1
|
Al-Busafi SA, Alwassief A. Global Perspectives on the Hepatitis B Vaccination: Challenges, Achievements, and the Road to Elimination by 2030. Vaccines (Basel) 2024; 12:288. [PMID: 38543922 PMCID: PMC10975970 DOI: 10.3390/vaccines12030288] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 10/21/2024] Open
Abstract
Annually, more than 1.5 million preventable new hepatitis B (HBV) infections continue to occur, with an estimated global burden of 296 million individuals living with chronic hepatitis B infection. This substantial health challenge results in over 820,000 annual deaths being attributed to complications such as liver cirrhosis and hepatocellular carcinoma (HCC). The HBV vaccination remains the cornerstone of public health policy to prevent chronic hepatitis B and its related complications. It serves as a crucial element in the global effort to eliminate HBV, as established by the World Health Organization (WHO), with an ambitious 90% vaccination target by 2030. However, reports on global birth dose coverage reveal substantial variability, with an overall coverage rate of only 46%. This comprehensive review thoroughly examines global trends in HBV vaccination coverage, investigating the profound impact of vaccination on HBV prevalence and its consequences across diverse populations, including both high-risk and general demographics. Additionally, the review addresses the essential formidable challenges and facilitating factors for achieving WHO's HBV vaccination coverage objectives and elimination strategies in the coming decade and beyond.
Collapse
Affiliation(s)
- Said A. Al-Busafi
- Division of Gastroenterology and Hepatology, Department of Medicine, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Ahmed Alwassief
- Division of Gastroenterology and Hepatology, Department of Medicine, Sultan Qaboos University Hospital, Muscat 123, Oman
| |
Collapse
|
2
|
Rivera-Izquierdo M, Morales-Portillo A, Guerrero-Fernández de Alba I, Fernández-Martínez NF, Schoenenberger-Arnaiz JA, Barranco-Quintana JL, Valero-Ubierna C. Vaccination strategies for patients under monoclonal antibody and other biological treatments: an updated comprehensive review based on EMA authorisations to January 2024. Expert Rev Vaccines 2024; 23:887-910. [PMID: 39258843 DOI: 10.1080/14760584.2024.2401839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/13/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
INTRODUCTION Monoclonal antibodies (mAbs) and other biological agents are being increasingly approved in the last years with very different indications. Their highly heterogeneous immunosuppressive effects, mechanisms of action and pharmacokinetics require comprehensive individualized vaccination schedules. AREAS COVERED Vaccination for immunocompromised patients. Prevention and treatment with mAbs and other biological therapies. EXPERT OPINION Current recommendations on vaccine schedules for patients under mAbs or other biological treatments are based on expert opinions and are not individualized according to each vaccine and treatment. No studies are focusing on the high heterogeneity of these agents, which are exponentially developed and used for many different indications. Recent paradigm changes in vaccine development (boosted by the COVID-19 pandemic) and in the mAbs use for prophylactic purposes (changing 'vaccination' by 'immunization' schedules) has been witnessed in the last years. We aimed at collecting all mAbs used for treatment or prevention, approved as of 1 January 2024, by the EMA. Based on available data on mAbs and vaccines, we propose a comprehensive guide for personalizing vaccination. Recent vaccine developments and current population strategies (e.g. zoster vaccination or prophylactic nirsevimab) are discussed. This review aims to be a practical guideline for professionals working in vaccine consultations for immunosuppressed patients.
Collapse
Affiliation(s)
- Mario Rivera-Izquierdo
- Service of Preventive Medicine and Public Health, Hospital Universitario San Cecilio, Granada, Spain
- Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
- Instituto de investigación biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Arturo Morales-Portillo
- Service of Pharmacy, Hospital Universitari Arnau de Vilanova, Lleida, Spain
- Pharmacoepidemiology and Pharmacodynamics Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | | | - Nicolás Francisco Fernández-Martínez
- Instituto de investigación biosanitaria de Granada (ibs.GRANADA), Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Andalusian School of Public Health (EASP), Granada, Spain
| | - Joan Antoni Schoenenberger-Arnaiz
- Service of Pharmacy, Hospital Universitari Arnau de Vilanova, Lleida, Spain
- Pharmacoepidemiology and Pharmacodynamics Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - José Luis Barranco-Quintana
- Service of Preventive Medicine and Public Health, Hospital Universitario Reina Sofía, Córdoba, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC) Córdoba, Spain
- Expert Committee on Andalusian Vaccine Plan, Consejería de Salud y Familias, Junta de Andalucía, Sevilla, Spain
| | - Carmen Valero-Ubierna
- Service of Preventive Medicine and Public Health, Hospital Universitario San Cecilio, Granada, Spain
| |
Collapse
|
3
|
See KC. Vaccination for the Prevention of Infection among Immunocompromised Patients: A Concise Review of Recent Systematic Reviews. Vaccines (Basel) 2022; 10:800. [PMID: 35632555 PMCID: PMC9144891 DOI: 10.3390/vaccines10050800] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Vaccination is crucial for avoiding infection-associated morbidity and mortality among immunocompromised patients. However, immunocompromised patients respond less well to vaccinations compared to healthy people, and little is known about the relative efficacy of various vaccines among different immunocompromised states. A total of 54 systematic reviews (22 COVID-19; 32 non-COVID-19) published within the last 5 years in Pubmed® were reviewed. They demonstrated similar patterns within three seroconversion response categories: good (about >60% when compared to healthy controls), intermediate (~40−60%), and poor (about <40%). Good vaccine responses would be expected for patients with chronic kidney disease, human immunodeficiency virus infection (normal CD4 counts), immune-mediated inflammatory diseases, post-splenectomy states, and solid tumors. Intermediate vaccine responses would be expected for patients with anti-cytotoxic T-lymphocyte antigen-4 therapy, hematologic cancer, and human immunodeficiency virus infection (low CD4 counts). Poor vaccine responses would be expected for patients with B-cell-depleting agents (e.g., anti-CD20 therapy), hematopoietic stem-cell transplant, solid organ transplant, and liver cirrhosis. For all vaccine response categories, vaccination should be timed when patients are least immunosuppressed. For the intermediate and poor vaccine response categories, high-dose vaccine, revaccination when patients are less immunosuppressed, checking for seroconversion, additional booster doses, and long-acting monoclonal antibodies may be considered, supplemented by shielding measures.
