1
|
Müller E, von Gunten U, Tolu J, Bouchet S, Winkel LHE. Reactions of hypobromous acid with dimethyl selenide, dimethyl diselenide and other organic selenium compounds: kinetics and product formation. ENVIRONMENTAL SCIENCE : WATER RESEARCH & TECHNOLOGY 2024; 10:620-630. [PMID: 38434173 PMCID: PMC10905664 DOI: 10.1039/d3ew00787a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/02/2024] [Indexed: 03/05/2024]
Abstract
Selenium (Se) is an essential micronutrient for many living organisms particularly due to its unique redox properties. We recently found that the sulfur (S) analog for dimethyl selenide (DMSe), i.e. dimethyl sulfide (DMS), reacts fast with the marine oxidant hypobromous acid (HOBr) which likely serves as a sink of marine DMS. Here we investigated the reactivity of HOBr with dimethyl selenide and dimethyl diselenide (DMDSe), which are the main volatile Se compounds biogenically produced in marine waters. In addition, the reactivity of HOBr with further organic Se compounds was tested, i.e., SeMet (as N-acetylated-SeMet), and selenocystine (SeCys2 as N-acetylated-SeCys2), as well as the phenyl-analogs of DMSe and DMDSe, respectively, diphenyl selenide (DPSe) and diphenyl diselenide (DPDSe). Apparent second-order rate constants at pH 8 for the reactions of HOBr with the studied Se compounds were (7.1 ± 0.7) × 107 M-1 s-1 for DMSe, (4.3 ± 0.4) × 107 M-1 s-1 for DMDSe, (2.8 ± 0.3) × 108 M-1 s-1 for SeMet, (3.8 ± 0.2) × 107 M-1 s-1 for SeCys2, (3.5 ± 0.1) × 107 M-1 s-1 for DPSe, and (8.0 ± 0.4) × 106 M-1 s-1 for DPDSe, indicating a very high reactivity of all selected Se compounds with HOBr. The reactivity between HOBr and DMSe is lower than for DMS and therefore this reaction is likely not relevant for marine DMSe abatement. However, the high reactivity of SeMet with HOBr suggests that SeMet may act as a relevant quencher of HOBr.
Collapse
Affiliation(s)
- Emanuel Müller
- Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T), Eawag Ueberlandstrasse 133 CH-8600 Duebendorf Switzerland +41 58 765 5601
- Swiss Federal Institute of Technology, Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environment Systems (D-USYS), ETH Zurich Universitätsstrasse 16 8092 Zürich Switzerland
| | - Urs von Gunten
- Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T), Eawag Ueberlandstrasse 133 CH-8600 Duebendorf Switzerland +41 58 765 5601
- School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
- Swiss Federal Institute of Technology, Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environment Systems (D-USYS), ETH Zurich Universitätsstrasse 16 8092 Zürich Switzerland
| | - Julie Tolu
- Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T), Eawag Ueberlandstrasse 133 CH-8600 Duebendorf Switzerland +41 58 765 5601
- Swiss Federal Institute of Technology, Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environment Systems (D-USYS), ETH Zurich Universitätsstrasse 16 8092 Zürich Switzerland
| | - Sylvain Bouchet
- Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T), Eawag Ueberlandstrasse 133 CH-8600 Duebendorf Switzerland +41 58 765 5601
- Swiss Federal Institute of Technology, Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environment Systems (D-USYS), ETH Zurich Universitätsstrasse 16 8092 Zürich Switzerland
| | - Lenny H E Winkel
- Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T), Eawag Ueberlandstrasse 133 CH-8600 Duebendorf Switzerland +41 58 765 5601
- Swiss Federal Institute of Technology, Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environment Systems (D-USYS), ETH Zurich Universitätsstrasse 16 8092 Zürich Switzerland
| |
Collapse
|
2
|
Sani A, Lawal Abdullahi I, Darma AI. Hepatotoxicity and ALAD Activity Profile for Prediction of NOAEL of Metal Welding Fumes in Albino Rats. Biol Trace Elem Res 2023; 201:1781-1791. [PMID: 35525901 DOI: 10.1007/s12011-022-03273-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/28/2022] [Indexed: 11/27/2022]
Abstract
Metal fume pollutants of urban Kano, a city of over 10 million people, and widespread metal works have increased exposure with related health effects. Few data on metal fume toxicity and atmospheric levels have been documented in Nigeria and Kano in particular. Hence, the work was aimed at evaluating the metal fume toxicity to laboratory rat species for setting the permissible limit of exposure in urban Kano. The investigation involved the collection of metal welding fumes and subsequent laboratory analysis. Experimental animals were then exposed intratracheally to varying doses of the fumes which were equivalent to normal metal workers' daily routine of 2, 4, and 8 h for 3, 5, 10, and 20 years. Following euthanization, whole blood samples were collected and functions of liver and delta-aminolevunilic acid dehydratase were evaluated in the serum. Exposure to the fumes has caused significant mortality that was observed to be dose-dependent and statistically different (p < 0.05); moreover, the fumes had synergistically affected the functions of liver. In addition, the fumes had increased (statistically) the activity delta-aminolevinilic acid dehydratase. This has indicated that exposure to metal welding fumes being multi-elemental is toxic and had produced mortality at exposure to higher doses of metal welding fumes. It was therefore established from the study that no-observed-adverse-effect level (NOAEL) for metal welding fumes is 25.73 mg with LD50 of 270 mg which corresponds to the metal worker's 4-h shifts daily for 5 years under existing working conditions. It was recommended that regular monitoring should be put in place to limit exposure and extent of engagement in metal works beyond NOAEL levels.
Collapse
Affiliation(s)
- Ali Sani
- Department of Instrument Science and Engineering, School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- Department of Biological Sciences, Bayero University Kano, P.M.B. 3011, Kano, Nigeria.
| | | | - Aminu Inuwa Darma
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| |
Collapse
|
3
|
Nogueira CW, Barbosa NV, Rocha JBT. Toxicology and pharmacology of synthetic organoselenium compounds: an update. Arch Toxicol 2021; 95:1179-1226. [PMID: 33792762 PMCID: PMC8012418 DOI: 10.1007/s00204-021-03003-5] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022]
Abstract
Here, we addressed the pharmacology and toxicology of synthetic organoselenium compounds and some naturally occurring organoselenium amino acids. The use of selenium as a tool in organic synthesis and as a pharmacological agent goes back to the middle of the nineteenth and the beginning of the twentieth centuries. The rediscovery of ebselen and its investigation in clinical trials have motivated the search for new organoselenium molecules with pharmacological properties. Although ebselen and diselenides have some overlapping pharmacological properties, their molecular targets are not identical. However, they have similar anti-inflammatory and antioxidant activities, possibly, via activation of transcription factors, regulating the expression of antioxidant genes. In short, our knowledge about the pharmacological properties of simple organoselenium compounds is still elusive. However, contrary to our early expectations that they could imitate selenoproteins, organoselenium compounds seem to have non-specific modulatory activation of antioxidant pathways and specific inhibitory effects in some thiol-containing proteins. The thiol-oxidizing properties of organoselenium compounds are considered the molecular basis of their chronic toxicity; however, the acute use of organoselenium compounds as inhibitors of specific thiol-containing enzymes can be of therapeutic significance. In summary, the outcomes of the clinical trials of ebselen as a mimetic of lithium or as an inhibitor of SARS-CoV-2 proteases will be important to the field of organoselenium synthesis. The development of computational techniques that could predict rational modifications in the structure of organoselenium compounds to increase their specificity is required to construct a library of thiol-modifying agents with selectivity toward specific target proteins.
Collapse
Affiliation(s)
- Cristina W Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| | - Nilda V Barbosa
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - João B T Rocha
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| |
Collapse
|
4
|
Adefegha SA, Bottari NB, Leal DB, de Andrade CM, Schetinger MR. Interferon gamma/interleukin-4 modulation, anti-inflammatory and antioxidant effects of hesperidin in complete Freund's adjuvant (CFA)-induced arthritis model of rats. Immunopharmacol Immunotoxicol 2020; 42:509-520. [PMID: 32838587 DOI: 10.1080/08923973.2020.1814806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND This study sought to assess the effect of hesperidin on serum inflammatory cytokines and oxidative damage in liver of complete Freund's adjuvant (CFA)-induced arthritic rats. METHOD Fifty-six adult female Wistar rats (220-250 g) were acclimatized for two weeks. Intraplantar injection of CFA was done for the induction of arthritis and confirmed on the 14th day prior to oral administration of 40 and 80 mg/kg of hesperidin or dexamethasone for 45 days. RESULT The result showed that treatment with both doses of hesperidin and dexamethasone in the joint of arthritic rats significantly (p < .05) diminished paw swelling/edema and arthritis score as well as enhanced latency in thermal hyperalgesia test. In addition, hesperidin treatment in arthritis rats showed significant (p < .01) improvement in red blood cells and platelets counts as well as hemoglobin and hematocrit compared to the arthritis control rat group. Furthermore, hesperidin treatment significantly (p < .05) reduced serum interferon gamma (IFN-γ) and interleukin-4 (IL-4) levels in arthritic rat. In addition, treatment with hesperidin significantly (p < .05) decreased the liver of thiobarbituric acid reactive species and reactive oxygen species levels but raised the levels of total and non-protein thiols of rat induced with CFA. The reduced activities of liver δ-aminolevulinate dehydratase, catalase, glutathione-S transferase in arthritic rats were significantly (p < .05) increased with hesperidin treatment in arthritic rats. This study suggests that hesperidin demonstrated an anti-arthritic effect via modulation of serum IFN-γ and IL-4 levels as well as protection against oxidative damage. CONCLUSION Hence, hesperidin could be a potential immune-modulatory, anti-inflammatory and anti-oxidant agent.
