1
|
Escobar-Laines S, Monteon V, Ramírez-Sarmiento C, Macedo-Reyes V, Pérez FL. Immunomodulatory effects of Triatoma dimidiata feces on Trypanosoma cruzi infection in a murine model. Rev Inst Med Trop Sao Paulo 2025; 67:e5. [PMID: 39907397 PMCID: PMC11790074 DOI: 10.1590/s1678-9946202567005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/09/2024] [Indexed: 02/06/2025] Open
Abstract
Trypanosoma cruzi infection involves transmission of metacyclic trypomastigotes through injured skin or mucosa via contaminated feces from insect vectors like Triatoma dimidiata (Latreille, 1811). Currently, there is insufficient information describing the immune response to feces naturally contaminated with metacyclic trypomastigotes. Mice subcutaneously inoculated with tissue-culture derived trypomastigotes (TCT) or T. dimidiata feces containing metacyclic trypomastigotes (MT) or previously multi-exposed (ME) with feces without metacyclic trypomastigotes and then infected with feces containing metacyclic parasites or only T. dimidiata feces (F) was studied from 15 min to three months post-infection. PCR detection of parasite DNA at the inoculation site demonstrated persistence of T. cruzi DNA up to 20 days in MT and TCT but disappeared earlier in the ME test group. A rapid spread of T. cruzi DNA to regional lymph nodes was observed in all experimental groups. A lower amount of amastigote nests in the heart with concomitant intense inflammation was noticed in ME mice in comparison to the MT group. CD4 + T cell subtypes at popliteal lymph nodes shows early Th1 and Th17 responses at seven days in ME mice, whereas Th1, Th17 and Treg predominate in MT mice after three weeks, and feces induces Th1, Th17 and Treg at a later stage. Our study shows that previous exposure to feces prior to infection with T. cruzi helps control parasitism at the inoculation site and in heart tissue, and an early induction of Th1 and Th17 T cell subtypes.
Collapse
Affiliation(s)
| | - Victor Monteon
- Universidad Autónoma Campeche, Centro de Investigaciones Biomédicas, Campeche, Mexico
| | | | | | | |
Collapse
|
2
|
Robertson LJ, Havelaar AH, Keddy KH, Devleesschauwer B, Sripa B, Torgerson PR. The importance of estimating the burden of disease from foodborne transmission of Trypanosoma cruzi. PLoS Negl Trop Dis 2024; 18:e0011898. [PMID: 38329945 PMCID: PMC10852316 DOI: 10.1371/journal.pntd.0011898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
Chagas disease (ChD), caused by infection with the flagellated protozoan, Trypanosoma cruzi, has a complicated transmission cycle with many infection routes. These include vector-borne (via the triatomine (reduviid bug) vector defecating into a skin abrasion, usually following a blood meal), transplacental transmission, blood transfusion, organ transplant, laboratory accident, and foodborne transmission. Foodborne transmission may occur due to ingestion of meat or blood from infected animals or from ingestion of other foods (often fruit juice) contaminated by infected vectors or secretions from reservoir hosts. Despite the high disease burden associated with ChD, it was omitted from the original World Health Organization estimates of foodborne disease burden that were published in 2015. As these estimates are currently being updated, this review presents arguments for including ChD in new estimates of the global burden of foodborne disease. Preliminary calculations suggest a burden of at least 137,000 Disability Adjusted Life Years, but this does not take into account the greater symptom severity associated with foodborne transmission. Thus, we also provide information regarding the greater health burden in endemic areas associated with foodborne infection compared with vector-borne infection, with higher mortality and more severe symptoms. We therefore suggest that it is insufficient to use source attribution alone to determine the foodborne proportion of current burden estimates, as this may underestimate the higher disability and mortality associated with the foodborne infection route.