Collapse
Affiliation(s)
- Kay Choong See
- Division of Respiratory & Critical Care Medicine, Department of Medicine, National University Hospital, Singapore 119228, Singapore
| |
Collapse
|
4
|
Ocak S, Karaman S, Vural S, Keskindemirci G, Tugcu D, Unuvar A, Karakas Z. Hepatitis B Vaccination in Children With Ongoing Cancer Treatment: A Safety and Efficacy Study of Super-Accelerated Vaccination Scheme. Turk Arch Pediatr 2022; 56:469-473. [PMID: 35110116 PMCID: PMC8849218 DOI: 10.5152/turkarchpediatr.2021.21090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Children with cancer have an increased risk for hepatitis B virus (HBV) infections due to chemotherapy-induced secondary immunodeficiency and frequent blood transfusions. The aim of this study is to evaluate the efficacy and safety of hepatitis B vaccination during the intensive induction chemotherapy in children with cancer found to be seronegative for hepatitis B on admission. MATERIALS AND METHODS Children newly diagnosed with cancer were evaluated for the presence of hepatitis B surface antigen (HBsAg) and antibody on admission. The children negative for both were included in the study. A super-accelerated vaccination scheme (3 booster doses at days 1-5, 8-12, and 28-33) was administered to these seronegative children concurrently with induction chemotherapy. Antibody response was checked 4-8 weeks after the last vaccination and 6 months after the end of the treatment. RESULTS Eleven out of 122 children were seronegative for hepatitis B on admission (9%). Acute lymphoblastic leukemia, lymphoma, and solid tumors were diagnosed in 5, 4, and 2 children, respectively. Complete seroconversion was achieved in 4-8 weeks after the last vaccination with high titers of anti-HBs antibody, and all patients remained antibody-positive until 6 months after the completion of chemotherapy. CONCLUSION The risk of transfusion-related infections increases with a number of transfused products and donor exposures, and it is more significant for immunosuppressed children with hematologic and oncologic malignancies. Hepatitis B vaccination could safely be applied with brisk and sustained responses in this vulnerable population, based on the local epidemiological data.
Collapse
Affiliation(s)
- Suheyla Ocak
- Department of Pediatric Hematology-Oncology, Istanbul University School of Medicine, Istanbul, Turkey
| | - Serap Karaman
- Department of Pediatric Hematology-Oncology, Istanbul University School of Medicine, Istanbul, Turkey
| | - Sema Vural
- Department of Pediatric Hematology-Oncology, University of Health Sciences, Sisli Research and Training Hospital, Istanbul, Turkey
| | - Gonca Keskindemirci
- Department of Social Pediatrics, Istanbul University School of Medicine, Istanbul, Turkey
| | - Deniz Tugcu
- Department of Pediatric Hematology-Oncology, Istanbul University School of Medicine, Istanbul, Turkey
| | - Aysegul Unuvar
- Department of Pediatric Hematology-Oncology, Istanbul University School of Medicine, Istanbul, Turkey
| | - Zeynep Karakas
- Department of Pediatric Hematology-Oncology, Istanbul University School of Medicine, Istanbul, Turkey
| |
Collapse
|
5
|
Sintusek P, Thanapirom K, Komolmit P, Poovorawan Y. Eliminating viral hepatitis in children after liver transplants: How to reach the goal by 2030. World J Gastroenterol 2022; 28:290-309. [PMID: 35110951 PMCID: PMC8771616 DOI: 10.3748/wjg.v28.i3.290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/12/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
Viral hepatitis infections are a great burden in children who have received liver transplant. Hepatotropic viruses can cause liver inflammation that can develop into liver graft fibrosis and cirrhosis over the long term. Immunological reactions due to viral hepatitis infections are associated with or can mimic graft rejection, rendering the condition difficult to manage. Prevention strategies using vaccinations are agreeable to patients, safe, cost-effective and practical. Hence, strategies to eliminate viral hepatitis A and B focus mainly on immunization programmes for children who have received a liver transplant. Although a vaccine has been developed to prevent hepatitis C and E viruses, its use is not licensed worldwide. Consequently, eliminating hepatitis C and E viruses mainly involves early detection in children with suspected cases and effective treatment with antiviral therapy. Good hygiene and sanitation are also important to prevent hepatitis A and E infections. Donor blood products and liver grafts should be screened for hepatitis B, C and E in children who are undergoing liver transplantation. Future research on early detection of viral hepatitis infections should include molecular techniques for detecting hepatitis B and E. Moreover, novel antiviral drugs for eradicating viral hepatitis that are highly effective and safe are needed for children who have undergone liver transplantation.