Collapse
Affiliation(s)
- Stephen Adeniyi Adefegha
- Department of Biochemistry, Federal University of Technology, Akure, Nigeria.,Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria-RS, Brazil.,Departamento de Microbiologia, Immunologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria-RS, Brazil
| | - Nathieli Bianchin Bottari
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria-RS, Brazil
| | - Daniela Bitencourt Leal
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria-RS, Brazil.,Departamento de Microbiologia, Immunologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria-RS, Brazil
| | - Cínthia Melazzo de Andrade
- Programa de Pós graduação em Medicina Veterinária, Centro de Ciência Rurais, Departamento de Clínica de Pequenos Animais, Laboratório de Patologia Clínica Veternária, Hospital Veterinário, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Maria Rosa Schetinger
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria-RS, Brazil
| |
Collapse
|
5
|
Nogara PA, Orian L, Rocha JBT. The Se …S/N interactions as a possible mechanism of δ-aminolevulinic acid dehydratase enzyme inhibition by organoselenium compounds: A computational study. ACTA ACUST UNITED AC 2020; 15:100127. [PMID: 32572387 PMCID: PMC7280828 DOI: 10.1016/j.comtox.2020.100127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 01/26/2023]
Abstract
DPDS and PSA interacts with cysteine residues from AlaD active site. The Se…S interactions could be involved in the δ-AlaD inhibition. δ-AlaD from Cucumis sativus does not present cysteine residues in the active site. Se…N interactions could be involved in the organoselenium action.
Organoselenium compounds present many pharmacological properties and are promising drugs. However, toxicological effects associated with inhibition of thiol-containing enzymes, such as the δ-aminolevulinic acid dehydratase (δ-AlaD), have been described. The molecular mechanism(s) by which they inhibit thiol-containing enzymes at the atomic level, is still not well known. The use of computational methods to understand the physical–chemical properties and biological activity of chemicals is essential to the rational design of new drugs. In this work, we propose an in silico study to understand the δ-AlaD inhibition mechanism by diphenyl diselenide (DPDS) and its putative metabolite, phenylseleninic acid (PSA), using δ-AlaD enzymes from Homo sapiens (Hsδ-AlaD), Drosophila melanogaster (Dmδ-AlaD) and Cucumis sativus (Csδ-AlaD). Protein modeling homology, molecular docking, and DFT calculations are combined in this study. According to the molecular docking, DPDS and PSA might bind in the Hsδ-AlaD and Dmδ-AlaD active sites interacting with the cysteine residues by Se…S interactions. On the other hand, the DPDS does not access the active site of the Csδ-AlaD (a non-thiol protein), while the PSA interacts with the amino acids residues from the active site, such as the Lys291. These interactions might lead to the formation of a covalent bond, and consequently, to the enzyme inhibition. In fact, DFT calculations (mPW1PW91/def2TZVP) demonstrated that the selenylamide bond formation is energetically favored. The in silico data showed here are in accordance with previous experimental studies, and help us to understand the reactivity and biological activity of organoselenium compounds.
Collapse
Affiliation(s)
- Pablo Andrei Nogara
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil
| | - Laura Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - João Batista Teixeira Rocha
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil
| |
Collapse
|
6
|
Stefanello ST, Mizdal CR, Gonçalves DF, Hartmann DD, Dobrachinski F, de Carvalho NR, Salman SM, Sauer AC, Dornelles L, de Campos MMA, Soares FAA. The insertion of functional groups in organic selenium compounds promote changes in mitochondrial parameters and raise the antibacterial activity. Bioorg Chem 2020; 98:103727. [DOI: 10.1016/j.bioorg.2020.103727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 01/01/2023]
|
7
|
Tiezza MD, Ribaudo G, Orian L. Organodiselenides: Organic Catalysis and Drug Design Learning from Glutathione Peroxidase. CURR ORG CHEM 2019. [DOI: 10.2174/1385272822666180803123137] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Organodiselenides are an important class of compounds characterized by the
presence of two adjacent covalently bonded selenium nuclei. Among them,
diaryldiselenides and their parent compound diphenyl diselenide attract continuing interest
in chemistry as well as in close disciplines like medicinal chemistry, pharmacology and
biochemistry. A search in SCOPUS database has revealed that in the last three years 105
papers have been published on the archetypal diphenyl diselenide and its use in organic
catalysis and drug tests. The reactivity of the Se-Se bond and the redox properties of selenium
make diselenides efficient catalysts for numerous organic reactions, such as Bayer-
Villiger oxidations of aldehydes/ketones, epoxidations of alkenes, oxidations of alcohols
and nitrogen containing compounds. In addition, organodiselenides might find application
as mimics of glutathione peroxidase (GPx), a family of enzymes, which, besides performing other functions,
regulate the peroxide tone in the cells and control the oxidative stress level. In this review, the essential synthetic
and reactivity aspects of organoselenides are collected and rationalized using the results of accurate
computational studies, which have been carried out mainly in the last two decades. The results obtained in
silico provide a clear explanation of the anti-oxidant activity of organodiselenides and more in general of their
ability to reduce hydroperoxides. At the same time, they are useful to gain insight into some aspects of the enzymatic
activity of the GPx, inspiring novel elements for rational catalyst and drug design.
Collapse
Affiliation(s)
- Marco Dalla Tiezza
- Dipartimento di Scienze Chimiche, Universita degli Studi di, Via Marzolo 1, 35131 Padova, Italy
| | - Giovanni Ribaudo
- Dipartimento di Scienze del Farmaco, Universita degli Studi di Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Laura Orian
- Dipartimento di Scienze Chimiche, Universita degli Studi di, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
8
|
Sudati JH, Nogara PA, Saraiva RA, Wagner C, Alberto EE, Braga AL, Fachinetto R, Piquini PC, Rocha JBT. Diselenoamino acid derivatives as GPx mimics and as substrates of TrxR: in vitro and in silico studies. Org Biomol Chem 2019; 16:3777-3787. [PMID: 29737350 DOI: 10.1039/c8ob00451j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Excessive production of reactive species in living cells usually has pathological effects. Consequently, the synthesis of compounds which can mimic the activity of antioxidant enzymes has inspired great interest. In this study, a variety of diselenoamino acid derivatives from phenylalanine and valine were tested to determine whether they could be functional mimics of glutathione peroxidase (GPx) and substrates for liver thioredoxin reductase (TrxR). Diselenides C and D showed the best GPx mimicking properties when compared with A and B. We suppose that the catalytic activity of diselenide GPx mimics depends on the steric effects, which can be influenced by the number of carbon atoms between the selenium atom and the amino acid residue and/or by the amino acid lateral residue. Compounds C and D stimulated NADPH oxidation in the presence of partially purified hepatic mammalian TrxR, indicating that they are substrates for TrxR. Our study indicates a possible dissociation between the two pathways for peroxide degradation (i.e., via a substrate for TrxR or via mimicry of GPx) for compounds tested in this study, except for PhSeSePh, and the antioxidant activity of diselenoamino acids can also be attributed to their capacity to mimic GPx and to be a substrate for mammalian TrxR.
