC, MacDonald A, Borges N, Rocha JC. Continuous use of glycomacropeptide in the nutritional management of patients with phenylketonuria: a clinical perspective. Orphanet J Rare Dis 2021; 16:84. [PMID: 33581730 PMCID: PMC7881530 DOI: 10.1186/s13023-021-01721-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/02/2021] [Indexed: 11/22/2022] Open
Abstract
Background In phenylketonuria (PKU), modified casein glycomacropeptide supplements (CGMP-AA) are used as an alternative to the traditional phenylalanine (Phe)-free L-amino acid supplements (L-AA). However, studies focusing on the long-term nutritional status of CGMP-AA are lacking. This retrospective study evaluated the long-term impact of CGMP-AA over a mean of 29 months in 11 patients with a mean age at CGMP-AA onset of 28 years (range 15–43) [8 females; 2 hyperphenylalaninaemia (HPA), 3 mild PKU, 3 classical PKU and 3 late-diagnosed]. Outcome measures included metabolic control, anthropometry, body composition and biochemical parameters. Results CGMP-AA, providing 66% of protein equivalent intake from protein substitute, was associated with no significant change in blood Phe with CGMP-AA compared with baseline (562 ± 289 µmol/L vs 628 ± 317 µmol/L; p = 0.065). In contrast, blood tyrosine significantly increased on CGMP-AA (52.0 ± 19.2 μmol/L vs 61.4 ± 23.8 μmol/L; p = 0.027). Conclusions Biochemical nutritional markers remained unchanged which is an encouraging finding in adults with PKU, many of whom are unable to maintain full adherence with nutritionally fortified protein substitutes. Longitudinal, prospective studies with larger sample sizes are necessary to fully understand the metabolic impact of using CGMP-AA in PKU.
Collapse
Affiliation(s)
- Maria João Pena
- Departamento de Biomedicina, Unidade de Bioquímica, Faculdade de Medicina, Universidade do Porto, 4200-319, Porto, Portugal
| | - Alex Pinto
- Department of Dietetics, Birmingham Children's Hospital, Birmingham, B4 6NH, UK.,Faculty of Health and Human Sciences, University of Plymouth, Plymouth, PL6 8BH, UK
| | - Manuela Ferreira de Almeida
- Centro de Genética Médica, Centro Hospitalar Universitário Do Porto (CHUP), 4099-028, Porto, Portugal.,Centro de Referência na área das Doenças Hereditárias do Metabolismo, CHUP, 4099-001, Porto, Portugal.,UMIB/ICBAS/UP), Unit for Multidisplinary Research in Biomedicine, Abel Salazar Institute of Biomedical Sciences, University of Porto, 4050-313, Porto, Portugal
| | - Catarina de Sousa Barbosa
- Centro de Genética Médica, Centro Hospitalar Universitário Do Porto (CHUP), 4099-028, Porto, Portugal.,Centro de Referência na área das Doenças Hereditárias do Metabolismo, CHUP, 4099-001, Porto, Portugal
| | - Paula Cristina Ramos
- Centro de Genética Médica, Centro Hospitalar Universitário Do Porto (CHUP), 4099-028, Porto, Portugal.,Centro de Referência na área das Doenças Hereditárias do Metabolismo, CHUP, 4099-001, Porto, Portugal
| | - Sara Rocha
- Centro de Referência na área das Doenças Hereditárias do Metabolismo, CHUP, 4099-001, Porto, Portugal
| | - Arlindo Guimas
- Centro de Referência na área das Doenças Hereditárias do Metabolismo, CHUP, 4099-001, Porto, Portugal
| | - Rosa Ribeiro
- Centro de Referência na área das Doenças Hereditárias do Metabolismo, CHUP, 4099-001, Porto, Portugal.,UMIB/ICBAS/UP), Unit for Multidisplinary Research in Biomedicine, Abel Salazar Institute of Biomedical Sciences, University of Porto, 4050-313, Porto, Portugal
| | - Esmeralda Martins
- Centro de Referência na área das Doenças Hereditárias do Metabolismo, CHUP, 4099-001, Porto, Portugal.,UMIB/ICBAS/UP), Unit for Multidisplinary Research in Biomedicine, Abel Salazar Institute of Biomedical Sciences, University of Porto, 4050-313, Porto, Portugal
| | - Anabela Bandeira
- Centro de Referência na área das Doenças Hereditárias do Metabolismo, CHUP, 4099-001, Porto, Portugal
| | - Cláudia Camila Dias
- Center for Health Technology and Services Research (CINTESIS), 4200-450, Porto, Portugal.,Department of Community Medicine, Information and Health Sciences (MEDCIDS), Faculty of Medicine, University of Porto, 4200-450, Porto, Portugal
| | - Anita MacDonald
- Department of Dietetics, Birmingham Children's Hospital, Birmingham, B4 6NH, UK
| | - Nuno Borges
- Center for Health Technology and Services Research (CINTESIS), 4200-450, Porto, Portugal.,Faculdade de Ciências da Nutrição e Alimentação, Universidade do Porto, 4150-180, Porto, Portugal
| | - Júlio César Rocha
- Centro de Genética Médica, Centro Hospitalar Universitário Do Porto (CHUP), 4099-028, Porto, Portugal. .,Centro de Referência na área das Doenças Hereditárias do Metabolismo, CHUP, 4099-001, Porto, Portugal. .,Center for Health Technology and Services Research (CINTESIS), 4200-450, Porto, Portugal. .,Nutrition and Metabolism, Nova Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056, Lisbon, Portugal.
