1
|
Huang Y, Wang Y, Xu B, Zeng Y, Chen P, Huang Y, Liu X. The association between constipation and anxiety: a cross-sectional study and Mendelian randomization analysis. Front Psychiatry 2025; 16:1543692. [PMID: 40230819 PMCID: PMC11995435 DOI: 10.3389/fpsyt.2025.1543692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/17/2025] [Indexed: 04/16/2025] Open
Abstract
Objective The relationship between constipation and anxiety remains underexplored. This study investigates the association between constipation and anxiety in a representative sample of adults in the United States. Methods A cross-sectional analysis was conducted using data from the National Health and Nutrition Examination Survey (NHANES) from 2007 to 2010, including 9,126 adults aged ≥20 years. Constipation and anxiety were assessed using standardized survey instruments. Multivariable logistic regression models were employed to calculate adjusted odds ratios (ORs), and subgroup and sensitivity analyses were performed to validate the findings. Additionally, Mendelian randomization (MR) was employed to assess the potential causal relationship between constipation and anxiety using genetic data from large GWAS datasets. Results Of the 9,126 participants, 324 reported constipation (prevalence: 3.6%), and 2,424 reported anxiety (prevalence: 26.6%). Anxiety prevalence was significantly higher in individuals with constipation compared to those without (41.4% vs. 26.0%; P < 0.001). After adjusting for demographic, socioeconomic, lifestyle, and comorbid factors, constipation remained independently associated with anxiety (adjusted OR: 1.33, 95% CI: 1.02-1.73; P = 0.038). Subgroup analyses revealed no significant interactions. Sensitivity analyses, including multiple imputations, weighted analysis, and propensity score matching, corroborated the robustness of the results. MR analysis, however, revealed no significant causal association between constipation and anxiety. Conclusion This study identifies a significant association between constipation and anxiety in a large, nationally representative cohort. While the association remains robust after adjusting for various factors, MR did not provide evidence for a causal relationship. Clinicians should consider evaluating and addressing anxiety symptoms as part of a comprehensive management strategy for patients presenting with constipation.
Collapse
Affiliation(s)
| | | | | | | | | | - Yisen Huang
- Department of Gastroenterology, First Hospital of Quanzhou Affiliated to Fujian Medical
University, Quanzhou, Fujian, China
| | - Xiaoqiang Liu
- Department of Gastroenterology, First Hospital of Quanzhou Affiliated to Fujian Medical
University, Quanzhou, Fujian, China
| |
Collapse
|
2
|
Martz J, Shelton MA, Langen TJ, Srinivasan S, Seney ML, Kentner AC. Peripubertal antagonism of corticotropin-releasing factor receptor 1 results in sustained changes in behavioral plasticity and the transcriptomic profile of the amygdala. Neuroscience 2025; 567:261-270. [PMID: 39798835 PMCID: PMC11789919 DOI: 10.1016/j.neuroscience.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/15/2025]
Abstract
Peripuberty is a significant period of neurodevelopment with long-lasting effects on the brain and behavior. Blocking type 1 corticotropin-releasing factor receptors (CRFR1) in neonatal and peripubertal rats attenuates detrimental effects of early-life stress on neural plasticity, behavior, and stress hormone action, long after exposure to the drug has ended. CRFR1 antagonism can also impact neural and behavioral development in the absence of stressful stimuli, suggesting sustained alterations under baseline conditions. To investigate this further, we administered the CRFR1 antagonist (CRFR1a) R121919 to young adolescent male and female rats across 4 days. Following each treatment, rats were tested for locomotion, social behavior, mechanical allodynia, or prepulse inhibition (PPI). Acute CRFR1 blockade immediately reduced PPI in peripubertal males, but not females. In adulthood, each assay was repeated without CRFR1a exposure to test for persistent effects of the adolescent treatment. Males continued to experience deficits in PPI while females displayed altered locomotion, PPI, and social behavior. The amygdala was collected to measure long-term effects on gene expression. In the adult amygdala, peripubertal CRFR1a induced alterations in pathways related to neural plasticity and stress in males. In females, pathways related to central nervous system myelination, cell junction organization, and glutamatergic regulation of synaptic transmission were affected. Understanding how acute exposure to neuropharmacological agents can have sustained impacts on brain and behavior, in the absence of further exposures, has important clinical implications for developing adolescents.
Collapse
Affiliation(s)
- Julia Martz
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, 02115, United States
| | - Micah A Shelton
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, United States
| | - Tristen J Langen
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, 02115, United States
| | - Sakhi Srinivasan
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, 02115, United States
| | - Marianne L Seney
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, United States
| | - Amanda C Kentner
- School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, 02115, United States.
| |
Collapse
|
3
|
Martz J, Shelton MA, Langen TJ, Srinivasan S, Seney ML, Kentner AC. Peripubertal antagonism of corticotropin-releasing factor receptor 1 results in sustained changes in behavioral plasticity and the transcriptomic profile of the amygdala. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.14.607957. [PMID: 39185241 PMCID: PMC11343213 DOI: 10.1101/2024.08.14.607957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Peripuberty is a significant period of neurodevelopment with long-lasting effects on the brain and behavior. Blocking type 1 corticotropin-releasing factor receptors (CRFR1) in neonatal and peripubertal rats attenuates detrimental effects of early-life stress on neural plasticity, behavior, and stress hormone action, long after exposure to the drug has ended. CRFR1 antagonism can also impact neural and behavioral development in the absence of stressful stimuli, suggesting sustained alterations under baseline conditions. To investigate this further, we administered the CRFR1 antagonist (CRFR1a) R121919 to young adolescent male and female rats across 4 days. Following each treatment, rats were tested for locomotion, social behavior, mechanical allodynia, or prepulse inhibition (PPI). Acute CRFR1 blockade immediately reduced PPI in peripubertal males, but not females. In adulthood, each assay was repeated without CRFR1a exposure to test for persistent effects of the adolescent treatment. Males continued to experience deficits in PPI while females displayed altered locomotion, PPI, and social behavior. The amygdala was collected to measure long-term effects on gene expression. In the adult amygdala, peripubertal CRFR1a induced alterations in pathways related to neural plasticity and stress in males. In females, pathways related to central nervous system myelination, cell junction organization, and glutamatergic regulation of synaptic transmission were affected. Understanding how acute exposure to neuropharmacological agents can have sustained impacts on brain and behavior, in the absence of further exposures, has important clinical implications for developing adolescents.