Collapse
|
9
|
Interaction energy profile for diphenyl diselenide in complex with δ-aminolevulinic acid dehydratase enzyme using quantum calculations and a molecular fragmentation method. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.comtox.2018.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Tabarelli G, Dornelles L, Iglesias BA, Gonçalves DF, Terra Stefanello S, Soares FAA, Piccoli BC, D'Avila da Silva F, da Rocha JBT, Schultze E, Bonemann Bender C, Collares T, Kömmling Seixas F, Peterle MM, Braga AL, Rodrigues OED. Synthesis and Antitumoral Lung Carcinoma A549 and Antioxidant Activity Assays Of New Chiral β-Aryl-Chalcogenium Azide Compounds. ChemistrySelect 2017. [DOI: 10.1002/slct.201701107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Greice Tabarelli
- LabSelen-NanoBio - Departamento de Química; Universidade Federal de Santa Maria, RS - CEP; 97105-900 - Brazil
| | - Luciano Dornelles
- LabSelen-NanoBio - Departamento de Química; Universidade Federal de Santa Maria, RS - CEP; 97105-900 - Brazil
| | - Bernardo A. Iglesias
- Departamento de Química; Universidade Federal de Santa Maria, RS - CEP; 97105-900 - Brazil
| | - Débora Farina Gonçalves
- Departamento de Bioquímica e Biologia MolecularProgramas de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica - PPGBTox Programa de Pós-Graduação em Educação em Ciências: Química da Vida e Saúde - PPGECQVS; Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria, CEP 97105-900 Brazil
| | - Sílvio Terra Stefanello
- Departamento de Bioquímica e Biologia MolecularProgramas de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica - PPGBTox Programa de Pós-Graduação em Educação em Ciências: Química da Vida e Saúde - PPGECQVS; Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria, CEP 97105-900 Brazil
| | - Félix A. A. Soares
- Departamento de Bioquímica e Biologia MolecularProgramas de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica - PPGBTox Programa de Pós-Graduação em Educação em Ciências: Química da Vida e Saúde - PPGECQVS; Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria, CEP 97105-900 Brazil
| | - Bruna Candia Piccoli
- Departamento de Bioquímica e Biologia MolecularProgramas de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica - PPGBTox Programa de Pós-Graduação em Educação em Ciências: Química da Vida e Saúde - PPGECQVS; Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria, CEP 97105-900 Brazil
| | - Fernanda D'Avila da Silva
- Departamento de Bioquímica e Biologia MolecularProgramas de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica - PPGBTox Programa de Pós-Graduação em Educação em Ciências: Química da Vida e Saúde - PPGECQVS; Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria, CEP 97105-900 Brazil
| | - João B. T. da Rocha
- Departamento de Bioquímica e Biologia MolecularProgramas de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica - PPGBTox Programa de Pós-Graduação em Educação em Ciências: Química da Vida e Saúde - PPGECQVS; Centro de Ciências Naturais e Exatas; Universidade Federal de Santa Maria; Santa Maria, CEP 97105-900 Brazil
| | - Eduarda Schultze
- Programa de Pós-Graduação em Biotecnologia (PPGB); Grupo de Pesquisa em Oncologia Celular e Molecular; Laboratório de Biotecnologia do Câncer; Biotecnologia/Centro de Desenvolvimento Tecnológico; Universidade Federal de Pelotas; Pelotas, RS Brazil
| | - Camila Bonemann Bender
- Programa de Pós-Graduação em Biotecnologia (PPGB); Grupo de Pesquisa em Oncologia Celular e Molecular; Laboratório de Biotecnologia do Câncer; Biotecnologia/Centro de Desenvolvimento Tecnológico; Universidade Federal de Pelotas; Pelotas, RS Brazil
| | - Tiago Collares
- Programa de Pós-Graduação em Biotecnologia (PPGB); Grupo de Pesquisa em Oncologia Celular e Molecular; Laboratório de Biotecnologia do Câncer; Biotecnologia/Centro de Desenvolvimento Tecnológico; Universidade Federal de Pelotas; Pelotas, RS Brazil
| | - Fabiana Kömmling Seixas
- Programa de Pós-Graduação em Biotecnologia (PPGB); Grupo de Pesquisa em Oncologia Celular e Molecular; Laboratório de Biotecnologia do Câncer; Biotecnologia/Centro de Desenvolvimento Tecnológico; Universidade Federal de Pelotas; Pelotas, RS Brazil
| | - Marcos M. Peterle
- Departamento de Química; Universidade Federal de Santa Catarina; Florianópolis Brazil
| | - Antônio L. Braga
- Departamento de Química; Universidade Federal de Santa Catarina; Florianópolis Brazil
| | - Oscar E. D. Rodrigues
- LabSelen-NanoBio - Departamento de Química; Universidade Federal de Santa Maria, RS - CEP; 97105-900 - Brazil
| |
Collapse
|
11
|
Salgueiro WG, Goldani BS, Peres TV, Miranda-Vizuete A, Aschner M, da Rocha JBT, Alves D, Ávila DS. Insights into the differential toxicological and antioxidant effects of 4-phenylchalcogenil-7-chloroquinolines in Caenorhabditis elegans. Free Radic Biol Med 2017; 110:133-141. [PMID: 28571752 DOI: 10.1016/j.freeradbiomed.2017.05.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 05/18/2017] [Accepted: 05/24/2017] [Indexed: 01/01/2023]
Abstract
Organic selenium and tellurium compounds are known for their broad-spectrum effects in a variety of experimental disease models. However, these compounds commonly display high toxicity and the molecular mechanisms underlying these deleterious effects have yet to be elucidated. Thus, the need for an animal model that is inexpensive, amenable to high-throughput analyses, and feasible for molecular studies is highly desirable to improve organochalcogen pharmacological and toxicological characterization. Herein, we use Caenorhabdtis elegans (C. elegans) as a model for the assessment of pharmacological and toxicological parameters following exposure to two 4-phenylchalcogenil-7-chloroquinolines derivatives (PSQ for selenium and PTQ for tellurium-containing compounds). While non-lethal concentrations (NLC) of PTQ and PSQ attenuated paraquat-induced effects on survival, lifespan and oxidative stress parameters, lethal concentrations (LC) of PTQ and PSQ alone are able to impair these parameters in C. elegans. We also demonstrate that DAF-16/FOXO and SKN-1/Nrf2 transcription factors underlie the mechanism of action of these compounds, as their targets sod-3, gst-4 and gcs-1 were modulated following exposures in a daf-16- and skn-1-dependent manner. Finally, in accordance with a disturbed thiol metabolism in both LC and NLC, we found higher sensitivity of trxr-1 worm mutants (lacking the selenoprotein thioredoxin reductase 1) when exposed to PSQ. Finally, our study suggests new targets for the investigation of organochalcogen pharmacological effects, reinforcing the use of C. elegans as a powerful platform for preclinical approaches.
Collapse
Affiliation(s)
- Willian G Salgueiro
- Grupo de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCE),Universidade Federal do Pampa - UNIPAMPA, CEP 97500-970 Uruguaiana, RS, Brazil
| | - Bruna S Goldani
- Laboratório de Síntese Orgânica Limpa - LASOL - CCQFA - Universidade Federal de Pelotas - UFPel, CEP 96010-900 Pelotas, RS, Brazil
| | - Tanara V Peres
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Sevilla, Spain
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - João Batista Teixeira da Rocha
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa - LASOL - CCQFA - Universidade Federal de Pelotas - UFPel, CEP 96010-900 Pelotas, RS, Brazil
| | - Daiana S Ávila
- Grupo de Pesquisa em Bioquímica e Toxicologia em Caenorhabditis elegans (GBToxCE),Universidade Federal do Pampa - UNIPAMPA, CEP 97500-970 Uruguaiana, RS, Brazil.
| |
Collapse
|
12
|
Mushtaq N, Schmatz R, Ahmed M, Pereira LB, da Costa P, Reichert KP, Dalenogare D, Pelinson LP, Vieira JM, Stefanello N, de Oliveira LS, Mulinacci N, Bellumori M, Morsch VM, Schetinger MR. Protective effect of rosmarinic acid against oxidative stress biomarkers in liver and kidney of strepotozotocin-induced diabetic rats. J Physiol Biochem 2015; 71:743-51. [PMID: 26452500 DOI: 10.1007/s13105-015-0438-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 09/23/2015] [Indexed: 11/25/2022]
Abstract
In the present study, we investigated the efficiency of rosmarinic acid (RA) in preventing the alteration of oxidative parameters in the liver and kidney of diabetic rats induced by streptozotocin (STZ). The animals were divided into six groups (n = 8): control, ethanol, RA 10 mg/kg, diabetic, diabetic/ethanol, and diabetic/RA 10 mg/kg. After 3 weeks of treatment, we found that TBARS levels in liver and kidney were significantly increased in the diabetic/saline group and the administration of RA prevented this increase in the liver and kidney (P < 0.05). Diabetes caused a significant decrease in the activity of superoxide dismutase (SOD) and catalase (CAT) in the diabetes/saline group (P < 0.05). However, the treatment with 10 mg/kg RA (antioxidant) prevented this alteration in SOD and CAT activity in the diabetic RA group (P < 0.05). In addition, RA reverses the decrease in ascorbic acid and non-protein-thiol (NPSH) levels in diabetic rats. The treatment with RA also prevented the decrease in the Delta-aminolevulinic acid dehydratase (ALA-D) activity in the liver and kidney of diabetic rats. Furthermore, RA did not have any effect on glycemic levels. These results indicate that RA effectively reduced the oxidative stress induced by STZ, suggesting that RA is a potential candidate for the prevention and treatment of pathological conditions in diabetic models.
Collapse
Affiliation(s)
- Nadia Mushtaq
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Roberta Schmatz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário, Camobi, 97105-900, Santa Maria, RS, Brazil.