Collapse
Affiliation(s)
- Lucy J. Robertson
- Parasitology, Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Arie H. Havelaar
- Emerging Pathogens Institute, Global Food Systems Institute, Animal Sciences Department, University of Florida, Gainesville, Florida, United States of America
| | | | - Brecht Devleesschauwer
- Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium; Department of Translational Physiology, Infectiology and Public Health, Ghent University, Merelbeke, Belgium
| | - Banchob Sripa
- Tropical Disease Research Center, Department of Tropical Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Paul R. Torgerson
- Section of Epidemiology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| |
Collapse
|
3
|
Waldeck B, Schaub GA. "Natural infections" with Trypanosoma cruzi via the skin of mice: size of mouthparts of vectors and numbers of invading parasites. Parasitol Res 2022; 121:2033-2041. [PMID: 35507065 PMCID: PMC9192721 DOI: 10.1007/s00436-022-07516-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/04/2022] [Indexed: 11/29/2022]
Abstract
Investigating parameters influencing natural infections with Trypanosoma cruzi via the skin, the diameters of mouthparts of different stages of triatomines vectors were measured to determine the size of the channel accessible for T. cruzi during cutaneous infection. The mean diameters of the skin-penetrating mandibles of first to fifth instar nymphs of the vector Triatoma infestans increased from 18 to 65 µm. The mean diameter in fourth instar nymphs of Dipetalogaster maxima was 86 µm. Different numbers of isolated vector-derived metacyclic trypomastigotes (10–10,000) were injected intradermally into mice. Prepatent periods, parasitemia and mortality rates were compared with those of mice obtaining 10,000 metacyclic trypomastigotes that are usually present in the first drop of faeces onto the feeding wounds of fifth and fourth instar nymphs of T. infestans and D. maxima, respectively. After injection of 50–10,000 T. cruzi, in all 42 mice the infection developed. An injection of 10 parasites induced an infection in 8 out of 15 mice. With increasing doses of parasites, prepatent periods tended to decrease. The level of parasitemia was higher after injection of the lowest dose. Except for one mouse all infected mice died. After placement of 10,000 metacyclic trypomastigotes onto the feeding wound of fifth or fourth instar nymphs of T. infestans and D. maxima, respectively, the infection rates of the groups, prepatent periods and the levels of parasitemia of T. cruzi in mice indicated that about 10–1,000 metacyclic trypomastigotes entered the skin via this route. For the first time, the present data emphasise the risk of an infection by infectious excreta of triatomines deposited near the feeding wound and the low number of invading parasites.
Collapse
Affiliation(s)
- Barbara Waldeck
- Zoology-Parasitology, Ruhr University, 44780, Bochum, Germany
| | - Günter A Schaub
- Zoology-Parasitology, Ruhr University, 44780, Bochum, Germany.
| |
Collapse
|
4
|
Carvalho LM, de Carvalho TV, Ferraz AT, Marques FDS, Roatt BM, Fonseca KDS, Reis LES, Carneiro CM, Vieira PMDA. Histopathological changes in the gastrointestinal tract and systemic alterations triggered by experimental oral infection with Trypanosoma cruzi. Exp Parasitol 2020; 218:108012. [PMID: 33011239 DOI: 10.1016/j.exppara.2020.108012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 11/19/2022]
Abstract
Chagas disease, caused by the protozoan Trypanosoma cruzi, is endemic in almost all countries of Latin America. In Brazil, oral infection is becoming the most important mechanism of transmission of the disease in several regions of the country. The gastrointestinal tract is the gateway for the parasite through this route of infection, however, little is known about the involvement of these organs related to oral route. In this sense, the present study evaluated the impact of oral infection on the digestive tract in mice infected by Berenice-78 (Be-78) T. cruzi strain, in comparison with the intraperitoneal route of infection. In this work, the intraperitoneal route group showed a peak of parasitemia similar to the oral route group, however the mortality rate among the orally infected animals was higher when compared to intraperitoneal route. By analyzing the frequency of blood cell populations, differences were mainly observed in CD4+ T lymphocytes, and not in CD8+, presenting an earlier reduction in the number of CD4+ T cells, which persisted for a longer period, in the animals of the oral group when compared with the intraperitoneal group. Animals infected by oral route presented a higher tissue parasitism and inflammatory infiltrate in stomach, duodenum and colon on the 28th day after infection. Therefore, these data suggest that oral infection has a different profile of parasitological and immune responses compared to intraperitoneal route, being the oral route more virulent and with greater tissue parasitism in organs of the gastrointestinal tract evaluated during the acute phase.