| |
Collapse
|
7
|
Wasim M, Khan HN, Ayesha H, Tawab A, Habib FE, Asi MR, Iqbal M, Awan FR. High levels of blood glutamic acid and ornithine in children with intellectual disability. INTERNATIONAL JOURNAL OF DEVELOPMENTAL DISABILITIES 2020; 68:609-614. [PMID: 36210897 PMCID: PMC9542416 DOI: 10.1080/20473869.2020.1858520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/28/2020] [Accepted: 11/28/2020] [Indexed: 06/16/2023]
Abstract
Objectives: Aminoacidopathies are inborn errors of metabolism (IEMs) that cause intellectual disability in children. Luckily, aminoacidopathies are potentially treatable, if diagnosed earlier in life. The focus of this study was the screening of aminoacidopathies in a cohort of patients suspected for IEMs. Methods: Blood samples from healthy (IQ > 90; n = 391) and intellectually disabled (IQ < 70; n = 409) children (suspected for IEMs) were collected from different areas of Northern Punjab, Pakistan. An analytical HPLC assay was used for the screening of plasma amino acids. Results: All the samples (n = 800) were analyzed on HPLC and forty-three out of 409 patient samples showed abnormal amino acid profiles mainly in the levels of glutamic acid, ornithine and methionine. Plasma concentration (Mean ± SD ng/mL) were significantly high in 40 patients for glutamic acid (patients: 165 ± 38 vs. controls: 57 ± 8, p < 0.00001) and ornithine (patients: 3177 ± 937 vs. controls: 1361 ± 91, p < 0.0001). Moreover, 3 patients showed abnormally high (53.3 ± 8.6 ng/mL) plasma levels of methionine. Conclusion: In conclusion, biochemical analysis of samples from such patients at the metabolites level could reveal the underlying diseases which could be confirmed through advanced biochemical and genetic analyses. Thus, treatment to some of such patients could be offered. Thus burden of intellectual disability caused by such rare metabolic diseases could be reduced from the target populations.
Collapse
Affiliation(s)
- Muhammad Wasim
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Pakistan
| | - Haq Nawaz Khan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Pakistan
| | - Hina Ayesha
- Department of Pediatrics, DHQ/Allied Hospitals, Punjab Medical College (PMC, Faisalabad Medical University (FMU), Faisalabad, Pakistan
| | - Abdul Tawab
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Pakistan
| | - Fazal e Habib
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | | | - Mazhar Iqbal
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Pakistan
| | - Fazli Rabbi Awan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Pakistan
| |
Collapse
|
8
|
Verduci E, Carbone MT, Borghi E, Ottaviano E, Burlina A, Biasucci G. Nutrition, Microbiota and Role of Gut-Brain Axis in Subjects with Phenylketonuria (PKU): A Review. Nutrients 2020; 12:3319. [PMID: 33138040 PMCID: PMC7692600 DOI: 10.3390/nu12113319] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
The composition and functioning of the gut microbiota, the complex population of microorganisms residing in the intestine, is strongly affected by endogenous and exogenous factors, among which diet is key. Important perturbations of the microbiota have been observed to contribute to disease risk, as in the case of neurological disorders, inflammatory bowel disease, obesity, diabetes, cardiovascular disease, among others. Although mechanisms are not fully clarified, nutrients interacting with the microbiota are thought to affect host metabolism, immune response or disrupt the protective functions of the intestinal barrier. Similarly, key intermediaries, whose presence may be strongly influenced by dietary habits, sustain the communication along the gut-brain-axis, influencing brain functions in the same way as the brain influences gut activity. Due to the role of diet in the modulation of the microbiota, its composition is of high interest in inherited errors of metabolism (IEMs) and may reveal an appealing therapeutic target. In IEMs, for example in phenylketonuria (PKU), since part of the therapeutic intervention is based on chronic or life-long tailored dietetic regimens, important variations of the microbial diversity or relative abundance have been observed. A holistic approach, including a healthy composition of the microbiota, is recommended to modulate host metabolism and affected neurological functions.
