1
|
Izri Z, Noireaux V. Membraneless Compartmentalization of Cell-Free Transcription-Translation by Polymer-Assisted Liquid-Liquid Phase Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403243. [PMID: 39641187 DOI: 10.1002/smll.202403243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/21/2024] [Indexed: 12/07/2024]
Abstract
Living cells use liquid-liquid phase separation (LLPS) to compartmentalize metabolic functions into mesoscopic-sized droplets. Deciphering the mechanisms at play in LLPS is therefore critical to understanding the structuration and functions of cells at the subcellular level. Although observed and achieved to a significant degree of control in vivo, the reconstitution of LLPS integrating advanced biological functions, such as gene expression, has been so far limited in vitro. LLPS of cell-free transcription-translation (TXTL) reactions require multi-step experimental approaches that lack biomimetic and have relatively poor efficacy, thus limiting their usage in cell-free engineered systems such as synthetic cells. Here the polymer-assisted LLPS of TXTL reactions are reported as the single-pot one-step compartmentalization of a model complex metabolic system obtain without using solvents or surfactants. LLPS occurs by adding the biocompatible polymers poly(ethylene glycol), poly(vinyl alcohol), and dextran to a TXTL reaction, that remains highly active. These polymers serve as partitioning agents that localize TXTL in mesoscopic-sized droplets rich in dextran. Cytoplasmic and membrane-interacting proteins are synthesized preferentially inside these droplets, and localize either uniformly or preferentially at the interface, depending on their nature. The LLPS-TXTL system presented in this work is a step toward the design of synthetic membraneless active organelles.
Collapse
Affiliation(s)
- Ziane Izri
- School of Physics and Astronomy, University of Minnesota, 115 Union Street Southeast, Minneapolis, MN, 55455, USA
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, 115 Union Street Southeast, Minneapolis, MN, 55455, USA
| |
Collapse
|
2
|
Golyshev SA, Lyupina YV, Kravchuk OI, Mikhailov KV, Gornostaev NG, Burakov AV. Transient Interphase Microtubules Appear in Differentiating Sponge Cells. Cells 2024; 13:736. [PMID: 38727272 PMCID: PMC11082956 DOI: 10.3390/cells13090736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Microtubules are an indispensable component of all eukaryotic cells due to their role in mitotic spindle formation, yet their organization and number can vary greatly in the interphase. The last common ancestor of all eukaryotes already had microtubules and microtubule motor proteins moving along them. Sponges are traditionally regarded as the oldest animal phylum. Their body does not have a clear differentiation into tissues, but it contains several distinguishable cell types. The choanocytes stand out among them and are responsible for creating a flow of water with their flagella and increasing the filtering and feeding efficiency of the sponge. Choanocyte flagella contain microtubules, but thus far, observing a developed system of cytoplasmic microtubules in non-flagellated interphase sponge cells has been mostly unsuccessful. In this work, we combine transcriptomic analysis, immunofluorescence, and electron microscopy with time-lapse recording to demonstrate that microtubules appear in the cytoplasm of sponge cells only when transdifferentiation processes are activated. We conclude that dynamic cytoplasmic microtubules in the cells of sponges are not a persistent but rather a transient structure, associated with cellular plasticity.
Collapse
Affiliation(s)
- Sergei A. Golyshev
- A.N. Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (S.A.G.); (K.V.M.)
| | - Yulia V. Lyupina
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia; (Y.V.L.); (O.I.K.); (N.G.G.)
| | - Oksana I. Kravchuk
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia; (Y.V.L.); (O.I.K.); (N.G.G.)
| | - Kirill V. Mikhailov
- A.N. Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (S.A.G.); (K.V.M.)
- Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127051, Russia
| | - Nicolay G. Gornostaev
- N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia; (Y.V.L.); (O.I.K.); (N.G.G.)
| | - Anton V. Burakov
- A.N. Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (S.A.G.); (K.V.M.)
| |
Collapse
|
3
|
Wu H, Iwai N, Suzuki Y, Nakano T. Molecular association of FtsZ with the intrabacterial nanotransportation system for urease in Helicobacter pylori. Med Mol Morphol 2019; 52:226-234. [PMID: 31134430 DOI: 10.1007/s00795-019-00225-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/15/2019] [Indexed: 11/26/2022]
Abstract
Helicobacter pylori possesses intrabacterial nanotransportation system (ibNoTS) for transporting CagA, VacA, and urease within the bacterial cytoplasm, which is controlled by the extrabacterial environment. The route of ibNoTS for CagA is reported to be associated with the MreB filament, whereas the route of ibNoTS for urease is not yet known. In this study, we demonstrated by immunoelectron microscopy that urease along the route of ibNoTS localizes closely with the FtsZ filament in the bacterium. Supporting this, we found by enzyme immunoassay and co-immunoprecipitation analysis that urease interacted with FtsZ. These findings indicate that urease along the route of ibNoTS is closely associated with the FtsZ filament. Since these phenomena were not observed in ibNoTS for CagA, the route of ibNoTS for CagA is different from that of ibNoTS for urease. We propose that the route of ibNoTS for urease is associated with the FtsZ filament in H. pylori.
Collapse
Affiliation(s)
- Hong Wu
- Project Team for Study of Nanotransportation System, Research & development Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan.
- Department of Microbiology and Infection Control, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan.
| | - Noritaka Iwai
- Project Team for Study of Nanotransportation System, Research & development Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Youichi Suzuki
- Department of Microbiology and Infection Control, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
| | - Takashi Nakano
- Project Team for Study of Nanotransportation System, Research & development Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
- Department of Microbiology and Infection Control, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
| |
Collapse
|
4
|
Kim KW. Prokaryotic cytoskeletons: in situ and ex situ structures and cellular locations. Antonie van Leeuwenhoek 2018; 112:145-157. [PMID: 30128891 DOI: 10.1007/s10482-018-1142-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 08/11/2018] [Indexed: 01/12/2023]
Abstract
Cytoskeletons have long been perceived to be present only in eukaryotes. However, this notion changed drastically in the 1990s, with observations of cytoskeleton-like structures in several prokaryotes. Homologs of the main components of eukaryotic cytoskeletons, such as microtubules, microfilaments, and intermediate filaments, have been identified in bacteria and archaea. Tubulin homologs include filamenting temperature-sensitive mutant Z (FtsZ), bacterial tubulin A/B (BtubA/B), and tubulin/FtsZ-like protein (TubZ), whereas actin homologs comprise murein region B (MreB) and crenactin. Unlike other proteins, crescentin (CreS) is a homolog of intermediate filaments. Recent findings elucidated their localization, structural organization, and helical properties in prokaryotes, thus revising traditional models. FtsZ is involved in cell division, forming a bundle of overlapping filaments that cover the entire division plane. Cryogenic transmission electron microscopy identified tubular structures of BtubA/B that were not previously identified using conventional ultrathin plastic sections. TubZ generates two joint filaments to form a quadruplex structure. After a long debate, MreB, a cell shape determinant, was shown to form filament stretches that move circumferentially around rod-shaped bacteria. Initially characterized as single-stranded, crenactin was eventually identified as right-handed double-stranded helical filaments. CreS, another cell shape determinant, forms filament bundles located inside the inner membrane of the concave side of cells. These observations suggest that the use of in situ or ex situ microscopy in combination with structural analysis techniques will enable the elucidation and further understanding of the current models of prokaryotic cytoskeletons.