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, IFRS-Câmpus Ibirubá, 98200-000, Ibirubá, Brazil.
| | - Mushtaq Ahmed
- Department of Biotechnology, University of Science and Technology, Bannu, Khyber Pakhtunkhwa, Pakistan
| | - Luciane Belmonte Pereira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Pauline da Costa
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Karine Paula Reichert
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Diéssica Dalenogare
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Luana Paula Pelinson
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Juliano Marchi Vieira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Naiara Stefanello
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Lizielle Souza de Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Nadia Mulinacci
- Department of NEUROFARBA, University of Florence, Via Ugo Schiff 6, Sesto F.no (Firenze), 50019, Italy
| | - Maria Bellumori
- Department of NEUROFARBA, University of Florence, Via Ugo Schiff 6, Sesto F.no (Firenze), 50019, Italy
| | - Vera Maria Morsch
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Maria Rosa Schetinger
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário, Camobi, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
13
|
Liver δ-aminolevulinate dehydratase activity is inhibited by neonicotinoids and restored by antioxidant agents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:11676-90. [PMID: 25402564 PMCID: PMC4245637 DOI: 10.3390/ijerph111111676] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/05/2014] [Accepted: 11/06/2014] [Indexed: 11/17/2022]
Abstract
Neonicotinoids represent the most used class of insecticides worldwide, and their precursor, imidacloprid, is the most widely marketed. The aim of this study was to evaluate the effect of imidacloprid on the activity of hepatic δ-aminolevulinate dehydratase (δ-ALA-D), protective effect of potential antioxidants against this potential effect and presence of chemical elements in the constitution of this pesticide. We observed that δ-ALA-D activity was significantly inhibited by imidacloprid at all concentrations tested in a dose-dependent manner. The IC50 value was obtained and used to evaluate the restoration of the enzymatic activity. δ-ALA-D inhibition was completely restored by addition of dithiotreitol (DTT) and partly by ZnCl2, demonstrating that the inhibition occurs by oxidation of thiol groups and by displacement of the Zn (II), which can be explained by the presence of chemical elements found in the constitution of pesticides. Reduced glutathione (GSH) had the best antioxidant effect against to δ-ALA-D inhibition caused by imidacloprid, followed by curcumin and resveratrol. It is well known that inhibition of the enzyme δ-ALA-D may result in accumulation of its neurotoxic substrate (δ-ALA), in this line, our results suggest that further studies are needed to investigate the possible neurotoxicity induced by neonicotinoids and the involvement of antioxidants in cases of poisoning by neonicotinoids.
Collapse
|
14
|
Orian L, Toppo S. Organochalcogen peroxidase mimetics as potential drugs: a long story of a promise still unfulfilled. Free Radic Biol Med 2014; 66:65-74. [PMID: 23499840 DOI: 10.1016/j.freeradbiomed.2013.03.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/04/2013] [Accepted: 03/05/2013] [Indexed: 12/14/2022]
Abstract
Organochalcogen compounds have attracted the interest of a multitude of studies to design potential therapeutic agents mimicking the peroxidase activity of selenium-based glutathione peroxidases (GPx's). Starting from the pioneering ebselen, various compounds have been synthesized over the years, which may be traced in three major classes of molecules: cyclic selenenyl amides, diaryl diselenides, and aromatic or aliphatic monoselenides. These compounds share common features and determinants needed to exert an efficient GPx-like activity, such as polarizing groups in close proximity to selenium and steric effects. Nonetheless, the reactivity of selenium, and tellurium as well, poses serious problems for the predictability of the biological effects of these compounds in vivo when used as potential drugs. These molecules, indeed, interfere with thiols of redox-regulated proteins and enzymes, leading to unexpected biological effects. The various chemical aspects of the reaction mechanism of peroxidase mimetics are surveyed here, focusing on experimental evidence and quantum mechanics calculations of organochalcogen representatives of the various classes.
Collapse
Affiliation(s)
- Laura Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35129 Padova, Italy.
| | - Stefano Toppo
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova, 35121 Padova, Italy.
| |
Collapse
|
15
|
Gallic Acid Modulates Cerebral Oxidative Stress Conditions and Activities of Enzyme-Dependent Signaling Systems in Streptozotocin-Treated Rats. Neurochem Res 2013; 38:761-71. [DOI: 10.1007/s11064-013-0975-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/11/2013] [Accepted: 01/17/2013] [Indexed: 01/17/2023]
|
16
|
Rocha JBT, Saraiva RA, Garcia SC, Gravina FS, Nogueira CW. Aminolevulinate dehydratase (δ-ALA-D) as marker protein of intoxication with metals and other pro-oxidant situations. Toxicol Res (Camb) 2012. [DOI: 10.1039/c2tx20014g] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
17
|
Saraiva RA, Bueno DC, Nogara PA, Rocha JBT. Molecular docking studies of disubstituted diaryl diselenides as mammalian δ-aminolevulinic acid dehydratase enzyme inhibitors. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2012; 75:1012-1022. [PMID: 22852851 DOI: 10.1080/15287394.2012.697810] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
δ-Aminolevulinic acid dehydratase (δ-ALAD) is a metalloprotein that catalyzes porphobilinogen formation. This enzyme is sensitive to pro-oxidants and classically used as a biomarker of lead (Pb) intoxication. Diphenyl diselenide [(PhSe)₂] and analogs bis(4-chlorophenyl) diselenide [(pCl₃PhSe)₂], bis(4-methoxyphenyl)diselenide [(pCH₃OPhSe)₂], and bis[3-(trifluoromethy)phenyl] diselenide [(mCF₃PhSe)₂] inhibit mammalian δ-ALAD by oxidizing enzyme cysteinyl residues, which are involved in diselenide-induced toxicity. 2-Cysteinyl residues from δ-ALAD are believed to sequentially interact with (PhSe)₂. Thus this study utilized protein-ligand docking analyses to determine which cysteinyl residues might be involved in the inhibitory effect of (PhSe)₂ and analogs toward δ-ALAD. All diselenides that interact in a similar manner with the active site of δ-ALAD were examined. Docking simulations indicated an important role for π-π interactions involving Phe208 and cation-π interactions involving Lys199 and Arg209 residues with the aromatic ring of (PhSe)₂ and analogs. Based upon these interactions an approximation between Se atoms and -SH of Cys124, with distances ranging between 3.3 Å and 3.5 Å, was obtained. These data support our previous postulations regarding the mechanism underlying δ-ALAD oxidation mediated by (PhSe)₂ and analogs. Based on protein-ligand docking analyses, data indicated that -SH of Cys124 attacks one of the Se atoms of -SH of (PhSe)₂ releasing one PhSeH (selenophenol). Subsequently, the -SH of Cys132 attacks the sulfur atom of Cys124 (from the bond of E-S-Se-Ph indermediate), generating the second PhSe⁻, and the oxidized and inhibited δ-ALAD. In conclusion, AutoDock Vina 1.1.1 was a useful tool to search for diselenides inhibitors of δ-ALAD, and, most importantly, it provided insight into molecular mechanisms involved in enzyme inhibition.
Collapse
Affiliation(s)
- R A Saraiva
- Laboratório de Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário, Camobi, Santa Maria, RS, Brazil.
| | | | | | | |
Collapse
|
18
|
Heimfarth L, Loureiro SO, Reis KP, de Lima BO, Zamboni F, Lacerda S, Soska ÂK, Wild L, da Rocha JBT, Pessoa-Pureur R. Diphenyl ditelluride induces hypophosphorylation of intermediate filaments through modulation of DARPP-32-dependent pathways in cerebral cortex of young rats. Arch Toxicol 2011; 86:217-30. [DOI: 10.1007/s00204-011-0746-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 08/11/2011] [Indexed: 01/02/2023]
|
19
|
Toxicology and pharmacology of selenium: emphasis on synthetic organoselenium compounds. Arch Toxicol 2011; 85:1313-59. [DOI: 10.1007/s00204-011-0720-3] [Citation(s) in RCA: 330] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 05/18/2011] [Indexed: 02/07/2023]
|
20
|
Sausen de Freitas A, de Souza Prestes A, Wagner C, Haigert Sudati J, Alves D, Oliveira Porciúncula L, Kade IJ, Teixeira Rocha JB. Reduction of diphenyl diselenide and analogs by mammalian thioredoxin reductase is independent of their gluthathione peroxidase-like activity: a possible novel pathway for their antioxidant activity. Molecules 2010; 15:7699-714. [PMID: 21030914 DOI: 10.3390/molecules15117700] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 10/14/2010] [Accepted: 10/26/2010] [Indexed: 01/05/2023] Open
Abstract
Since the successful use of the organoselenium drug ebselen in clinical trials for the treatment of neuropathological conditions associated with oxidative stress, there have been concerted efforts geared towards understanding the precise mechanism of action of ebselen and other organoselenium compounds, especially the diorganyl diselenides such as diphenyl diselenide, and its analogs. Although the mechanism of action of ebselen and other organoselenium compounds has been shown to be related to their ability to generally mimic native glutathione peroxidase (GPx), only ebselen however has been shown to serve as a substrate for the mammalian thioredoxin reductase (TrxR), demonstrating another component of its pharmacological mechanisms. In fact, there is a dearth of information on the ability of other organoselenium compounds, especially diphenyl diselenide and its analogs, to serve as substrates for the mammalian enzyme thioredoxin reductase. Interestingly, diphenyl diselenide shares several antioxidant and neuroprotective properties with ebselen. Hence in the present study, we tested the hypothesis that diphenyl diselenide and some of its analogs (4,4'-bistrifluoromethyldiphenyl diselenide, 4,4'-bismethoxy-diphenyl diselenide, 4.4'-biscarboxydiphenyl diselenide, 4,4'-bischlorodiphenyl diselenide, 2,4,6,2',4',6'-hexamethyldiphenyl diselenide) could also be substrates for rat hepatic TrxR. Here we show for the first time that diselenides are good substrates for mammalian TrxR, but not necessarily good mimetics of GPx, and vice versa. For instance, bis-methoxydiphenyl diselenide had no GPx activity, whereas it was a good substrate for reduction by TrxR. Our experimental observations indicate a possible dissociation between the two pathways for peroxide degradation (either via substrate for TrxR or as a mimic of GPx). Consequently, the antioxidant activity of diphenyl diselenide and analogs can be attributed to their capacity to be substrates for mammalian TrxR and we therefore conclude that subtle changes in the aryl moiety of diselenides can be used as tool for dissociation of GPx or TrxR pathways as mechanism triggering their antioxidant activities.