Collapse
Affiliation(s)
- Elvira Verduci
- Department of Paediatrics, Vittore Buzzi Children’s Hospital-University of Milan, Via Lodovico Castelvetro, 32, 20154 Milan, Italy
- Department of Health Science, University of Milan, via di Rudinì 8, 20142 Milan, Italy; (E.B.); (E.O.)
| | - Maria Teresa Carbone
- UOS Metabolic and Rare Diseases, AORN Santobono, Via Mario Fiore 6, 80122 Naples, Italy;
| | - Elisa Borghi
- Department of Health Science, University of Milan, via di Rudinì 8, 20142 Milan, Italy; (E.B.); (E.O.)
| | - Emerenziana Ottaviano
- Department of Health Science, University of Milan, via di Rudinì 8, 20142 Milan, Italy; (E.B.); (E.O.)
| | - Alberto Burlina
- Division of Inborn Metabolic Diseases, Department of Diagnostic Services, University Hospital of Padua, Via Orus 2B, 35129 Padua, Italy;
| | - Giacomo Biasucci
- Department of Paediatrics & Neonatology, Guglielmo da Saliceto Hospital, Via Taverna Giuseppe, 49, 29121 Piacenza, Italy;
| |
Collapse
|
9
|
van der Goot E, van Spronsen FJ, Falcão Salles J, van der Zee EA. A Microbial Community Ecology Perspective on the Gut-Microbiome-Brain Axis. Front Endocrinol (Lausanne) 2020; 11:611. [PMID: 32982988 PMCID: PMC7492586 DOI: 10.3389/fendo.2020.00611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Els van der Goot
- Molecular Neurobiology, Groningen Institute for Evolutionary Sciences, University of Groningen, Groningen, Netherlands
- Microbial Ecology Cluster, Groningen Institute for Evolutionary Sciences, University of Groningen, Groningen, Netherlands
| | - Francjan J. van Spronsen
- Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, Netherlands
| | - Joana Falcão Salles
- Microbial Ecology Cluster, Groningen Institute for Evolutionary Sciences, University of Groningen, Groningen, Netherlands
| | - Eddy A. van der Zee
- Molecular Neurobiology, Groningen Institute for Evolutionary Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
10
|
Rizowy GM, Poloni S, Colonetti K, Donis KC, Dobbler PT, Leistner-Segal S, Roesch LFW, Schwartz IVD. Is the gut microbiota dysbiotic in patients with classical homocystinuria? Biochimie 2020; 173:3-11. [PMID: 32105814 DOI: 10.1016/j.biochi.2020.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/20/2020] [Indexed: 12/14/2022]
Abstract
Classical homocystinuria (HCU) is characterized by increased plasma levels of total homocysteine (tHcy) and methionine (Met). Treatment may involve supplementation of B vitamins and essential amino acids, as well as restricted Met intake. Dysbiosis has been described in some inborn errors of metabolism, but has not been investigated in HCU. The aim of this study was to investigate the gut microbiota of HCU patients on treatment. Six unrelated HCU patients (males = 5, median age = 25.5 years) and six age-and-sex-matched healthy controls (males = 5, median age = 24.5 years) had their fecal microbiota characterized through partial 16S rRNA gene sequencing. Fecal pH, a 3-day dietary record, medical history, and current medications were recorded for both groups. All patients were nonresponsive to pyridoxine and were on a Met-restricted diet and presented with high tHcy. Oral supplementation of folate (n = 6) and pyridoxine (n = 5), oral intake of betaine (n = 4), and IM vitamin B12 supplementation (n = 4), were reported only in the HCU group. Patients had decreased daily intake of fat, cholesterol, vitamin D, and selenium compared to controls (p < 0.05). There was no difference in alpha and beta diversity between the groups. HCU patients had overrepresentation of the Eubacterium coprostanoligenes group and underrepresentation of the Alistipes, Family XIII UCG-001, and Parabacteroidetes genera. HCU patients and controls had similar gut microbiota diversity, despite differential abundance of some bacterial genera. Diet, betaine, vitamin B supplementation, and host genetics may contribute to these differences in microbial ecology.