Collapse
Affiliation(s)
- Julia Martz
- School of Arts & Sciences, Health Psychology Program,
Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, United States
02115
| | - Micah A. Shelton
- Department of Psychiatry, University of Pittsburgh, 450
Technology Drive Pittsburgh, PA, 15219
| | - Tristen J. Langen
- School of Arts & Sciences, Health Psychology Program,
Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, United States
02115
| | - Sakhi Srinivasan
- School of Arts & Sciences, Health Psychology Program,
Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, United States
02115
| | - Marianne L. Seney
- Department of Psychiatry, University of Pittsburgh, 450
Technology Drive Pittsburgh, PA, 15219
| | - Amanda C. Kentner
- School of Arts & Sciences, Health Psychology Program,
Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, United States
02115
| |
Collapse
|
4
|
Mbiydzenyuy NE, Qulu LA. Stress, hypothalamic-pituitary-adrenal axis, hypothalamic-pituitary-gonadal axis, and aggression. Metab Brain Dis 2024; 39:1613-1636. [PMID: 39083184 PMCID: PMC11535056 DOI: 10.1007/s11011-024-01393-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/08/2024] [Indexed: 11/05/2024]
Abstract
This comprehensive review explores the intricate relationship between the hypothalamic-pituitary-adrenal (HPA) axis, the hypothalamic-pituitary-gonadal (HPG) axis, and aggression. It provides a detailed overview of the physiology and functioning of these axes, as well as the implications for aggressive behavior. The HPA axis, responsible for the stress response, is activated in response to various stressors and can influence aggressive behavior. Glucocorticoids, such as cortisol, play a crucial role in stress-induced activation of the HPA axis and have been implicated in aggressive tendencies. Chronic stress can dysregulate the HPA axis, leading to alterations in cortisol levels and potentially contributing to aggressive behavior. The HPG axis, particularly the androgen hormone testosterone, is also closely linked to aggression. Animal and human studies have consistently shown a positive association between testosterone levels and aggression. The androgen receptors in the brain's neural circuitry play a critical role in modulating aggressive behavior. Interactions between the HPA and HPG axes further contribute to the regulation of aggression. Feedback mechanisms and crosstalk between these axes provide a complex system for the modulation of both stress and reproductive functions, which can impact aggressive behavior. Additionally,the influence of stress on reproductive functions, particularly the role of androgens in stress-induced aggression, adds further complexity to this relationship. The review also discusses the future directions and implications for clinical interventions. Understanding the neurobiological mechanisms underlying aggression requires integrating molecular, cellular, and circuit-level approaches. Translational perspectives, including animal models and human studies, can bridge the gap between basic research and clinical applications. Finally, therapeutic strategies for aggression-related disorders are explored, highlighting the importance of targeted interventions based on a comprehensive understanding of the interactions between the HPA and HPG axes. In conclusion, this review provides a comprehensive overview of the physiological and neurobiological mechanisms underlying aggression, with a specific focus on the interplay between the HPA and HPG axes. By elucidating the complex interactions between stress, hormones, and aggressive behavior, this research paves the way for future investigations and potential therapeutic interventions for aggression-related disorders.
Collapse
Affiliation(s)
- Ngala Elvis Mbiydzenyuy
- Basic Science Department, School of Medicine, Copperbelt University, P.O Box 71191, Ndola, Zambia
- Division of Medical Physiology, Biomedical Science Research Institute, Stellenbosch University, Private Bag X1, Matieland, 7602, Cape Town, South Africa
| | - Lihle-Appiah Qulu
- Division of Medical Physiology, Biomedical Science Research Institute, Stellenbosch University, Private Bag X1, Matieland, 7602, Cape Town, South Africa.
| |
Collapse
|
5
|
Tian Y, Yang XW, Chen L, Xi K, Cai SQ, Cai J, Yang XM, Wang ZY, Li M, Xing GG. Activation of CRF/CRFR1 Signaling in the Central Nucleus of the Amygdala Contributes to Chronic Stress-Induced Exacerbation of Neuropathic Pain by Enhancing GluN2B-NMDA Receptor-Mediated Synaptic Plasticity in Adult Male Rats. THE JOURNAL OF PAIN 2024; 25:104495. [PMID: 38354968 DOI: 10.1016/j.jpain.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Exacerbation of pain by chronic stress and comorbidity of pain with stress-related disorders such as depression and post-traumatic stress disorder, represent significant clinical challenges. Previously we have documented that chronic forced swim (FS) stress exacerbates neuropathic pain in spared nerve injury (SNI) rats, associated with an up-regulation of GluN2B-containing N-methyl-D-aspartate receptors (GluN2B-NMDARs) in the central nucleus of the amygdala (CeA). However, the molecular mechanisms underlying chronic FS stress (CFSS)-mediated exacerbation of pain sensitivity in SNI rats still remain unclear. In this study, we demonstrated that exposure of CFSS to rats activated the corticotropin-releasing factor (CRF)/CRF receptor type 1 (CRFR1) signaling in the CeA, which was shown to be necessary for CFSS-induced depressive-like symptoms in stressed rats, and as well, for CFSS-induced exacerbation of pain hypersensitivity in SNI rats exposed to chronic FS stress. Furthermore, we discovered that activation of CRF/CRFR1 signaling in the CeA upregulated the phosphorylation of GluN2B-NMDARs at tyrosine 1472 (pGluN2BY1472) in the synaptosomal fraction of CeA, which is highly correlated to the enhancement of synaptic GluN2B-NMDARs expression that has been observed in the CeA in CFSS-treated SNI rats. In addition, we revealed that activation of CRF/CRFR1 signaling in the CeA facilitated the CFSS-induced reinforcement of long-term potentiation as well as the enhancement of NMDAR-mediated excitatory postsynaptic currents in the basolateral amygdala (BLA)-CeA pathway in SNI rats. These findings suggest that activation of CRF/CRFR1 signaling in the CeA contributes to chronic stress-induced exacerbation of neuropathic pain by enhancing GluN2B-NMDAR-mediated synaptic plasticity in rats subjected to nerve injury. PERSPECTIVE: Our present study provides a novel mechanism for elucidating stress-induced hyperalgesia and highlights that the CRF/CRFR1 signaling and the GluN2B-NMDAR-mediated synaptic plasticity in the CeA may be important as potential therapeutic targets for chronic stress-induced pain exacerbation in human neuropathic pain. DATA AVAILABILITY: The data that support the findings of this study are available from the corresponding author upon reasonable request.