Collapse
Affiliation(s)
- Lívia Mendes Carvalho
- Laboratório de Morfopatologia, Departamento de Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, Brazil; Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Thais Vieira de Carvalho
- Laboratório de Morfopatologia, Departamento de Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Aline Tonhela Ferraz
- Laboratório de Morfopatologia, Departamento de Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Flávia de Souza Marques
- Laboratório de Morfopatologia, Departamento de Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Bruno Mendes Roatt
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Kátia da Silva Fonseca
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Levi Eduardo Soares Reis
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Claudia Martins Carneiro
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Paula Melo de Abreu Vieira
- Laboratório de Morfopatologia, Departamento de Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, Brazil.
| |
Collapse
|
5
|
Ayala EV, Rodrigues da Cunha G, Azevedo MA, Calderon M, Jimenez J, Venuto AP, Gazzinelli R, Lavalle RJY, Riva AGV, Hincapie R, Finn MG, Marques AF. C57BL/6 α-1,3-Galactosyltransferase Knockout Mouse as an Animal Model for Experimental Chagas Disease. ACS Infect Dis 2020; 6:1807-1815. [PMID: 32374586 DOI: 10.1021/acsinfecdis.0c00061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The leading animal model of experimental Chagas disease, the mouse, plays a significant role in studies for vaccine development, diagnosis, and human therapies. Humans, along with Old World primates, alone among mammals, cannot make the terminal carbohydrate linkage of the α-Gal trisaccharide. It has been established that the anti-α-Gal immune response is likely to be a critical factor for protection against Trypanosoma cruzi (T. cruzi) infection in humans. However, the mice customarily employed for the study of T. cruzi infection naturally express the α-Gal epitope and therefore do not produce anti-α-Gal antibodies. Here, we used the C57BL/6 α-1,3-galactosyltransferase knockout (α-GalT-KO) mouse, which does not express the α-Gal epitope as a model for experimental Chagas disease. We found the anti-α-Gal IgG antibody response to an increase in α-GalT-KO mice infected with Arequipa and Colombiana strains of T. cruzi, leading to fewer parasite nests, lower parasitemia, and an increase of INF-γ, TNF-α, and IL-12 cytokines in the heart of α-GalT-KO mice compared with α-GalT-WT mice on days 60 and 120 postinfection. We therefore agree that the C57BL/6 α-GalT-KO mouse represents a useful model for initial testing of therapeutic and immunological approaches against different strains of T. cruzi.
Collapse
Affiliation(s)
- Edward Valencia Ayala
- Laboratório de Imunologia e Genômica de Parasitos, Departamento de Parasitologia, Instituto de Ciências Biológicas/ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270901, Brazil
- Instituto de Investigación, Centro de Investigación en Inmunología e Infectología, Facultad de Medicina Humana, Universidad de San Martin de Porres, Lima 15000, Perú
| | - Gisele Rodrigues da Cunha
- Laboratório de Imuno-Proteômica e Biologia de Parasitos, Departamento de Parasitologia, Instituto de Ciências Biológicas/ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270901, Brazil
| | - Maira Araujo Azevedo
- Laboratório de Imuno-Proteômica e Biologia de Parasitos, Departamento de Parasitologia, Instituto de Ciências Biológicas/ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270901, Brazil
| | - Maritza Calderon
- Laboratorio de Investigación en Enfermedades Infecciosas and Laboratorio de Biología Molecular, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15000, Perú
| | - Juan Jimenez
- Laboratorio de Parasitología en Fauna Silvestre y Zoonosis, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima 15000, Perú
| | - Ana Paula Venuto