Collapse
Affiliation(s)
- Gustavo Mottin Rizowy
- PostGraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Laboratory of Basic Research and Advanced Investigations in Neuroscience (BRAIN), Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Soraia Poloni
- Laboratory of Basic Research and Advanced Investigations in Neuroscience (BRAIN), Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Post-Graduation Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Karina Colonetti
- PostGraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Laboratory of Basic Research and Advanced Investigations in Neuroscience (BRAIN), Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Karina Carvalho Donis
- PostGraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Priscila Thiago Dobbler
- Interdisciplinary Research Center on Biotechnology (CIP-Biotec), Universidade Federal do Pampa, São Gabriel, Rio Grande do Sul, Brazil
| | - Sandra Leistner-Segal
- Laboratory of Basic Research and Advanced Investigations in Neuroscience (BRAIN), Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Post-Graduation Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luiz Fernando Wurdig Roesch
- Interdisciplinary Research Center on Biotechnology (CIP-Biotec), Universidade Federal do Pampa, São Gabriel, Rio Grande do Sul, Brazil
| | - Ida Vanessa Doederlein Schwartz
- PostGraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Laboratory of Basic Research and Advanced Investigations in Neuroscience (BRAIN), Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil; Post-Graduation Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
11
|
Ismail IT, Showalter MR, Fiehn O. Inborn Errors of Metabolism in the Era of Untargeted Metabolomics and Lipidomics. Metabolites 2019; 9:metabo9100242. [PMID: 31640247 PMCID: PMC6835511 DOI: 10.3390/metabo9100242] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 12/30/2022] Open
Abstract
Inborn errors of metabolism (IEMs) are a group of inherited diseases with variable incidences. IEMs are caused by disrupting enzyme activities in specific metabolic pathways by genetic mutations, either directly or indirectly by cofactor deficiencies, causing altered levels of compounds associated with these pathways. While IEMs may present with multiple overlapping symptoms and metabolites, early and accurate diagnosis of IEMs is critical for the long-term health of affected subjects. The prevalence of IEMs differs between countries, likely because different IEM classifications and IEM screening methods are used. Currently, newborn screening programs exclusively use targeted metabolic assays that focus on limited panels of compounds for selected IEM diseases. Such targeted approaches face the problem of false negative and false positive diagnoses that could be overcome if metabolic screening adopted analyses of a broader range of analytes. Hence, we here review the prospects of using untargeted metabolomics for IEM screening. Untargeted metabolomics and lipidomics do not rely on predefined target lists and can detect as many metabolites as possible in a sample, allowing to screen for many metabolic pathways simultaneously. Examples are given for nontargeted analyses of IEMs, and prospects and limitations of different metabolomics methods are discussed. We conclude that dedicated studies are needed to compare accuracy and robustness of targeted and untargeted methods with respect to widening the scope of IEM diagnostics.
Collapse
Affiliation(s)
- Israa T Ismail
- National Liver Institute, Menoufia University, Shebeen El Kom 55955, Egypt.
- NIH West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA.
| | - Megan R Showalter
- NIH West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA.