Collapse
Affiliation(s)
- Andressa Sausen de Freitas
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97105-900, Santa Maria RS, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Reduction of diphenyl diselenide and analogs by mammalian thioredoxin reductase is independent of their gluthathione peroxidase-like activity: a possible novel pathway for their antioxidant activity. Molecules 2010. [PMID: 21030914 PMCID: PMC6259470 DOI: 10.3390/molecules15117699] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Since the successful use of the organoselenium drug ebselen in clinical trials for the treatment of neuropathological conditions associated with oxidative stress, there have been concerted efforts geared towards understanding the precise mechanism of action of ebselen and other organoselenium compounds, especially the diorganyl diselenides such as diphenyl diselenide, and its analogs. Although the mechanism of action of ebselen and other organoselenium compounds has been shown to be related to their ability to generally mimic native glutathione peroxidase (GPx), only ebselen however has been shown to serve as a substrate for the mammalian thioredoxin reductase (TrxR), demonstrating another component of its pharmacological mechanisms. In fact, there is a dearth of information on the ability of other organoselenium compounds, especially diphenyl diselenide and its analogs, to serve as substrates for the mammalian enzyme thioredoxin reductase. Interestingly, diphenyl diselenide shares several antioxidant and neuroprotective properties with ebselen. Hence in the present study, we tested the hypothesis that diphenyl diselenide and some of its analogs (4,4'-bistrifluoromethyldiphenyl diselenide, 4,4'-bismethoxy-diphenyl diselenide, 4.4'-biscarboxydiphenyl diselenide, 4,4'-bischlorodiphenyl diselenide, 2,4,6,2',4',6'-hexamethyldiphenyl diselenide) could also be substrates for rat hepatic TrxR. Here we show for the first time that diselenides are good substrates for mammalian TrxR, but not necessarily good mimetics of GPx, and vice versa. For instance, bis-methoxydiphenyl diselenide had no GPx activity, whereas it was a good substrate for reduction by TrxR. Our experimental observations indicate a possible dissociation between the two pathways for peroxide degradation (either via substrate for TrxR or as a mimic of GPx). Consequently, the antioxidant activity of diphenyl diselenide and analogs can be attributed to their capacity to be substrates for mammalian TrxR and we therefore conclude that subtle changes in the aryl moiety of diselenides can be used as tool for dissociation of GPx or TrxR pathways as mechanism triggering their antioxidant activities.
Collapse
|
22
|
Lugokenski TH, Müller LG, Taube PS, Rocha JB, Pereira ME. Inhibitory effect of ebselen on lactate dehydrogenase activity from mammals: a comparative study with diphenyl diselenide and diphenyl ditelluride. Drug Chem Toxicol 2010; 34:66-76. [DOI: 10.3109/01480541003782294] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Hassan W, Ibrahim M, Rocha JBT. Diphenyl diselenide behaves differently than ebselen under different pH media in rat's liver preparations. Pathol Res Pract 2010; 206:357-60. [DOI: 10.1016/j.prp.2009.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 12/19/2009] [Accepted: 12/21/2009] [Indexed: 10/19/2022]
|
24
|
Rocha JBT, Heinzmann Bulow NM, Correa EFM, Scholze C, Nogueira CW, Barbosa NBV. Dexmedetomidine protects blood δ-aminolevulinate dehydratase from inactivation caused by hyperoxygenation in total intravenous anesthesia. Hum Exp Toxicol 2010; 30:289-95. [DOI: 10.1177/0960327110372399] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Delta-aminolevulinate dehydratase (δ-ALA-D) enzyme is sensitive to pro-oxidant agents, including molecular oxygen. Here, we tested whether hyperoxygenation after total intravenous (i.v.) anesthesia could interact with the type of anesthesia (dexmedetomidine, continuous infusion; 0.5 μg/kg/h or remifentanil, continuous infusion; 0.3 μg/kg/min) plus propofol using blood δ-ALA-D activity and thiobarbituric acid reactive substances (TBARS) levels as ending points of toxicity. In absence or presence of dithiothreitol (DTT), δ-ALA-D activity was reduced after hyperoxygenation in the group treated with remifentanil and was not modified in dexmedetomidine group. TBARS increased considerably in the blood of both groups of patients after oxygenation. The results obtained here suggest that the hyperoxygenation was associated with a marked increase in TBARS production regardless of the type of anesthesia. δ-ALA-D activity was only inhibited in remifentanil group, which indicates a possible interaction between oxygenation and the type of anesthetic. This is the first demonstration that dexmedetomidine may protect blood δ-ALA-D from oxidation. However, further studies are necessary to establish a possible antioxidant role of dexmedetomidine against hyperoxygenation in human blood.
Collapse
Affiliation(s)
- João BT Rocha
- Departamento de Química, Centro Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil,
| | - Neusa M Heinzmann Bulow
- Departamento de Cirurgia, Centro de Ensino e Treinamento de Anestesiologia, Hospital Universitário de Santa Maria, Centro de Ciências da Saúde, RS, Bra
| | - Eduardo FM Correa
- Departamento de Cirurgia, Centro de Ensino e Treinamento de Anestesiologia, Hospital Universitário de Santa Maria, Centro de Ciências da Saúde, RS, Bra
| | - Cassiano Scholze
- Departamento de Química, Centro Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Cristina W Nogueira
- Departamento de Química, Centro Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Nilda BV Barbosa
- Departamento de Química, Centro Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
25
|
Alberto EE, Soares LC, Sudati JH, Borges ACA, Rocha JBT, Braga AL. Efficient Synthesis of Modular Amino Acid Derivatives Containing Selenium with Pronounced GPx-Like Activity. European J Org Chem 2009. [DOI: 10.1002/ejoc.200900485] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Santos D, Schiar V, Paixão M, Meinerz D, Nogueira C, Aschner M, Rocha J, Barbosa N. Hemolytic and genotoxic evaluation of organochalcogens in human blood cells in vitro. Toxicol In Vitro 2009; 23:1195-204. [DOI: 10.1016/j.tiv.2009.05.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 04/24/2009] [Accepted: 05/20/2009] [Indexed: 12/21/2022]
|
27
|
Corte CLD, Fachinetto R, Puntel R, Wagner C, Nogueira CW, Soares FAA, Rocha JBT. Chronic Treatment with Fluphenazine Alters Parameters of Oxidative Stress in Liver and Kidney of Rats. Basic Clin Pharmacol Toxicol 2009; 105:51-7. [DOI: 10.1111/j.1742-7843.2009.00417.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Oliveira RA, Savegnago L, Jesse CR, Menezes PH, Molander GA, Nogueira CW. Toxicological investigation and antinociceptive property of potassium thiophene-3-trifluoroborate. Basic Clin Pharmacol Toxicol 2009; 104:448-54. [PMID: 19389044 PMCID: PMC3278991 DOI: 10.1111/j.1742-7843.2009.00397.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The aim of the present study was to evaluate pharmacological and toxicological properties of potassium thiophene-3-trifluoroborate (RBF(3)K). The acute effect of RBF(3)K was evaluated on mice. To this end, mice received a single dose of RBF(3)K (25, 50, and 100 mg/kg, by oral route, p.o.) and after 72 hrs, blood, liver, and kidney samples were collected. delta-Aminolevulinate dehydratase, catalase and glutathione-S-transferase activities, thiobarbituric acid-reactive substances and vitamin C levels, as well as plasma aspartate and alanine aminotransferase activities and creatinine levels were determined. Hepatic and renal lipid peroxidation levels in treated mice did not differ from those in control mice. No significant differences between treated and control mice were detected in hepatic and renal delta-aminolevulinate dehydratase activity. Aspartate and alanine aminotransferase activities as well as urea and creatinine levels were similar among the groups. In contrast, results obtained from in vivo experiments revealed that RBF(3)K, orally administered, reduced peritoneovisceral pain induced by acetic acid administered i.p. Doses of 1, 5, 10, 25, 50, and 100 mg/kg of RBF(3)K were assessed in the antinociceptive investigation and the effect was significantly different than control groups from 5 mg/kg. It was observed that alpha(2-)adrenergic and serotonergic, but not opioidergic, receptors appear to be involved in orally administered RBF(3)K. Mice treated with RBF(3)K did not reveal any motor impairment in the open field. This is a promising compound for more detailed pharmacological studies involving organotrifluoroborate compounds.