- Laboratório de Imuno-Proteômica e Biologia de Parasitos, Departamento de Parasitologia, Instituto de Ciências Biológicas/ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270901, Brazil
| | - Ricardo Gazzinelli
- Instituto de Pesquisa Rene Rachou, Fundacao Oswaldo Cruz, Belo Horizonte, Minas Gerais 30190-009, Brazil
- Plataforma de Medicina Translacional, Fundacao Oswaldo Cruz, Belo Horizonte, Minas Gerais 30190-009, Brazil
| | - Raúl Jesus Ynocente Lavalle
- Laboratorio de Parasitología en Fauna Silvestre y Zoonosis, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima 15000, Perú
| | - Angela Giovana Vidal Riva
- Instituto de Investigación, Centro de Investigación en Inmunología e Infectología, Facultad de Medicina Humana, Universidad de San Martin de Porres, Lima 15000, Perú
- Laboratorio de Investigación en Enfermedades Infecciosas and Laboratorio de Biología Molecular, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15000, Perú
| | - Robert Hincapie
- School of Chemistry and Biochemistry, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332 United States
| | - M. G. Finn
- School of Chemistry and Biochemistry, School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332 United States
| | - Alexandre F. Marques
- Laboratório de Imuno-Proteômica e Biologia de Parasitos, Departamento de Parasitologia, Instituto de Ciências Biológicas/ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270901, Brazil
| |
Collapse
|
6
|
Meyers AC, Ellis MM, Purnell JC, Auckland LD, Meinders M, Saunders AB, Hamer SA. Selected cardiac abnormalities in Trypanosoma cruzi serologically positive, discordant, and negative working dogs along the Texas-Mexico border. BMC Vet Res 2020; 16:101. [PMID: 32228593 PMCID: PMC7106864 DOI: 10.1186/s12917-020-02322-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 03/19/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Chagas disease is increasingly recognized in the southern U.S., where triatomine vectors transmit Trypanosoma cruzi among wildlife and domestic dogs with occasional vector spillover to humans. As in humans, clinical outcome in dogs is variable, ranging from acute death to asymptomatic infections or chronic heart disease. In order to characterize cardiac manifestations of T. cruzi infections, we tracked a cohort of naturally-infected dogs and a matched cohort of uninfected dogs. We hypothesized that selected measures of cardiac disease (abnormal rate, abnormal rhythm, and elevated cardiac troponin I (cTnI; a biomarker of cardiac injury)) would occur more commonly in infected than uninfected dogs matched by age, breed, sex and location. In addition to the clearly positive and negative dogs, we specifically tracked dogs with discordant test results across three independent serological assays to gather clinical data that might elucidate the infection status of these animals and inform the utility of the different testing approaches. RESULTS We placed an ambulatory ECG monitor (Holter) on 48 government working dogs and analyzed 39 successful recordings that met length and quality criteria from 17 T. cruzi-infected, 18 uninfected dogs and 4 dogs with discordant results. Overall, 76.5% of positive, 100.0% of discordant, and 11.1% of negative dogs showed > 1 ECG abnormality (p < 0.0001), and positive and discordant dogs had a higher mean number of different types of ECG abnormalities than negative dogs (p < 0.001-0.014). The most common cardiac abnormalities included supraventricular and ventricular arrhythmias and atrioventricular block. Positive dogs had higher serum concentrations of cTnI than both negative dogs (p = 0.044) and discordant dogs (p = 0.06). Based on dog handler reports, nearly all (4/5; 80%) dogs with reported performance decline or fatigue were T. cruzi-infected dogs. CONCLUSIONS Further understanding cardiac manifestations in dogs naturally infected with T. cruzi is critical for prognostication, establishing a baseline for drug and vaccine studies, and better understanding of zoonotic risk.