Collapse
Affiliation(s)
- Yue Tian
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Neuroscience Research Institute, Peking University, Beijing, China
| | - Xue-Wei Yang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Lin Chen
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Neuroscience Research Institute, Peking University, Beijing, China
| | - Ke Xi
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Neuroscience Research Institute, Peking University, Beijing, China
| | - Si-Qing Cai
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Neuroscience Research Institute, Peking University, Beijing, China
| | - Jie Cai
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Neuroscience Research Institute, Peking University, Beijing, China
| | - Xiao-Mei Yang
- Department of Human Anatomy and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zhi-Yong Wang
- Department of Human Anatomy and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Min Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Guo-Gang Xing
- Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Neuroscience Research Institute, Peking University, Beijing, China; Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
6
|
Domin H, Śmiałowska M. The diverse role of corticotropin-releasing factor (CRF) and its CRF1 and CRF2 receptors under pathophysiological conditions: Insights into stress/anxiety, depression, and brain injury processes. Neurosci Biobehav Rev 2024; 163:105748. [PMID: 38857667 DOI: 10.1016/j.neubiorev.2024.105748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/12/2024]
Abstract
Corticotropin-releasing factor (CRF, corticoliberin) is a neuromodulatory peptide activating the hypothalamic-pituitary-adrenal (HPA) axis, widely distributed in the central nervous system (CNS) in mammals. In addition to its neuroendocrine effects, CRF is essential in regulating many functions under physiological and pathophysiological conditions through CRF1 and CRF2 receptors (CRF1R, CRF2R). This review aims to present selected examples of the diverse and sometimes opposite effects of CRF and its receptor ligands in various pathophysiological states, including stress/anxiety, depression, and processes associated with brain injury. It seems interesting to draw particular attention to the fact that CRF and its receptor ligands exert different effects depending on the brain structures or subregions, likely stemming from the varied distribution of CRFRs in these regions and interactions with other neurotransmitters. CRFR-mediated region-specific effects might also be related to brain site-specific ligand binding and the associated activated signaling pathways. Intriguingly, different types of CRF molecules can also influence the diverse actions of CRF in the CNS.
Collapse
Affiliation(s)
- Helena Domin
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 12 Smętna Street, Kraków 31-343, Poland.
| | - Maria Śmiałowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 12 Smętna Street, Kraków 31-343, Poland
| |
Collapse
|
7
|
Liang YF, Chen XQ, Zhang MT, Tang HY, Shen GM. Research Progress of Central and Peripheral Corticotropin-Releasing Hormone in Irritable Bowel Syndrome with Comorbid Dysthymic Disorders. Gut Liver 2024; 18:391-403. [PMID: 37551453 PMCID: PMC11096901 DOI: 10.5009/gnl220346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 04/26/2023] [Accepted: 05/22/2023] [Indexed: 08/09/2023] Open
Abstract
Irritable bowel syndrome (IBS) is considered a stress disorder characterized by psychological and gastrointestinal dysfunction. IBS patients not only suffer from intestinal symptoms such as abdominal pain, diarrhea, or constipation but also, experience dysthymic disorders such as anxiety and depression. Studies have found that corticotropin-releasing hormone plays a key role in IBS with comorbid dysthymic disorders. Next, we will summarize the effects of corticotropin-releasing hormone from the central nervous system and periphery on IBS with comorbid dysthymic disorders and relevant treatments based on published literatures in recent years.
Collapse
Affiliation(s)
- Yi Feng Liang
- College of Acupuncture and Massage, Anhui University of Chinese Medicine, Hefei, China
| | - Xiao Qi Chen
- College of Acupuncture and Massage, Anhui University of Chinese Medicine, Hefei, China
| | - Meng Ting Zhang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - He Yong Tang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Guo Ming Shen
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
8
|
Mbiydzenyuy NE, Joanna Hemmings SM, Shabangu TW, Qulu-Appiah L. Exploring the influence of stress on aggressive behavior and sexual function: Role of neuromodulator pathways and epigenetics. Heliyon 2024; 10:e27501. [PMID: 38486749 PMCID: PMC10937706 DOI: 10.1016/j.heliyon.2024.e27501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/17/2024] Open
Abstract
Stress is a complex and multifaceted phenomenon that can significantly influence both aggressive behavior and sexual function. This review explores the intricate relationship between stress, neuromodulator pathways, and epigenetics, shedding light on the various mechanisms that underlie these connections. While the role of stress in both aggression and sexual behavior is well-documented, the mechanisms through which it exerts its effects are multifarious and not yet fully understood. The review begins by delving into the potential influence of stress on the Hypothalamic-Pituitary-Adrenal (HPA) axis, glucocorticoids, and the neuromodulators involved in the stress response. The intricate interplay between these systems, which encompasses the regulation of stress hormones, is central to understanding how stress may contribute to aggressive behavior and sexual function. Several neuromodulator pathways are implicated in both stress and behavior regulation. We explore the roles of norepinephrine, serotonin, oxytocin, and androgens in mediating the effects of stress on aggression and sexual function. It is important to distinguish between general sexual behavior, sexual motivation, and the distinct category of "sexual aggression" as separate constructs, each necessitating specific examination. Additionally, epigenetic mechanisms emerge as crucial factors that link stress to changes in gene expression patterns and, subsequently, to behavior. We then discuss how epigenetic modifications can occur in response to stress exposure, altering the regulation of genes associated with stress, aggression, and sexual function. While numerous studies support the association between epigenetic changes and stress-induced behavior, more research is necessary to establish definitive links. Throughout this exploration, it becomes increasingly clear that the relationship between stress, neuromodulator pathways, and epigenetics is intricate and multifaceted. The review emphasizes the need for further research, particularly in the context of human studies, to provide clinical significance and to validate the existing findings from animal models. By better understanding how stress influences aggressive behavior and sexual function through neuromodulator pathways and epigenetic modifications, this research aims to contribute to the development of innovative protocols of precision medicine and more effective strategies for managing the consequences of stress on human behavior. This may also pave way for further research into risk factors and underlying mechanisms that may associate stress with sexual aggression which finds application not only in neuroscience, but also law, ethics, and the humanities in general.