Collapse
Affiliation(s)
- Roberta A. Oliveira
- Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, PE, CEP 50.740-540, Brazil
| | - Lucielli Savegnago
- Health Sciences Institute, Federal University of Pampa–UNIPAMPA, Uruguaiana, RS, CEP 97500-009, Brazil
| | - Cristiano R. Jesse
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogens, Natural Sciences Institute, Federal, University of Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - Paulo H. Menezes
- Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, PE, CEP 50.740-540, Brazil
| | - Gary A. Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Cristina W. Nogueira
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogens, Natural Sciences Institute, Federal, University of Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| |
Collapse
|
29
|
Hassan W, Ibrahim M, Nogueira CW, Braga AL, Deobald AM, MohammadZai IU, Rocha JBT. Influence of pH on the reactivity of diphenyl ditelluride with thiols and anti-oxidant potential in rat brain. Chem Biol Interact 2009; 180:47-53. [DOI: 10.1016/j.cbi.2008.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 12/18/2008] [Accepted: 12/19/2008] [Indexed: 10/21/2022]
|
30
|
|
31
|
Machado MDS, Villela IV, Moura DJ, Rosa RM, Salvador M, Lopes NP, Braga AL, Roesler R, Saffi J, Henriques JAP. 3′3-Ditrifluoromethyldiphenyl diselenide: A new organoselenium compound with interesting antigenotoxic and antimutagenic activities. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2009; 673:133-40. [DOI: 10.1016/j.mrgentox.2009.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 01/15/2009] [Accepted: 01/20/2009] [Indexed: 11/28/2022]
|
32
|
Barbosa NBDV, Oliveira C, Araldi D, Folmer V, Rocha JBT, Nogueira CW. Acute diphenyl diselenide treatment reduces hyperglycemia but does not change delta-aminolevulinate dehydratase activity in alloxan-induced diabetes in rats. Biol Pharm Bull 2009; 31:2200-4. [PMID: 19043199 DOI: 10.1248/bpb.31.2200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was designed to evaluate the effect of diphenyl diselenide in a classical model of alloxan-induced diabetes in rats. Oxidative stress is involved in alloxan toxic effects and we have hypothesized that diphenyl diselenide via its antioxidant properties could confer protection against alloxan pancreatic toxicity. Diabetes was induced by administration of alloxan (150 mg/kg, intravenously). Diphenyl diselenide (10 mg/kg, subcutaneously) was administered for 6 d before (prevention group) or for 6 d after (remediation group) diabetes induction. Diphenyl diselenide treatment reduced the blood glucose and fructosamine levels, which were increased in alloxan-treated rats. However, the delta-aminolevulinate dehydratase (delta-ALA-D) activity inhibited by alloxan was not restored by diphenyl diselenide. Moreover, diphenyl diselenide caused by itself an inhibition in hepatic and renal delta-ALA-D activity. Our findings suggest that the acute treatment with diphenyl diselenide reduces the hyperglycemia but does not improve delta-ALA-D activity decreased by alloxan. Although the dose of diphenyl diselenide used here for treating diabetic animals has been relatively high and produced toxic effects, the compound or analogous molecules might not be rejected as a promising anti-hyperglycemic agent.
Collapse
|
33
|
Narayanaperumal S, Alberto EE, de Andrade FM, Lenardão EJ, Taube PS, Braga AL. Ionic liquid: an efficient and recyclable medium for synthesis of unsymmetrical diorganyl selenides promoted by InI. Org Biomol Chem 2009; 7:4647-50. [DOI: 10.1039/b910699e] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Hassan W, Ibrahim M, Nogueira CW, Braga AL, Mohammadzai IU, Taube PS, Rocha JBT. Enhancement of iron-catalyzed lipid peroxidation by acidosis in brain homogenate: comparative effect of diphenyl diselenide and ebselen. Brain Res 2008; 1258:71-7. [PMID: 19135432 DOI: 10.1016/j.brainres.2008.12.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 12/12/2008] [Accepted: 12/17/2008] [Indexed: 11/26/2022]
Abstract
Iron is more soluble at lower pH values; therefore we hypothesized that decreasing the environmental pH would lead to increased iron-mediated lipid peroxidation. Diphenyl diselenide and ebselen are potential candidates as neuroprotective agent, particularly in situations involving overproduction of free radicals and involving cellular pH fall. The aim of the present study was (a) to investigate the relationship between lipid peroxidation and acidosis in brain homogenate and (b) to test the influence of pH on the antioxidant properties of diphenyl diselenide and ebselen. For the purpose rat brain homogenate was incubated at different pH ranging from physiological to acidic values and extent of lipid peroxidation was measured. Thiobarbituric acid-reactive species (TBARS) production significantly increased when homogenate was incubated in the pH (5.4-6.8) medium both in the absence and presence of Fe (II) as compared with physiological pH (7.4). These data indicate that lipid peroxidation processes, mediated by iron, are enhanced with decreasing extracellular pH. The iron mobilized may come from reserves where it is weakly bound. Diphenyl diselenide significantly protected TBARS production at all studied pH values while ebselen offered only a small statistically non-significant protection. However, calculated IC(50) for TBARS inhibition indicated that pH did not change anti-oxidant activities of the tested compounds. This study provides in-vitro evidence for acidosis induced oxidative stress in brain homogenate and anti-oxidant action of diphenyl diselenide.
Collapse
Affiliation(s)
- Waseem Hassan
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil.
| | | | | | | | | | | | | |
Collapse
|
35
|
Oxidative stress and delta-ALA-D activity in different conditioning regimens in allogeneic bone marrow transplantation patients. Clin Biochem 2008; 42:602-10. [PMID: 19109938 DOI: 10.1016/j.clinbiochem.2008.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 10/27/2008] [Accepted: 12/01/2008] [Indexed: 11/22/2022]
Abstract
OBJECTIVES To compare different conditioning regimens (CR), in order to determine whether either of them could be less toxic to allogeneic bone marrow transplantation (BMT) patients in terms of oxidative stress and also analyze delta-ALA-D activity as a possible marker of oxidative stress. DESIGN AND METHODS Lipid peroxidation, vitamin C, thiol groups levels and catalase, superoxide dismutase and delta-ALA-D activity were determined in 21 healthy controls, 5 patients with fludarabine+cyclophosphamide (FluCy) CR, 12 with busulfan+cyclophosphamide (BuCy) and 4 with cyclophosphamide+total body irradiation (CyTBI). RESULTS There were a decrease in enzymatic and non enzymatic antioxidants, in delta-ALA-D activity, and in all CRs and an increase in lipid peroxidation more pronounced in CyTBI CR. CONCLUSIONS All CRs promoted oxidative stress in allogeneic BMT patients, but this was more pronounced with CyTBI and delta-ALA-D activity seemed to be an additional biomarker of oxidative stress in these patients.
Collapse
|
36
|
Golombieski RM, Graichen DAS, Pivetta LA, Nogueira CW, Loreto ELS, Rocha JBT. Diphenyl diselenide [(PhSe)2] inhibits Drosophila melanogaster delta-aminolevulinate dehydratase (delta-ALA-D) gene transcription and enzyme activity. Comp Biochem Physiol C Toxicol Pharmacol 2008; 147:198-204. [PMID: 17936691 DOI: 10.1016/j.cbpc.2007.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 09/13/2007] [Accepted: 09/13/2007] [Indexed: 10/22/2022]
Abstract
The main objective of the present study was to compare the inhibitory effect of diphenyl diselenide (PhSe)(2) and Pb(2+) on mice and fruit fly delta-Aminolevulinate dehydratase (delta-ALA-D). Optimum pH was quite different for mice (pH 6.5) and flies (pH 8.5). At pH 8.5, the inhibitory potency of (PhSe)(2) was higher for the fruit flies (IC(50) 8.2 micromol/l) than for mice (IC(50) 19.5 micromol/l). Pb(2+) inhibited mice delta-ALA-D at pH 6.5 (IC(50) 6.2 micromol/l) and 8.5 (IC(50) 5.6 micromol/l) with higher potency than the fly enzyme (IC(50) 43.7 micromol/l). delta-ALA-D transcription was reduced by 15% in flies exposed to 0.3 mmol/kg (PhSe)(2), which is similar to the reduction observed in activity measured in the presence of dithiothreitol. The three-dimensional prediction by SWISS-PROT mouse and fly delta-ALA-D revealed differences in the number of hydrogen bonds and turns for the 2 enzymes. Sulfhydryl groups (-SH) that could be oxidized by (PhSe)(2) are conserved in the two sources of enzyme. Distinct responsiveness to pH, (PhSe)(2) and Pb(2+) of these enzymes may be related to subtle differences in tertiary or quaternary structure of mouse and fly delta-ALA-D. Furthermore, mechanism underlying enzyme inhibition after in vivo exposure seems to be different for Drosophila melanogaster and rodent enzymes.