Collapse
Affiliation(s)
- Alyssa C Meyers
- Veterinary Integrative Biosciences Department, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, MS4458, College Station, TX, 77843-4458, USA
| | - Megan M Ellis
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 1601 Campus Delivery, Fort Collins, CO, 80523-1601, USA
| | - Julia C Purnell
- Veterinary Integrative Biosciences Department, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, MS4458, College Station, TX, 77843-4458, USA
| | - Lisa D Auckland
- Veterinary Integrative Biosciences Department, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, MS4458, College Station, TX, 77843-4458, USA
| | - Marvin Meinders
- National Association of Federal Veterinarians, 1910 Sunderland Pl NW, Washington, D.C, 20036, USA
| | - Ashley B Saunders
- Veterinary Integrative Biosciences Department, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, MS4458, College Station, TX, 77843-4458, USA
| | - Sarah A Hamer
- Veterinary Integrative Biosciences Department, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, MS4458, College Station, TX, 77843-4458, USA.
| |
Collapse
|
7
|
Labello Barbosa R, Dias VL, Lorosa ES, de Góes Costa E, Pereira KS, Gilioli R, Guaraldo AMA, Passos LAC. Virulence of Trypanosoma cruzi from vector and reservoir in in natura açaí pulp resulting in food-borne acute Chagas disease at Pará State, Brazil. Exp Parasitol 2019; 197:68-75. [DOI: 10.1016/j.exppara.2018.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/14/2018] [Accepted: 10/31/2018] [Indexed: 11/15/2022]
|
8
|
Barreto de Albuquerque J, Silva Dos Santos D, Stein JV, de Meis J. Oral Versus Intragastric Inoculation: Similar Pathways of Trypanosoma cruzi Experimental Infection? From Target Tissues, Parasite Evasion, and Immune Response. Front Immunol 2018; 9:1734. [PMID: 30100907 PMCID: PMC6072848 DOI: 10.3389/fimmu.2018.01734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/13/2018] [Indexed: 12/27/2022] Open
Abstract
Currently, oral infection is the most frequent transmission mechanism of Chagas disease in Brazil and others Latin American countries. This transmission pathway presents increased mortality rate in the first 2 weeks, which is higher than the calculated mortality after the biting of infected insect vectors. Thus, the oral route of Trypanosoma cruzi infection, and the consequences in the host must be taken into account when thinking on the mechanisms underlying the natural history of the disease. Distinct routes of parasite entry may differentially affect immune circuits, stimulating regional immune responses that impact on the overall profile of the host protective immunity. Experimental studies related to oral infection usually comprise inoculation in the mouth (oral infection, OI) or gavage (gastrointestinal infection, GI), being often considered as similar routes of infection. Hence, establishing a relationship between the inoculation site (OI or GI) with disease progression and the mounting of T. cruzi-specific regional immune responses is an important issue to be considered. Here, we provide a discussion on studies performed in OI and GI in experimental models of acute infections, including T. cruzi infection.
Collapse
Affiliation(s)
| | - Danielle Silva Dos Santos
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Jens V Stein
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Juliana de Meis
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Robertson LJ, Devleesschauwer B, Alarcón de Noya B, Noya González O, Torgerson PR. Trypanosoma cruzi: Time for International Recognition as a Foodborne Parasite. PLoS Negl Trop Dis 2016; 10:e0004656. [PMID: 27253136 PMCID: PMC4890754 DOI: 10.1371/journal.pntd.0004656] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Lucy J. Robertson
- Parasitology Lab, Section for Microbiology, Immunology, and Parasitology, Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Adamstuen-Campus, Oslo, Norway
- * E-mail:
| | - Brecht Devleesschauwer
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
- Emerging Pathogens Institute and Department of Animal Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Belkisyolé Alarcón de Noya
- Immunology Section, Instituto de Medicina Tropical, Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
| | - Oscar Noya González
- Biohelmintiasis Section, Instituto de Medicina Tropical, Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
- Centro para Estudios Sobre Malaria, Instituto de Altos Estudios “Dr. Arnoldo Gabaldón”, Instituto Nacional de Higiene, MPPS, Caracas, Venezuela