Collapse
Affiliation(s)
- Ngala Elvis Mbiydzenyuy
- Basic Science Department, School of Medicine, Copperbelt University, P.O Box 71191, Ndola, Zambia
- Division of Medical Physiology, Biomedical Science Research Institute, Stellenbosch University, Private Bag X1, Matieland, 7602, Cape Town South Africa
| | - Sian Megan Joanna Hemmings
- Division of Molecular Biology & Human Genetics, Biomedical Science Research Institute, Stellenbosch University, Private Bag X1, Matieland, 7602, Cape Town South Africa
| | - Thando W. Shabangu
- Division of Medical Physiology, Biomedical Science Research Institute, Stellenbosch University, Private Bag X1, Matieland, 7602, Cape Town South Africa
| | - Lihle Qulu-Appiah
- Division of Medical Physiology, Biomedical Science Research Institute, Stellenbosch University, Private Bag X1, Matieland, 7602, Cape Town South Africa
| |
Collapse
|
9
|
Lopes LM, Reis-Silva LL, Rodrigues B, Crestani CC. Pharmacological Manipulation of Corticotropin-Releasing Factor Receptors in the Anterior and Posterior Subregions of the Insular Cortex Differently Affects Anxiety-Like Behaviors in the Elevated Plus Maze in Rats. BIOMED RESEARCH INTERNATIONAL 2024; 2024:8322844. [PMID: 38327803 PMCID: PMC10849808 DOI: 10.1155/2024/8322844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/05/2024] [Accepted: 01/20/2024] [Indexed: 02/09/2024]
Abstract
Neuroimaging data in humans and neurobiological studies in rodents have suggested an involvement of the insular cortex (IC) in anxiety manifestations. However, the local neurochemical mechanisms involved are still poorly understood. Corticotropin-releasing factor (CRF) neurotransmission has been described as a prominent neurochemical mechanism involved in the expression of anxiety-like behaviors, but the brain sites related are poorly understood. Additionally, several findings indicate that control of physiological and behavioral responses by the IC occurs in a site-specific manner along its rostrocaudal axis. Thus, this study is aimed at evaluating the effect of CRF receptor agonism and antagonism within the anterior and posterior subregions of the IC in controlling anxiety-related behaviors in the elevated plus maze (EPM). For this, independent groups (six groups) of animals received bilateral microinjections of vehicle, the selective CRF1 receptor antagonist CP376395, or CRF into either the anterior or posterior subregions of the IC. Ten minutes later, the behavior in the EPM was evaluated for five minutes. Treatment of the anterior IC with CP376395, but not with CRF, increased the time and number of entries into the open arms of the EPM. CRF, but not the CRF1 receptor antagonist, microinjected into the posterior IC also increased exploration of the EPM open arms. Taken together, these data indicate that CRFergic neurotransmission in the anterior IC is involved in the expression of anxiety-related behaviors in the EPM. This neurochemical mechanism does not seem to be activated within the posterior IC during exposure to the EPM, but the effects caused by CRF microinjection indicate that activation of CRF receptors in this IC subregion might evoke anxiolytic-like effects.
Collapse
Affiliation(s)
- Lucas M. Lopes
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Lilian L. Reis-Silva
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Bruno Rodrigues
- Department of Adapted Physical Activity, Faculty of Physical Education, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Carlos C. Crestani
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
10
|
Hafenbreidel M, Pandey S, Briggs SB, Arza M, Bonthu S, Fisher C, Tiller A, Hall AB, Reed S, Mayorga N, Lin L, Khan S, Cameron MD, Rumbaugh G, Miller CA. Basolateral amygdala corticotropin releasing factor receptor 2 interacts with nonmuscle myosin II to destabilize memory in males. Neurobiol Learn Mem 2023; 206:107865. [PMID: 37995804 DOI: 10.1016/j.nlm.2023.107865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
Preclinical studies show that inhibiting the actin motor ATPase nonmuscle myosin II (NMII) with blebbistatin (Blebb) in the basolateral amgydala (BLA) depolymerizes actin, resulting in an immediate, retrieval-independent disruption of methamphetamine (METH)-associated memory in male and female adult and adolescent rodents. The effect is highly selective, as NMII inhibition has no effect in other relevant brain regions (e.g., dorsal hippocampus [dPHC], nucleus accumbens [NAc]), nor does it interfere with associations for other aversive or appetitive stimuli, including cocaine (COC). To understand the mechanisms responsible for drug specific selectivity we began by investigating, in male mice, the pharmacokinetic differences in METH and COC brain exposure . Replicating METH's longer half-life with COC did not render the COC association susceptible to disruption by NMII inhibition. Therefore, we next assessed transcriptional differences. Comparative RNA-seq profiling in the BLA, dHPC and NAc following METH or COC conditioning identified crhr2, which encodes the corticotropin releasing factor receptor 2 (CRF2), as uniquely upregulated by METH in the BLA. CRF2 antagonism with Astressin-2B (AS2B) had no effect on METH-associated memory after consolidation, allowing for determination of CRF2 influences on NMII-based susceptibility. Pretreatment with AS2B prevented the ability of Blebb to disrupt an established METH-associated memory. Alternatively, combining CRF2 overexpression and agonist treatment, urocortin 3 (UCN3), in the BLA during conditioning rendered COC-associated memory susceptible to disruption by NMII inhibition, mimicking the Blebb-induced, retrieval-independent memory disruption seen with METH. These results suggest that BLA CRF2 receptor activation during memory formation in male mice can prevent stabilization of the actin-myosin cytoskeleton supporting the memory, rendering it vulnerable to disruption by NMII inhibition. CRF2 represents an interesting target for BLA-dependent memory destabilization via downstream effects on NMII.