Collapse
Affiliation(s)
- Ki Woo Kim
- School of Ecology and Environmental System, Kyungpook National University, Sangju, 37224, Korea. .,Tree Diagnostic Center, Kyungpook National University, Sangju, 37224, Korea.
| |
Collapse
|
5
|
Shin SM, Song SH, Lee JW, Kwak MK, Kang SO. Methylglyoxal synthase regulates cell elongation via alterations of cellular methylglyoxal and spermidine content in Bacillus subtilis. Int J Biochem Cell Biol 2017; 91:14-28. [PMID: 28807600 DOI: 10.1016/j.biocel.2017.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/14/2017] [Accepted: 08/08/2017] [Indexed: 01/03/2023]
Abstract
Methylglyoxal regulates cell division and differentiation through its interaction with polyamines. Loss of their biosynthesizing enzyme causes physiological impairment and cell elongation in eukaryotes. However, the reciprocal effects of methylglyoxal and polyamine production and its regulatory metabolic switches on morphological changes in prokaryotes have not been addressed. Here, Bacillus subtilis methylglyoxal synthase (mgsA) and polyamine biosynthesizing genes encoding arginine decarboxylase (SpeA), agmatinase (SpeB), and spermidine synthase (SpeE), were disrupted or overexpressed. Treatment of 0.2mM methylglyoxal and 1mM spermidine led to the elongation and shortening of B. subtilis wild-type cells to 12.38±3.21μm (P<0.05) and 3.24±0.73μm (P<0.01), respectively, compared to untreated cells (5.72±0.68μm). mgsA-deficient (mgsA-) and -overexpressing (mgsAOE) mutants also demonstrated cell shortening and elongation, similar to speB- and speE-deficient (speB- and speE-) and -overexpressing (speBOE and speEOE) mutants. Importantly, both mgsA-depleted speBOE and speEOE mutants (speBOE/mgsA- and speEOE/mgsA-) were drastically shortened to 24.5% and 23.8% of parental speBOE and speEOE mutants, respectively. These phenotypes were associated with reciprocal alterations of mgsA and polyamine transcripts governed by the contents of methylglyoxal and spermidine, which are involved in enzymatic or genetic metabolite-control mechanisms. Additionally, biophysically detected methylglyoxal-spermidine Schiff bases did not affect morphogenesis. Taken together, the findings indicate that methylglyoxal triggers cell elongation. Furthermore, cells with methylglyoxal accumulation commonly exhibit an elongated rod-shaped morphology through upregulation of mgsA, polyamine genes, and the global regulator spx, as well as repression of the cell division and shape regulator, FtsZ.
Collapse
Affiliation(s)
- Sang-Min Shin
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sung-Hyun Song
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jin-Woo Lee
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Min-Kyu Kwak
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea.
| | - Sa-Ouk Kang
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
6
|
Hooper SL, Burstein HJ. Minimization of extracellular space as a driving force in prokaryote association and the origin of eukaryotes. Biol Direct 2014; 9:24. [PMID: 25406691 PMCID: PMC4289276 DOI: 10.1186/1745-6150-9-24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 11/03/2014] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Internalization-based hypotheses of eukaryotic origin require close physical association of host and symbiont. Prior hypotheses of how these associations arose include chance, specific metabolic couplings between partners, and prey-predator/parasite interactions. Since these hypotheses were proposed, it has become apparent that mixed-species, close-association assemblages (biofilms) are widespread and predominant components of prokaryotic ecology. Which forces drove prokaryotes to evolve the ability to form these assemblages are uncertain. Bacteria and archaea have also been found to form membrane-lined interconnections (nanotubes) through which proteins and RNA pass. These observations, combined with the structure of the nuclear envelope and an energetic benefit of close association (see below), lead us to propose a novel hypothesis of the driving force underlying prokaryotic close association and the origin of eukaryotes. RESULTS Respiratory proton transport does not alter external pH when external volume is effectively infinite. Close physical association decreases external volume. For small external volumes, proton transport decreases external pH, resulting in each transported proton increasing proton motor force to a greater extent. We calculate here that in biofilms this effect could substantially decrease how many protons need to be transported to achieve a given proton motor force. Based as it is solely on geometry, this energetic benefit would occur for all prokaryotes using proton-based respiration. CONCLUSIONS This benefit may be a driving force in biofilm formation. Under this hypothesis a very wide range of prokaryotic species combinations could serve as eukaryotic progenitors. We use this observation and the discovery of prokaryotic nanotubes to propose that eukaryotes arose from physically distinct, functionally specialized (energy factory, protein factory, DNA repository/RNA factory), obligatorily symbiotic prokaryotes in which the protein factory and DNA repository/RNA factory cells were coupled by nanotubes and the protein factory ultimately internalized the other two. This hypothesis naturally explains many aspects of eukaryotic physiology, including the nuclear envelope being a folded single membrane repeatedly pierced by membrane-bound tubules (the nuclear pores), suggests that species analogous or homologous to eukaryotic progenitors are likely unculturable as monocultures, and makes a large number of testable predictions. REVIEWERS This article was reviewed by Purificación López-García and Toni Gabaldón.