| | - Paul R. Torgerson
- Section of Epidemiology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| |
Collapse
|
10
|
Cossentini LA, Da Silva RV, Yamada-Ogatta SF, Yamauchi LM, De Almeida Araújo EJ, Pinge-Filho P. Aspirin treatment exacerbates oral infections by Trypanosoma cruzi. Exp Parasitol 2016; 164:64-70. [PMID: 26826555 DOI: 10.1016/j.exppara.2016.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 01/08/2016] [Accepted: 01/20/2016] [Indexed: 01/05/2023]
Abstract
Oral transmission of the protozoan parasite Trypanosoma cruzi, the etiological agent of Chagas disease, has been documented in Latin American countries. The reported cases of infection were due to the ingestion of contaminated fresh fruit, juices, or sugar cane juice. There have been few studies on the physiopathology of the disease in oral transmission cases. Gastritis is a common ailment that can be caused by poor dietary habits, intake of alcohol or other gastric irritants, bacterial infection, or by the widespread use of non-steroidal anti-inflammatory drugs (NSAIDs). This study investigated in a mouse model whether gastric mucosal injury, induced by aspirin, would affect the course of disease in animals infected with T. cruzi by the oral route. The CL14 and G strains of T. cruzi, both of low infectivity, were used. To this end, groups of BALB/c mice were treated during 5 days with aspirin (100 mg kg(-1)) before oral infection with T. cruzi metacyclic forms (4 × 10(5) or 5 × 10(7) parasites/mouse). Histological analysis and determination of nitric oxide and TNF-α were performed in gastric samples obtained 5 days after infection. Parasitemia was monitored from the thirteenth day after infection. The results indicate that aspirin treatment of mice injured their gastric mucosa and facilitated invasion by both CL14 and G strains of T. cruzi. Strain CL14 caused more severe infection compared to the G strain, as larger numbers of amastigote nests were found in the stomach and parasitemia levels were higher. Our study is novel in that it shows that gastric mucosal damage caused by aspirin, a commonly used NSAID, facilitates T. cruzi infection by the oral route.
Collapse
Affiliation(s)
- Luana Aparecida Cossentini
- Laboratório de Imunopatologia Experimental, Departamento de Ciências Patológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | | | | | - Lucy Megumi Yamauchi
- Departamento de Microbiologia, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Eduardo José De Almeida Araújo
- Laboratório de Neurogastroenterologia, Departamento de Histologia, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Phileno Pinge-Filho
- Laboratório de Imunopatologia Experimental, Departamento de Ciências Patológicas, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
| |
Collapse
|
11
|
Barreto-de-Albuquerque J, Silva-dos-Santos D, Pérez AR, Berbert LR, de Santana-van-Vliet E, Farias-de-Oliveira DA, Moreira OC, Roggero E, de Carvalho-Pinto CE, Jurberg J, Cotta-de-Almeida V, Bottasso O, Savino W, de Meis J. Trypanosoma cruzi Infection through the Oral Route Promotes a Severe Infection in Mice: New Disease Form from an Old Infection? PLoS Negl Trop Dis 2015; 9:e0003849. [PMID: 26090667 PMCID: PMC4474863 DOI: 10.1371/journal.pntd.0003849] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/26/2015] [Indexed: 11/16/2022] Open
Abstract
Oral transmission of Chagas disease has been documented in Latin American countries. Nevertheless, significant studies on the pathophysiology of this form of infection are largely lacking. The few studies investigating oral route infection disregard that inoculation in the oral cavity (Oral infection, OI) or by gavage (Gastrointestinal infection, GI) represent different infection routes, yet both show clear-cut parasitemia and heart parasitism during the acute infection. Herein, BALB/c mice were subjected to acute OI or GI infection using 5x104 culture-derived Trypanosoma cruzi trypomastigotes. OI mice displayed higher parasitemia and mortality rates than their GI counterparts. Heart histopathology showed larger areas of infiltration in the GI mice, whereas liver lesions were more severe in the OI animals, accompanied by higher Alanine Transaminase and Aspartate Transaminase serum contents. A differential cytokine pattern was also observed because OI mice presented higher pro-inflammatory cytokine (IFN-γ, TNF) serum levels than GI animals. Real-time PCR confirmed a higher TNF, IFN-γ, as well as IL-10 expression in the cardiac tissue from the OI group compared