Collapse
Affiliation(s)
- Madalyn Hafenbreidel
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Surya Pandey
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Sherri B Briggs
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Meghana Arza
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Shalakha Bonthu
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Cadence Fisher
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Annika Tiller
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Alice B Hall
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Shayna Reed
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Natasha Mayorga
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Li Lin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Susan Khan
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Michael D Cameron
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Courtney A Miller
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States.
| |
Collapse
|
11
|
Yang X, Geng F. Corticotropin-releasing factor signaling and its potential role in the prefrontal cortex-dependent regulation of anxiety. J Neurosci Res 2023; 101:1781-1794. [PMID: 37592912 DOI: 10.1002/jnr.25238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/08/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023]
Abstract
A large body of literature has highlighted the significance of the corticotropin-releasing factor (CRF) system in the regulation of neuropsychiatric diseases. Anxiety disorders are among the most common neuropsychiatric disorders. An increasing number of studies have demonstrated that the CRF family mediates and regulates the development and maintenance of anxiety. Thus, the CRF family is considered to be a potential target for the treatment of anxiety disorders. The prefrontal cortex (PFC) plays a role in the occurrence and development of anxiety, and both CRF and CRF-R1 are widely expressed in the PFC. This paper begins by reviewing CRF-related signaling pathways and their different roles in anxiety and related processes. Then, the role of the CRF system in other neuropsychiatric diseases is reviewed and the potential role of PFC CRF signaling in the regulation of anxiety disorders is discussed. Although other signaling pathways are potentially involved in the process of anxiety, CRF in the PFC primarily modulates anxiety disorders through the activation of corticotropin-releasing factor type1 receptors (CRF-R1) and the excitation of the cAMP/PKA signaling pathway. Moreover, the main signaling pathways of CRF involved in sex differentiation in the PFC appear to be different. In summary, this review suggests that the CRF system in the PFC plays a critical role in the occurrence of anxiety. Thus, CRF signaling is of great significance as a potential target for the treatment of stress-related disorders in the future.
Collapse
Affiliation(s)
- Xin Yang
- Department of Physiology, Shantou University Medical College, Shantou, China
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fei Geng
- Department of Physiology, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| |
Collapse
|
12
|
Djerdjaj A, Rieger NS, Brady BH, Carey BN, Ng AJ, Christianson JP. Social affective behaviors among female rats involve the basolateral amygdala and insular cortex. PLoS One 2023; 18:e0281794. [PMID: 37797037 PMCID: PMC10553809 DOI: 10.1371/journal.pone.0281794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/02/2023] [Indexed: 10/07/2023] Open
Abstract
The ability to detect, appraise, and respond to another's emotional state is essential to social affective behavior. This is mediated by a network of brain regions responsible for integrating external cues with internal states to orchestrate situationally appropriate behavioral responses. The basolateral amygdala (BLA) and the insular cortex are reciprocally connected regions involved in social cognition and prior work in male rats revealed their contributions to social affective behavior. We investigated the functional role of these regions in female rats in a social affective preference (SAP) test in which experimental rats approach stressed juvenile but avoid stressed adult conspecifics. In separate experiments, the BLA or the insula were inhibited by local infusion of muscimol (100ng/side in 0.5μL saline) or vehicle prior to SAP tests. In both regions, muscimol interfered with preference for the stressed juvenile and naive adult, indicating that these regions are necessary for appropriate social affective behavior. In male rats, SAP behavior requires insular oxytocin but there are noteworthy sex differences in the oxytocin receptor distribution in rats. Oxytocin (500nM) administered to the insula did not alter social behavior but oxytocin infusions to the BLA increased social interaction. In sum, female rats appear to use the same BLA and insula regions for social affective behavior but sex differences exist in contribution of oxytocin in the insula.
Collapse
Affiliation(s)
- Anthony Djerdjaj
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA, United States of America
| | - Nathaniel S. Rieger
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States of America
| | - Bridget H. Brady
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA, United States of America
| | - Bridget N. Carey
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA, United States of America
| | - Alexandra J. Ng
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA, United States of America
| | - John P. Christianson
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA, United States of America
| |
Collapse
|
13
|
Hafenbreidel M, Briggs SB, Arza M, Bonthu S, Fisher C, Tiller A, Hall AB, Reed S, Mayorga N, Lin L, Khan S, Cameron MD, Rumbaugh G, Miller CA. Basolateral Amygdala Corticotrophin Releasing Factor Receptor 2 Interacts with Nonmuscle Myosin II to Destabilize Memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541732. [PMID: 37292925 PMCID: PMC10245849 DOI: 10.1101/2023.05.22.541732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inhibiting the actin motor ATPase nonmuscle myosin II (NMII) with blebbistatin (Blebb) in the basolateral amgydala (BLA) depolymerizes actin, resulting in an immediate, retrieval-independent disruption of methamphetamine (METH)-associated memory. The effect is highly selective, as NMII inhibition has no effect in other relevant brain regions (e.g. dorsal hippocampus [dPHC], nucleus accumbens [NAc]), nor does it interfere with associations for other aversive or appetitive stimuli, including cocaine (COC). To investigate a potential source of this specificity, pharmacokinetic differences in METH and COC brain exposure were examined. Replicating METH's longer half-life with COC did not render the COC association susceptible to disruption by NMII inhibition. Therefore, transcriptional differences were next assessed. Comparative RNA-seq profiling in the BLA, dHPC and NAc following METH or COC conditioning identified crhr2, which encodes the corticotrophin releasing factor receptor 2 (CRF2), as uniquely upregulated by METH in the BLA. CRF2 antagonism with Astressin-2B (AS2B) had no effect on METH-associated memory after consolidation, allowing for determination of CRF2 influences on NMII-based susceptibility after METH conditioning. Pretreatment with AS2B occluded the ability of Blebb to disrupt an established METH-associated memory. Alternatively, the Blebb-induced, retrieval-independent memory disruption seen with METH was mimicked for COC when combined with CRF2 overexpression in the BLA and its ligand, UCN3 during conditioning. These results indicate that BLA CRF2 receptor activation during learning can prevent stabilization of the actin-myosin cytoskeleton supporting the memory, rendering it vulnerable to disruption via NMII inhibition. CRF2 represents an interesting target for BLA-dependent memory destabilization via downstream effects on NMII.