Collapse
Affiliation(s)
- Scott L Hooper
- Department of Biological Sciences, Ohio University, Athens, OH 45701 USA
| | - Helaine J Burstein
- Department of Biological Sciences, Ohio University, Athens, OH 45701 USA
| |
Collapse
|
7
|
CTP synthase forms cytoophidia in the cytoplasm and nucleus. Exp Cell Res 2014; 323:242-253. [PMID: 24503052 DOI: 10.1016/j.yexcr.2014.01.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/24/2014] [Accepted: 01/26/2014] [Indexed: 02/07/2023]
Abstract
CTP synthase is an essential metabolic enzyme responsible for the de novo synthesis of CTP. Multiple studies have recently showed that CTP synthase protein molecules form filamentous structures termed cytoophidia or CTP synthase filaments in the cytoplasm of eukaryotic cells, as well as in bacteria. Here we report that CTP synthase can form cytoophidia not only in the cytoplasm, but also in the nucleus of eukaryotic cells. Both glutamine deprivation and glutamine analog treatment promote formation of cytoplasmic cytoophidia (C-cytoophidia) and nuclear cytoophidia (N-cytoophidia). N-cytoophidia are generally shorter and thinner than their cytoplasmic counterparts. In mammalian cells, both CTP synthase 1 and CTP synthase 2 can form cytoophidia. Using live imaging, we have observed that both C-cytoophidia and N-cytoophidia undergo multiple rounds of fusion upon glutamine analog treatment. Our study reveals the coexistence of cytoophidia in the cytoplasm and nucleus, therefore providing a good opportunity to investigate the intracellular compartmentation of CTP synthase.
Collapse
|
8
|
Saier MH. Microcompartments and protein machines in prokaryotes. J Mol Microbiol Biotechnol 2013; 23:243-69. [PMID: 23920489 DOI: 10.1159/000351625] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The prokaryotic cell was once thought of as a 'bag of enzymes' with little or no intracellular compartmentalization. In this view, most reactions essential for life occurred as a consequence of random molecular collisions involving substrates, cofactors and cytoplasmic enzymes. Our current conception of a prokaryote is far from this view. We now consider a bacterium or an archaeon as a highly structured, nonrandom collection of functional membrane-embedded and proteinaceous molecular machines, each of which serves a specialized function. In this article we shall present an overview of such microcompartments including (1) the bacterial cytoskeleton and the apparati allowing DNA segregation during cell division; (2) energy transduction apparati involving light-driven proton pumping and ion gradient-driven ATP synthesis; (3) prokaryotic motility and taxis machines that mediate cell movements in response to gradients of chemicals and physical forces; (4) machines of protein folding, secretion and degradation; (5) metabolosomes carrying out specific chemical reactions; (6) 24-hour clocks allowing bacteria to coordinate their metabolic activities with the daily solar cycle, and (7) proteinaceous membrane compartmentalized structures such as sulfur granules and gas vacuoles. Membrane-bound prokaryotic organelles were considered in a recent Journal of Molecular Microbiology and Biotechnology written symposium concerned with membranous compartmentalization in bacteria [J Mol Microbiol Biotechnol 2013;23:1-192]. By contrast, in this symposium, we focus on proteinaceous microcompartments. These two symposia, taken together, provide the interested reader with an objective view of the remarkable complexity of what was once thought of as a simple noncompartmentalized cell.
Collapse
Affiliation(s)
- Milton H Saier
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, Calif. 92093-0116, USA.
| |
Collapse
|