with GI. Conversely, TGF-β and IL-17 serum levels were greater in the GI animals. Immunolabeling revealed macrophages as the main tissue source of TNF in infected mice. The high mortality rate observed in the OI mice paralleled the TNF serum rise, with its inhibition by an anti-TNF treatment. Moreover, differences in susceptibility between GIversusOI mice were more clearly related to the host response than to the effect of gastric pH on parasites, since infection in magnesium hydroxide-treated mice showed similar results. Overall, the present study provides conclusive evidence that the initial site of parasite entrance critically affects host immune response and disease outcome. In light of the occurrence of oral Chagas disease outbreaks, our results raise important implications in terms of the current view of the natural disease course and host-parasite relationship. Chagas disease caused by the protozoan Trypanosoma cruzi is endemic in Latin America and a neglected tropical disease, which affects 6–7 million people worldwide. Currently, oral transmission is the most frequent pathway of infection in Brazil but also occurs in other endemic countries. This important infection route is underestimated and understudied. Here, we demonstrate that the site of parasite entrance, in the oral cavity (OI), as observed in natural infection, or directly to the gastrointestinal tract (GI), differentially affects the host-immune response and mortality. OI promotes a severe acute disease, elevated parasitemia and TNF mediated mortality. OI showed intense hepatitis and mild heart damage. Interestingly, GI mice presented mild disease, along with less circulating TNF and higher TGF-β and IL-17 serum contents. GI animals showed mild liver damage and intense heart inflammation. Our study is a pioneer work that analyzes the features of two distinct routes of oral infection. In addition, it provides new clues for Chagas pathology and stimulates background for the elucidation of disease features in orally exposed populations.
Collapse
Affiliation(s)
| | - Danielle Silva-dos-Santos
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Ana Rosa Pérez
- Immunology Institute, Faculty of Medical Science, National University of Rosario, Rosario, Argentina
| | - Luiz Ricardo Berbert
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | - Otacilio C. Moreira
- Laboratory on Molecular Biology and Endemic Diseases, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Eduardo Roggero
- Immunology Institute, Faculty of Medical Science, National University of Rosario, Rosario, Argentina
| | | | - José Jurberg
- National and International Laboratory on Triatomine Taxonomy, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Vinícius Cotta-de-Almeida
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Oscar Bottasso
- Immunology Institute, Faculty of Medical Science, National University of Rosario, Rosario, Argentina
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Juliana de Meis
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
12
|
Salazar R, Castillo-Neyra R, Tustin AW, Borrini-Mayorí K, Náquira C, Levy MZ. Bed bugs (Cimex lectularius) as vectors of Trypanosoma cruzi. Am J Trop Med Hyg 2014; 92:331-335. [PMID: 25404068 PMCID: PMC4347337 DOI: 10.4269/ajtmh.14-0483] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Populations of the common bed bug, Cimex lectularius, have recently undergone explosive growth. Bed bugs share many important traits with triatomine insects, but it remains unclear whether these similarities include the ability to transmit Trypanosoma cruzi, the etiologic agent of Chagas disease. Here, we show efficient and bidirectional transmission of T. cruzi between hosts and bed bugs in a laboratory environment. Most bed bugs that fed on experimentally infected mice acquired the parasite. A majority of previously uninfected mice became infected after a period of cohabitation with exposed bed bugs. T. cruzi was also transmitted to mice after the feces of infected bed bugs were applied directly to broken host skin. Quantitative bed bug defecation measures were similar to those of important triatomine vectors. Our findings suggest that the common bed bug may be a competent vector of T. cruzi and could pose a risk for vector-borne transmission of Chagas disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael Z. Levy
- *Address correspondence to Michael Z. Levy, 714 Blockley Hall, 423 Guardian Drive, Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104. E-mail:
| |
Collapse
|