Collapse
Affiliation(s)
- Madalyn Hafenbreidel
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Sherri B Briggs
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Meghana Arza
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Shalakha Bonthu
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Cadence Fisher
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Annika Tiller
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
- Present address: Department of Physiology and Neuroscience, Medical University of South Carolina, Charleston, SC, 29464
| | - Alice B Hall
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Shayna Reed
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Natasha Mayorga
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Li Lin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
| | - Susan Khan
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
| | - Michael D Cameron
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
| | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Courtney A Miller
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| |
Collapse
|
14
|
Djerdjaj A, Rieger NS, Brady BH, Carey BN, Ng AJ, Christianson JP. Social affective behaviors among female rats involve the basolateral amygdala and insular cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526780. [PMID: 36778382 PMCID: PMC9915682 DOI: 10.1101/2023.02.02.526780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ability to detect, appraise, and respond to another's emotional state is essential to social affective behavior. This is mediated by a network of brain regions responsible for integrating external cues with internal states to orchestrate situationally appropriate behavioral responses. The basolateral amygdala (BLA) and the insular cortex are reciprocally connected regions involved in social cognition and prior work in male rats revealed their contributions to social affective behavior. We investigated the functional role of these regions in female rats in a social affective preference (SAP) test in which experimental rats approach stressed juvenile but avoid stressed adult conspecifics. In separate experiments, the BLA or the insula were inhibited by local infusion of muscimol (100ng/side in 0.5μL saline) or vehicle prior to SAP tests. In both regions, muscimol interfered with preference for the stressed juvenile and naive adult, indicating that these regions are necessary for appropriate social affective behavior. In male rats, SAP behavior requires insular oxytocin but there are noteworthy sex differences in the oxytocin receptor distribution in rats. Oxytocin (500nM) administered to the insula did not alter social behavior but oxytocin infusions to the BLA increased social interaction. In sum, female rats appear to use the same BLA and insula regions for social affective behavior but sex differences exist in contribution of oxytocin in the insula.
Collapse
Affiliation(s)
- Anthony Djerdjaj
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA 02467
| | - Nathaniel S Rieger
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA 02467
| | - Bridget H Brady
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA 02467
| | - Bridget N Carey
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA 02467
| | - Alexandra J Ng
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA 02467
| | - John P Christianson
- Department of Psychology & Neuroscience, Boston College, Chestnut Hill, MA 02467
| |
Collapse
|
15
|
Filaretova LP, Morozova OY. From the Hypothalamic Regulation of the Pituitary–Adrenocortical Axis to the Involvement of Glucocorticoids in the Gastroprotective Effect of the Corticotropin-Releasing Factor. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022060278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Larauche M, Erchegyi J, Miller C, Sim MS, Rivier J, Behan D, Taché Y. Peripheral CRF-R1/CRF-R2 antagonist, astressin C, induces a long-lasting blockade of acute stress-related visceral pain in male and female rats. Peptides 2022; 157:170881. [PMID: 36185037 PMCID: PMC10389693 DOI: 10.1016/j.peptides.2022.170881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 11/15/2022]
Abstract
Peptide CRF antagonists injected peripherally alleviate stress-induced visceral hypersensitivity (SIVH) to colorectal distension (CRD) in rodents. Here we further evaluated the dose and time-dependent inhibitory activity of several long-acting peptide CRF receptor antagonists related to astressin on SIVH, focusing on astressin C (AstC), which previously showed high efficacy on stress-related alterations of HPA axis and gut secretomotor functions. Male and female Sprague-Dawley rats pretreated subcutaneously (SC) with AstC were injected intraperitoneally (IP) with CRF 15 min later. The visceromotor responses (VMR) to graded phasic CRD (10, 20, 40 and 60 mmHg) were monitored at basal, 15 min and up to 1-8 days after pretreatment. Two other astressin analogs, hexanoyl-astressin D (Hex-AstD) and [CαMeVal19,32]-AstC, were also tested. The response to IP CRF was sex-dependent with female rats requiring a higher dose to exhibit visceral hyperalgesia. Pretreatment with AstC (30-1000 µg/kg) resulted in a dose-related inhibition of IP CRF-induced SIVH and diarrhea in both sexes. The highest dose prevented SIVH and diarrhea up to 5-7 days after a single SC injection and was lost on day 7 (females) and day 8 (males) but reinstated after a second injection of AstC on day 8 or 9 respectively. [CαMeVal19,32]-AstC and Hex-AstD (1000 µg/kg in males) also prevented SIVH. These data show the potent long-lasting anti-hyperalgesic effect of AstC in an acute model of SIVH in both male and female rats. This highlights the potential of long-acting peripheral CRF antagonists to treat stress-sensitive irritable bowel syndrome.
Collapse
Affiliation(s)
- Muriel Larauche
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, CURE: Digestive Diseases Research Center, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; Veterans Affairs Greater Los Angeles Healthcare System, West Los Angeles, CA, USA.