Collapse
Affiliation(s)
- R M Golombieski
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil.
| | | | | | | | | | | |
Collapse
|
37
|
Barbosa NBV, Rocha JBT, Soares JCM, Wondracek DC, Gonçalves JF, Schetinger MRC, Nogueira CW. Dietary diphenyl diselenide reduces the STZ-induced toxicity. Food Chem Toxicol 2008; 46:186-94. [PMID: 17870224 DOI: 10.1016/j.fct.2007.07.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 07/10/2007] [Accepted: 07/25/2007] [Indexed: 02/07/2023]
Abstract
Oxidative stress is implicated in the pathogenesis of diabetes mellitus. Selenium supplementation has some benefits in experimental models of diabetes mellitus. This study evaluated whether dietary diphenyl diselenide, a simple synthetic organoselenium compound with antioxidant properties, reduces the streptozotocin (STZ)-induced toxicity. STZ-induced diabetic rats were fed with either standard and diphenyl diselenide (10 ppm) supplemented diets. In experimental trials, dietary diphenyl diselenide significantly decreased mortality rate (p<0.05) induced by STZ treatment. No correlation between this effect and glycemic levels were found. Diphenyl diselenide intake also promoted an increase in vitamin C, -SH levels (liver, kidney and blood) and in catalase (liver and kidney) activity, which were decreased in STZ-treated rats. In enzyme assays, diphenyl diselenide supplementation caused a significant improvement in platelets NTPDase and 5'-nucleotidase activities in STZ-induced diabetic rats when compared to the control and diabetic groups (p<0.05). Nevertheless, this supplementation did not modify the inhibition induced by STZ in delta-ALA-D activity. Our findings suggest that diphenyl diselenide compound showed beneficial effects against the development of diabetes by exhibiting antioxidant properties.
Collapse
Affiliation(s)
- N B V Barbosa
- Universidade Federal de Santa Maria - UNIPAMPA, Centro de Ciências da Saúde, Rua Domingos de Almeida, 3525, São Miguel, 97500-009 Uruguaiana, RS, Brazil.
| | | | | | | | | | | | | |
Collapse
|
38
|
Rosa R, Roesler R, Braga A, Saffi J, Henriques J. Pharmacology and toxicology of diphenyl diselenide in several biological models. Braz J Med Biol Res 2007; 40:1287-304. [DOI: 10.1590/s0100-879x2006005000171] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- R.M. Rosa
- Universidade Federal do Rio Grande do Sul
| | - R. Roesler
- Universidade Federal do Rio Grande do Sul, Brasil
| | - A.L. Braga
- Universidade Federal de Santa Maria, Brasil
| | - J. Saffi
- Universidade Federal do Rio Grande do Sul; Universidade Luterana do Brasil, Brasil
| | - J.A.P. Henriques
- Universidade Federal do Rio Grande do Sul; Universidade Luterana do Brasil, Brasil
| |
Collapse
|
39
|
Borges VC, Dadalt G, Savegnago L, Moro AV, Rocha JBT, Nogueira CW. 1,1,2-Tris-organoselenide alkene derivatives, but not 1,2-bis-organoselenide alkene derivatives, inhibited δ-aminolevulinate dehydratase activity from human erythrocytic cells in vitro. Toxicol In Vitro 2007; 21:387-91. [PMID: 17084061 DOI: 10.1016/j.tiv.2006.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 09/14/2006] [Accepted: 09/18/2006] [Indexed: 10/24/2022]
Abstract
Organochalcogens are important intermediates and useful reagents in organic synthesis. Recent data from our laboratory demonstrated that bis and tris-selenide alkene derivatives are attractive synthetic targets because of their chemio-, regio- and stereo-selective reactions. Since the erythrocytic delta-aminolevulinate dehydratase (delta-ALA-D) activity could be an important indicator of toxicity, this report investigated bis and tris-selenide alkene derivatives effects on blood delta-ALA-D in vitro. To investigate the mechanisms by which these compounds inhibit human blood delta-ALA-D activity, a thiol reducing agent or zinc chloride were used. 1,2-Bis-selenide alkene derivatives 1a (R=4-MeOC(6)H(4)), 1b (R=4-ClC(6)H(4)) and 1c (R=2,4,6-Me(3)C(6)H(2)) did not inhibit human blood delta-ALA-D activity. 1,1,2-Tris-selenide alkene derivative 2a (R=C(6)H(5)) was the most potent delta-ALA-D inhibitor. Compounds 2b (R=4-MeOC(6)H(4)) and 2c (R=4-ClC(6)H(4)) displayed similar inhibitory potency towards delta-ALA-D activity. Dithiothreitol, a hydrophobic SH-reducing agent, was able to restore and to protect delta-ALA-D activity inhibited by tris-selenide alkene derivatives. Conversely, ZnCl(2) did not alter the enzyme inhibition induced by tris-selenide alkene derivatives. From these findings we suggest that 1,1,2-tris-selenide alkene derivatives inhibited delta-ALA-D activity by an interaction with essential sulfhydryl groups for the enzyme activity.
Collapse
Affiliation(s)
- Vanessa C Borges
- Laboratório de Síntese, Reatividade e Avaliação, Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | | | | | | | | | | |
Collapse
|
40
|
Avila DS, Gubert P, Dalla Corte CL, Alves D, Nogueira CW, Rocha JBT, Soares FAA. A biochemical and toxicological study with diethyl 2-phenyl-2-tellurophenyl vinylphosphonate in a sub-chronic intraperitoneal treatment in mice. Life Sci 2007; 80:1865-72. [PMID: 17383683 DOI: 10.1016/j.lfs.2007.02.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Revised: 02/06/2007] [Accepted: 02/15/2007] [Indexed: 11/25/2022]
Abstract
Diethyl-2-phenyl-2-tellurophenyl vinylphosphonate (DPTVP) is an organotellurium compound with low toxicity after subcutaneous administration in mice. This study evaluated possible in vivo and ex vivo toxicological effects of daily injections of DPTVP for 12 days in mice, using the intraperitoneal administration. This route potentially increases the pharmacokinetics of absorption, distribution, metabolism and toxicity of DPTVP. Treatment with DPTVP (0, 30, 50, 75, 100, 250, 350 or 500 micromol/kg) were not associated with mortality or body weight loss. Nevertheless, the liver and liver-to-body weight ratio increased in groups treated with 350 and 500 micromol/kg of DPTVP. However, plasmatic aspartate and alanine aminotransferase activities (classical markers of hepatotoxicity) were not increased after diethyl-2-phenyl-2-tellurophenyl vinylphosphonate administration. Hepatic, renal and cerebral thiobarbituric acid reactive substances (TBARS), delta-ALA-D activity and Vitamin C levels were not modified after DPTVP treatment. Renal and hepatic superoxide dismutase (SOD) and catalase (CAT) were unchanged after DPTVP treatment. Conversely, SOD activity significantly increased in brain in groups treated with 50, 75, 100 and 500 micromol/kg of DPTVP treated groups. Our findings corroborates that brain is a potential target for organochalcogen action. The absence of severe overt signs of toxicity after sub-chronic exposure to DPTVP reinforces the necessity for more detailed pharmacological studies concerning this new organotellurium compound.
Collapse
Affiliation(s)
- Daiana Silva Avila
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, CEP 97105-900, Santa Maria, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
41
|
Luchese C, Zeni G, Rocha JBT, Nogueira CW, Santos FW. Cadmium inhibits δ-aminolevulinate dehydratase from rat lung in vitro: Interaction with chelating and antioxidant agents. Chem Biol Interact 2007; 165:127-37. [PMID: 17187767 DOI: 10.1016/j.cbi.2006.11.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 11/20/2006] [Accepted: 11/21/2006] [Indexed: 11/19/2022]
Abstract
The effect of cadmium (Cd(2+)) on delta-aminolevulinate dehydratase (delta-ALA-D) activity from rat lung in vitro was investigated. delta-ALA-D activity, a parameter for metal intoxication, has been reported as a target of Cd(2+) in different tissues. The protective effect of monotherapies with dithiol chelating (meso-2,3-dimercaptosuccinic acid (DMSA) and 2,3-dimercaptopropane-1-sulfonic acid (DMPS)) or antioxidant agents (ascorbic acid, diphenyl diselenide (PhSe)(2), and N-acetylcysteine (NAC)) was evaluated. The effect of a combined therapy (dithiol chelatingxantioxidant agent) was also studied. Zinc chloride (ZnCl(2)) and dithiothreitol (DTT) were used to investigate the mechanisms involved in cadmium, chelating and antioxidant effects on delta-ALA-D activity. Cadmium inhibited rat lung delta-ALA-D activity at low concentrations. DTT (3mM), but not ZnCl(2) (100microM), protected the inhibition of enzyme activity caused by Cd(2+). Chelating agents were not effective in restoring the enzyme activity. DMPS and DMSA presented inhibitory effect on enzyme activity. DTT restored the inhibition caused by both chelating agents, but ZnCl(2) restored only the inhibitory effect induced by DMSA. These compounds caused a marked potentiation of delta-ALA-D inhibition induced by Cd(2+). ZnCl(2) did not restore inhibition of enzyme activity caused by Cd(2+) plus chelating agents. Conversely, DTT restored the inhibition induced by Cd(2+)/DMSA, but not by Cd(2+)/DMPS. Antioxidants were not effective in ameliorating delta-ALA-D inhibition induced by Cd(2+), whereas ascorbic acid potentiated the enzyme inhibition induced by this metal. A combined effect of Cd(2+)xDMPSx(PhSe)(2) and Cd(2+)xDMPSxNAC was observed. There was no combined effect of Cd(2+)xchelatorxantioxidants when DMSA was used. This study demonstrated that Cd(2+)inhibited delta-ALA-D activity and chelating and antioxidant agents, alone or combined, did not restore the enzyme activity. In contrast, these compounds potentiated the inhibition induced by Cd(2+) in rat lung.