Collapse
Affiliation(s)
- Palittiya Sintusek
- The Thai Pediatric Gastroenterology, Hepatology and Immunology (TPGHAI) Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- Division of Gastroenterology, Department of Pediatrics, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kessarin Thanapirom
- Division of Gastroenterology, Department of Medicine, Liver Fibrosis and Cirrhosis Research Unit, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
- Center of Excellence in Liver Diseases, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok 10330, Thailand
| | - Piyawat Komolmit
- Division of Gastroenterology, Department of Medicine, Liver Fibrosis and Cirrhosis Research Unit, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
- Center of Excellence in Liver Diseases, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
6
|
Rivera-Izquierdo M, Valero-Ubierna MDC, Nieto-Gómez P, Martínez-Bellón MD, Fernández-Martínez NF, Barranco-Quintana JL. Vaccination in patients under monoclonal antibody treatment: an updated comprehensive review. Expert Rev Vaccines 2020; 19:727-744. [PMID: 32702246 DOI: 10.1080/14760584.2020.1800462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Monoclonal antibodies (mAbs) have become an increasing source of biological treatments. Clinicians should make an effort to update their knowledge on mechanisms of action, indications, and adverse events of these novel therapies. Most of them have immunosuppressive effects and, therefore, vaccination is indicated. AREAS COVERED vaccination of patients under mAbs therapies. EXPERT OPINION Recommendations on vaccination are still based on expert recommendations and have not been updated in recent years. Specific recommendations for each mAb have not been addressed in the current literature. The aim of this comprehensive review was to collect all the therapeutic mAbs approved up to 1 January 2020 and, based on previous recommendations and the pharmaceutical characteristics of each drug, to propose an updated guide with recommendations on vaccination. Influenza, sequential pneumococcal and Hepatitis B vaccination in patients with negative serology were the only consistent recommendations. Hepatitis A vaccination was proposed for mAbs with special hepatotoxic characteristics. Other vaccines are reviewed and discussed. Several non-immunosuppressive mAbs were detected and, therefore, vaccinations not recommended. We hope that this review can serve as a starting point for compiling updated vaccination recommendations and collecting all the therapeutic mAbs approved up to 2020.
Collapse
Affiliation(s)
- Mario Rivera-Izquierdo
- Service of Preventive Medicine and Public Health, Hospital Universitario Clínico San Cecilio , Granada, Spain.,Unidad de Gestión Clínica de Prevención, Promoción y Vigilancia de la Salud , Granada, Spain.,Department of Preventive Medicine and Public Health, University of Granada , Granada, Spain
| | - Maria Del Carmen Valero-Ubierna
- Service of Preventive Medicine and Public Health, Hospital Universitario Clínico San Cecilio , Granada, Spain.,Unidad de Gestión Clínica de Prevención, Promoción y Vigilancia de la Salud , Granada, Spain
| | - Pelayo Nieto-Gómez
- Service of Hospital Pharmacy, Hospital Universitario Clínico San Cecilio , Granada, Spain
| | - María Dolores Martínez-Bellón
- Service of Preventive Medicine and Public Health, Hospital Universitario Clínico San Cecilio , Granada, Spain.,Unidad de Gestión Clínica de Prevención, Promoción y Vigilancia de la Salud , Granada, Spain
| | - Nicolás Francisco Fernández-Martínez
- Service of Preventive Medicine and Public Health, Hospital Universitario Reina Sofía , Córdoba, Spain.,Maimonides Biomedical Research Institute of Cordoba (IMIBIC) , Córdoba, Spain
| | - José Luis Barranco-Quintana
- Service of Preventive Medicine and Public Health, Hospital Universitario Reina Sofía , Córdoba, Spain.,Maimonides Biomedical Research Institute of Cordoba (IMIBIC) , Córdoba, Spain.,Expert Committee on Andalusian Vaccine Plan, Consejería de Salud y Familias, Junta de Andalucía , Sevilla, Spain
| |
Collapse
|