| | | | | | - Myung Shin Sim
- Department of Medicine, Statistic Core, UCLA, Los Angeles, CA, USA
| | - Jean Rivier
- Sentia Medical Sciences, Inc., San Diego, CA, USA
| | | | - Yvette Taché
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, CURE: Digestive Diseases Research Center, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA; Veterans Affairs Greater Los Angeles Healthcare System, West Los Angeles, CA, USA
| |
Collapse
|
17
|
Brinkworth JF, Shaw JG. On race, human variation, and who gets and dies of sepsis. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022. [PMCID: PMC9544695 DOI: 10.1002/ajpa.24527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jessica F. Brinkworth
- Department of Anthropology University of Illinois Urbana‐Champaign Urbana Illinois USA
- Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana‐Champaign Urbana Illinois USA
- Department of Evolution, Ecology and Behavior University of Illinois Urbana‐Champaign Urbana Illinois USA
| | - J. Grace Shaw
- Department of Anthropology University of Illinois Urbana‐Champaign Urbana Illinois USA
- Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana‐Champaign Urbana Illinois USA
| |
Collapse
|
18
|
Therapeutic Anti-Depressant Potential of Microbial GABA Produced by Lactobacillus rhamnosus Strains for GABAergic Signaling Restoration and Inhibition of Addiction-Induced HPA Axis Hyperactivity. Curr Issues Mol Biol 2022; 44:1434-1451. [PMID: 35723354 PMCID: PMC9164062 DOI: 10.3390/cimb44040096] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 11/26/2022] Open
Abstract
The role of the microbiota–gut–brain (MGB) axis in mood regulation and depression treatment has gained attention in recent years, as evidenced by the growing number of animal and human studies that have reported the anti-depressive and associated gamma-aminobutyric acid-ergic (GABAergic) effects of probiotics developed from Lactobacillus rhamnosus bacterial strains in the gut microbiome. The depressive states attenuated by these probiotics in patients suffering from clinical depression also characterize the severe and relapse-inducing withdrawal phase of the addiction cycle, which has been found to arise from the intoxication-enabled hyperregulation of the hypothalamic–pituitary–adrenal (HPA) axis, the body’s major stress response system, and a corresponding attenuation of its main inhibitory system, the gamma-aminobutyric acid (GABA) signaling system. Therefore, the use of probiotics in the treatment of general cases of depression provides hope for a novel therapeutic approach to withdrawal depression remediation. This review discusses potential therapeutic avenues by which probiotic application of Lactobacillus rhamnosus strains can be used to restore the central GABAergic activity responsible for attenuating the depression-inducing HPA axis hyperactivity in addiction withdrawal. Also, information is provided on brain GABAergic signaling from other known GABA-producing strains of gut microbiota.
Collapse
|
19
|
Carvalho CM, Coimbra BM, Xavier G, Bugiga AVG, Fonseca T, Olff M, Polimanti R, Mello AF, Ota VK, Mello MF, Belangero SI. Shorter Telomeres Related to Posttraumatic Stress Disorder Re-experiencing Symptoms in Sexually Assaulted Civilian Women. Front Psychiatry 2022; 13:835783. [PMID: 35664481 PMCID: PMC9161278 DOI: 10.3389/fpsyt.2022.835783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/19/2022] [Indexed: 12/02/2022] Open
Abstract
Telomeres are short tandem repeats of "TTAGGG" that protect the chromosome ends from deterioration or fusion of chromosomes. Their repeat length shortens with cell division acting as a biomarker of cellular aging. Traumatic stress events during adulthood or childhood have been associated with posttraumatic stress disorder (PTSD) and short leukocyte telomere length (LTL). This study investigated whether LTL was associated with PTSD in a Brazilian sample of sexually assaulted civilian women at two time points: baseline and 1-year follow-up. At baseline, we assessed 64 women with PTSD following sexual assault (cases) and 60 women with no previous history of sexual trauma or mental disorders (healthy controls - HC). At follow-up visit, 13 persistent PTSD cases, 11 HCs, and 11 PTSD remitters patients were evaluated. PTSD diagnosis and severity were assessed using Mini International Neuropsychiatric Interview (Diagnostic and Statistical Manual of Mental Disorders III/IV criteria) and Clinician-Administered PTSD Scale for DSM-5 (CAPS-5), respectively. LTL was measured using multiplex real-time polymerase chain reaction (PCR). In the baseline analysis, we observed that LTL was associated with re-experiencing symptoms (B = -0.16; confidence interval (CI) 95% = -0.027--0.005; Bonferroni-adjusted p-value = 0.02), but no association was observed between other PTSD symptoms and LTL. In the longitudinal analysis, telomere shortening was no longer observed in patients with PTSD and PTSD remitters. In conclusion, our findings indicate that shorter baseline LTL is associated with early stage of PTSD re-experiencing symptoms in recently sexually assaulted women.
Collapse
Affiliation(s)
- Carolina Muniz Carvalho
- Department of Psychiatry, Universidade Federal de São Paulo, São Paulo, Brazil.,LiNC - Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Bruno Messina Coimbra
- Department of Psychiatry, Universidade Federal de São Paulo, São Paulo, Brazil.,Department of Psychiatry, University of Amsterdam, Amsterdam Public Health Research Institute and Amsterdam Neuroscience Research Institute, Amsterdam, Netherlands
| | - Gabriela Xavier
- LiNC - Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo, São Paulo, Brazil.,Genetics Division of Department of Morphology, Genetics of Universidade Federal de São Paulo, São Paulo, Brazil
| | - Amanda V G Bugiga
- LiNC - Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo, São Paulo, Brazil.,Genetics Division of Department of Morphology, Genetics of Universidade Federal de São Paulo, São Paulo, Brazil
| | - Tamiris Fonseca
- Department of Psychiatry, Universidade Federal de São Paulo, São Paulo, Brazil.,LiNC - Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Miranda Olff
- Department of Psychiatry, University of Amsterdam, Amsterdam Public Health Research Institute and Amsterdam Neuroscience Research Institute, Amsterdam, Netherlands.,ARQ National Psychotrauma Centre, Diemen, Netherlands
| | - Renato Polimanti
- Department of Psychiatry, Yale School of Medicine, VA CT Healthcare Center, West Haven, CT, United States
| | - Andrea Feijó Mello
- Department of Psychiatry, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Vanessa Kiyomi Ota
- LiNC - Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo, São Paulo, Brazil.,Genetics Division of Department of Morphology, Genetics of Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marcelo Feijó Mello
- Department of Psychiatry, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sintia Iole Belangero
- Department of Psychiatry, Universidade Federal de São Paulo, São Paulo, Brazil.,LiNC - Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo, São Paulo, Brazil.,Genetics Division of Department of Morphology, Genetics of Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
Tschetter KE, Callahan LB, Flynn SA, Rahman S, Beresford TP, Ronan PJ. Early life stress and susceptibility to addiction in adolescence. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:277-302. [PMID: 34801172 DOI: 10.1016/bs.irn.2021.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Early life stress (ELS) is a risk factor for developing a host of psychiatric disorders. Adolescence is a particularly vulnerable period for the onset of these disorders and substance use disorders (SUDs). Here we discuss ELS and its effects in adolescence, especially SUDs, and their correlates with molecular changes to signaling systems in reward and stress neurocircuits. Using a maternal separation (MS) model of neonatal ELS, we studied a range of behaviors that comprise a "drug-seeking" phenotype. We then investigated potential mechanisms underlying the development of this phenotype. Corticotropin releasing factor (CRF) and serotonin (5-HT) are widely believed to be involved in "stress-induced" disorders, including addiction. Here, we show that ELS leads to the development of a drug-seeking phenotype indicative of increased susceptibility to addiction and concomitant sex-dependent upregulation of CRF and 5-HT system components throughout extended brain reward/stress neurocircuits.