| | - Oliver Fiehn
- NIH West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
12
|
Kirby TO, Brown M, Ochoa-Repáraz J, Roullet JB, Gibson KM. Microbiota Manipulation as a Metagenomic Therapeutic Approach for Rare Inherited Metabolic Disorders. Clin Pharmacol Ther 2019; 106:505-507. [PMID: 31273774 DOI: 10.1002/cpt.1503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/10/2019] [Indexed: 01/29/2023]
Affiliation(s)
- Trevor O Kirby
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - Madalyn Brown
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | | | - Jean-Baptiste Roullet
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - K Michael Gibson
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| |
Collapse
|
13
|
Wasim M, Khan HN, Ayesha H, Awan FR. Biochemical screening of intellectually disabled and healthy children in Punjab, Pakistan: differences in liver function test and lipid profiles. INTERNATIONAL JOURNAL OF DEVELOPMENTAL DISABILITIES 2019; 66:190-195. [PMID: 34141381 PMCID: PMC8142844 DOI: 10.1080/20473869.2018.1533084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 06/12/2023]
Abstract
Objectives: Inborn errors of metabolism (IEMs) are rare genetic disorders. Generally, IEMs are untreatable; however, some IEMs causing intellectual disability are potentially treatable if diagnosed earlier. In this study, levels of some clinically important biochemical parameters in intellectually disabled children suspected for IEMs were tested to see their association with intellectual disability, which could be helpful in preliminary screening. Methods: This comparative cross-sectional observational study was carried out from 2014 to 2017. Blood samples from 800 boys and girls (aged 4-24 years) were collected, of which 391 were healthy (IQ >90) and 409 were intellectually disabled (IQ <70) children with unknown cause. Clinically important (Liver and kidney enzymes etc.) biochemical parameters were analyzed in sera samples using commercial kits on semi-automated clinical chemistry analyzer. Results: Serum analysis showed the levels of ALP (p < 0.00001), ASAT (p = 0.001), ALAT (p = 0.016), albumin (p < 0.001), uric acid (p < 0.001), cholesterol (p < 0.001), triglycerides (p < 0.001), and hemoglobin (p = 0.005) were significantly different between healthy and intellectually disabled children. Conclusion: Changes in the liver function test and lipid profile parameters were significantly different in children with intellectual disability; however, it requires further detailed analysis for complete characterization of these diseases.
Collapse
Affiliation(s)
- Muhammad Wasim
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Haq Nawaz Khan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Hina Ayesha
- Department of Pediatrics, DHQ Hospital, Faisalabad Medical University, Faisalabad, Pakistan
| | - Fazli Rabbi Awan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| |
Collapse
|
14
|
Ramsay J, Morton J, Norris M, Kanungo S. Organic acid disorders. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:472. [PMID: 30740403 PMCID: PMC6331355 DOI: 10.21037/atm.2018.12.39] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022]
Abstract
Organic acids (OAs) are intermediary products of several amino acid catabolism or degradation via multiple biochemical pathways for energy production. Vitamins or co-factors are often quintessential elements in such degradation pathways and OA metabolism. OAs that result from enzyme defects in these pathways can be identified in body fluids utilizing gas chromatography-mass spectrometry techniques (GC/MS). OAs are silent contributor to acid base imbalance and can affect nitrogen balance and recycling. Since OA production occurs in distal steps of a specific amino acid catabolism, offending amino acid accumulation is not characteristic. OA disorders as inborn errors of metabolism (IEM) are included in differential diagnosis of metabolic acidosis, as the common mnemonic MUDPILES taught in medical schools. High anion gap metabolic acidosis with hyperammonemia is a characteristic OA biochemical finding. VOMIT (valine, odd chain fatty acids, methionine, isoleucine, and threonine) is a smart acronym and a common clinical presentation of OA disorders and can present as early life-threatening illness, prior to Newborn Screening results availability. Easy identification and available medical formula make the field of metabolic nutrition vital for management of OA disorders. Treatment strategies also involve cofactor/vitamin utilization to aid specific pathways and disorder management. Optimal metabolic control and regular monitoring is key to long-term management and prevention of morbidity, disability and mortality. Prompt utilization of acute illness protocol (AIP) or emergency protocol and disorder specific education of family members or caregivers, primary care physicians and local emergency health care facilities; cautiously addressing common childhood illnesses in patients with OA disorders, can help avoid poor short- and long-term morbidity, disability and mortality outcomes.
Collapse
Affiliation(s)
- Jessica Ramsay
- Department of Pediatric and Adolescent Medicine, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, Michigan, USA
| | - Jacob Morton
- Department of Pediatric and Adolescent Medicine, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, Michigan, USA
| | - Marie Norris
- Biochemical Genetics & Nutrition, Seattle Children’s Hospital, Seattle, Washington, USA
| | - Shibani Kanungo
- Department of Pediatric and Adolescent Medicine, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, Michigan, USA
| |
Collapse
|