Collapse
Affiliation(s)
- K E Tschetter
- Research Service, Sioux Falls VA Healthcare System, Sioux Falls, SD, United States; Department of Psychiatry and Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States; Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States
| | - L B Callahan
- Research Service, Sioux Falls VA Healthcare System, Sioux Falls, SD, United States; Department of Psychiatry and Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States; Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States
| | - S A Flynn
- Department of Psychiatry and Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States
| | - S Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States
| | - T P Beresford
- Laboratory for Clinical and Translational Research in Psychiatry, Rocky Mountain Regional, VA Medical Center, Aurora, CO, United States; Department of Psychiatry, University of Colorado School of Medicine, Aurora, CO, United States
| | - P J Ronan
- Research Service, Sioux Falls VA Healthcare System, Sioux Falls, SD, United States; Department of Psychiatry and Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States; Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States; Laboratory for Clinical and Translational Research in Psychiatry, Rocky Mountain Regional, VA Medical Center, Aurora, CO, United States.
| |
Collapse
|
21
|
Kageyama K, Iwasaki Y, Daimon M. Hypothalamic Regulation of Corticotropin-Releasing Factor under Stress and Stress Resilience. Int J Mol Sci 2021; 22:ijms222212242. [PMID: 34830130 PMCID: PMC8621508 DOI: 10.3390/ijms222212242] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023] Open
Abstract
This review addresses the molecular mechanisms of corticotropin-releasing factor (CRF) regulation in the hypothalamus under stress and stress resilience. CRF in the hypothalamus plays a central role in regulating the stress response. CRF stimulates adrenocorticotropic hormone (ACTH) release from the anterior pituitary. ACTH stimulates glucocorticoid secretion from the adrenal glands. Glucocorticoids are essential for stress coping, stress resilience, and homeostasis. The activated hypothalamic-pituitary-adrenal axis is suppressed by the negative feedback from glucocorticoids. Glucocorticoid-dependent repression of cAMP-stimulated Crf promoter activity is mediated by both the negative glucocorticoid response element and the serum response element. Conversely, the inducible cAMP-early repressor can suppress the stress response via inhibition of the cAMP-dependent Crf gene, as can the suppressor of cytokine signaling-3 in the hypothalamus. CRF receptor type 1 is mainly involved in a stress response, depression, anorexia, and seizure, while CRF receptor type 2 mediates “stress coping” mechanisms such as anxiolysis in the brain. Differential effects of FK506-binding immunophilins, FKBP4 and FKBP5, contribute to the efficiency of glucocorticoids under stress resilience. Together, a variety of factors contribute to stress resilience. All these factors would have the differential roles under stress resilience.
Collapse
Affiliation(s)
- Kazunori Kageyama
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan;
- Correspondence: ; Tel.: +81-172-39-5062
| | - Yasumasa Iwasaki
- Department of Clinical Nutrition Management Nutrition Course, Faculty of Health Science, Suzuka University of Medical Science, 1001-1 Kishioka-cho, Suzuka 510-0293, Mie, Japan;
| | - Makoto Daimon
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan;
| |
Collapse
|
22
|
Qiu Y, Huang J, Sun J, Zhao J, Chen A, Chen J, Wu R, Li S, Teng Z, Tan Y, Wang B, Wu H. Prevalence of Risk Factors Associated With Mental Health Symptoms Among the Outpatient Psychiatric Patients and Their Family Members in China During the Coronavirus Disease 2019 Pandemic. Front Psychol 2021; 12:622339. [PMID: 34113277 PMCID: PMC8185154 DOI: 10.3389/fpsyg.2021.622339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/29/2021] [Indexed: 01/05/2023] Open
Abstract
Objective: To investigate the prevalence of and risk factors associated with mental health symptoms in psychiatric outpatients and their family members in China during the COVID-19 pandemic. Methods: This cross-sectional, survey-based, region-stratified study collected demographic data and mental health measurements for depression, anxiety and acute stress from 269 psychiatric patients and 231 family members in the Second Xiangya Hospital in China from April 27, 2020 to May 8, 2020. Binary logistic regression analysis was performed to identify risk factors associated with mental health outcomes. Result: The results of this survey revealed that symptoms of depression, anxiety, and acute stress were highly prevalent symptoms in the psychiatric patient group. Respondents who were female, unmarried or highly educated were significantly more likely to have the above symptoms. In the family member group, more than half of them felt that the burden of nursing had increased during the epidemic. Subjects with a high degree of burden of care were significantly more likely to exhibit the above mental health symptoms, while females were significantly more likely to have acute stress. Conclusions: The results of this survey revealed a high prevalence of mental health disorder symptoms among psychiatric patients and an increased burden of nursing among their family members after the COVID-19 outbreak in China. Understanding the risk factors in those particular groups of people help improve the public health service system for mental health problems during public health events. For further study, exploration of the needs of mental health services and dynamic change tracking will be needed.
Collapse
Affiliation(s)
- Yan Qiu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jing Huang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jinghui Sun
- Department of Psychology, School of Educational Science, Hunan Normal University, Changsha, China
| | - Jiaxu Zhao
- Department of Psychology, School of Educational Science, Hunan Normal University, Changsha, China
| | - Apian Chen
- Department of Psychology, School of Educational Science, Hunan Normal University, Changsha, China
| | - Jindong Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Renrong Wu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Sujuan Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ziwei Teng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yuxi Tan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Bolun Wang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haishan Wu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|