Collapse
Affiliation(s)
- Cristiane Luchese
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | | | | | | | | |
Collapse
|
42
|
Santos FW, Rocha JBT, Nogueira CW. 2,3-Dimercaptopropanol, 2,3-dimercaptopropane-1-sulfonic acid and meso-2,3-dimercaptosuccinic acid increase lead-induced inhibition of δ-aminolevulinate dehydratase in vitro and ex vivo. Toxicol In Vitro 2006; 20:317-23. [PMID: 16168622 DOI: 10.1016/j.tiv.2005.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 08/03/2005] [Accepted: 08/03/2005] [Indexed: 11/19/2022]
Abstract
We investigated the effects of dimercaprol (BAL), meso-2,3-dimercaptosuccinic acid (DMSA) and 2,3-dimercapto-1-propanesulphonic acid (DMPS) on human blood delta-aminolevulinate dehydratase (delta-ALA-D) activity, the most reliable indicator of lead intoxication in humans, in the presence of lead in vitro. Furthermore, we studied the effects of the chelating agents, administered subcutaneously, on delta-ALA-D activity in blood and tissues of mice submitted to sub-acute lead exposure (50 mg/kg for 15 consecutive days, subcutaneously). In vitro results demonstrated that human blood delta-ALA-D activity was significantly inhibited (62%) by lead acetate. Lead acetate (1-1000 microM) pre-incubated with human blood increased the inhibitory potency of this compound on delta-ALA-D when compared to the assay without pre-incubation (89%). Chelating agents caused a marked potentiation of delta-ALA-D inhibition induced by lead, in vitro. One of the most notable observations in the present study was the correspondence between in vitro and ex vivo effects. In fact, BAL and DMPS increase the inhibitory effect of lead on delta-ALA-D activity from mice blood. The complexes formed (lead and chelators) were more inhibitory than lead alone in kidney and liver enzyme activity, ex vivo.
Collapse
Affiliation(s)
- F W Santos
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Av. Roraima CCNE, Predio 18, CEP 97105-900, Santa Maria, RS, Brazil.
| | | | | |
Collapse
|
43
|
Moreira Rosa R, de Oliveira RB, Saffi J, Braga AL, Roesler R, Dal-Pizzol F, Fonseca Moreira JC, Brendel M, Pêgas Henriques JA. Pro-oxidant action of diphenyl diselenide in the yeast Saccharomyces cerevisiae exposed to ROS-generating conditions. Life Sci 2005; 77:2398-411. [PMID: 15932762 DOI: 10.1016/j.lfs.2005.01.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Accepted: 01/04/2005] [Indexed: 11/21/2022]
Abstract
Organoselenium compounds have a potential thiol peroxidase-like activity. Diphenyl diselenide (DPDS) is an electrophilic reagent used in the synthesis of a variety of pharmacologically active organic selenium compounds. Using TRAP assay of chemiluminescense we have shown that diphenyl diselenide clearly possesses a pro-oxidant property. For an investigation on the mechanisms of this property, we used mutant strains of Saccharomyces cerevisiae defective in antioxidant defenses, i.e. in superoxide dismutase, in biosynthesis of glutathione, and the transcription factor yAP-1-lacking yap 1 mutant that cannot activate genes of the oxidative stress response. Exposure of growing cultures to the drug increased cell sensitivity to oxidizing agents. The pro-oxidant effect was independent of the metabolic condition or of the oxidative mutagen tested. N-acetylcysteine, a precursor of glutathione biosynthesis, could neutralize the pro-oxidant effects of diphenyl diselenide by stimulating an increase of endogenous glutathione biosynthesis or by directly binding to the drug. Vitamin E (Trolox), a known antioxidant, was also able to protect S. cerevisiae against the pro-oxidant effect of diphenyl diselenide. In vitro assays showed that diphenyl diselenide interacts non-enzymatically with the thiol group of glutathione.
Collapse
Affiliation(s)
- Renato Moreira Rosa
- Centro de Biotecnologia/Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brasil
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Antunes Soares F, Farina M, Böettcher AC, Braga AL, Batista T Rocha J. Organic and inorganic forms of selenium inhibited differently fish (Rhamdia quelen) and rat (Rattus norvergicus albinus) delta-aminolevulinate dehydratase. ENVIRONMENTAL RESEARCH 2005; 98:46-54. [PMID: 15721883 DOI: 10.1016/j.envres.2004.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Revised: 07/07/2004] [Accepted: 07/30/2004] [Indexed: 05/24/2023]
Abstract
Selenium contamination in the aquatic environment can produce severe toxic effects to fish. The mammalian sulfhydryl-containing enzyme, delta-aminolevulinate dehydratase (delta-ALA-D), is inhibited after exposure to organic and inorganic forms of selenium. In the present study, the inhibitory effect of (PhSe)2, (BuSe)2, and Na2SeO3 on the activity of fish hepatic and gill delta-ALA-D was investigated and compared with the rat liver enzyme. Results indicated that delta-ALA-D activity varied considerably depending on the tissue, selenium form, and species considered. For fish (liver and gill), the IC50 values for delta-ALA-D inhibition by (PhSe)2, (BuSe)2, and Na2SeO3 were 274 and 76, 985 and 693, and 386 and 902 microM, respectively. For rat liver these values were 7, 10, and 5 microM, respectively. In contrast, fish and rat subcellular fractions similarly increased the oxidative effect of (PhSe)2 toward sulfhydryl groups from DTT. These catalytic properties of subcellular fractions from fish and rat liver were abolished by heat treatment. Taking into account that aquatic organisms can be in contact with higher concentrations of selenium for longer periods of time and accumulate more selenium than terrestrial animals, it is reasonable to suppose that fish delta-ALA-D can be a potential target for organic and inorganic selenium forms present in aquatic contaminated environments. From an ecotoxicological point of view, our results suggest a link between selenium-induced anemia signs in fish and the sensitivity of fish delta-ALA-D to selenium in natural habitats.
Collapse
Affiliation(s)
- Félix Antunes Soares
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário, Camobi, 97105-900 Santa Maria, RS, Brazil
| | | | | | | | | |
Collapse
|
45
|
Santos FW, Gonçales CE, Rocha JBT, Nogueira CW. 2,3-Dimercaptopropanol, 2,3-Dimercaptopropane-1-sulfonic Acid and meso-2,3-Dimercaptosuccinic Acid Acute Administration Diferentially Change Biochemical Parameters in Mice. Basic Clin Pharmacol Toxicol 2005; 96:331-4. [PMID: 15755317 DOI: 10.1111/j.1742-7843.2005.pto960409.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- F W Santos
- Department of Chemistry, Center of Natural and Basic Sciences, Federal University of Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil
| | | | | | | |
Collapse
|
46
|
Roza T, Peixoto NC, Welter A, Flores EMM, Pereira ME. 2,3-Dimercapto-1-propanol does Not Alter the Porphobilinogen Synthase Inhibition but Decreases the Mercury Content in Liver and Kidney of Suckling Rats Exposed to HgCl2. Basic Clin Pharmacol Toxicol 2005; 96:302-8. [PMID: 15755313 DOI: 10.1111/j.1742-7843.2005.pto960405.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Heavy metals have received great attention as environmental pollutants mainly because once introduced in the biological cycle they are incorporated in the food chain. Especially the mercury toxicity due to a diversity of effects caused by different chemical species should be emphasized. Heavy metal intoxication has been treated with chelating agents such as 2,3-dimercapto-1-propanol (BAL). However, the efficacy of this treatment is questionable due to the lack of specific effect on the toxic metal. The present study examined the effects of HgCl2 exposure (five doses of 5.0 mg/kg between ages 8 to 12 days) on physiological parameters, on porphobilinogen synthase activity, and on mercury content in liver, kidneys and brain from suckling rats. The effect of BAL (one dose of 12.5-75 mg/kg) applied 24 hr after mercury intoxication on these parameters was also investigated. The results demonstrate that HgCl2 intoxication induced a decrease of corporal weight gain as well as brain weight and an increase in renal weight. The inhibition of porphobilinogen synthase from liver and kidney, is still significant and was not modified by subsequent BAL treatment. However, BAL altered two effects induced by mercury: increase in death percentage and decrease in mercury contents in liver and kidney. The increase of mortality induced by mercury was not promoted by metal redistribution to brain nor by the increase of porphobilinogen synthase inhibition induced by metal. More investigations are necessary to determine if the different effects of BAL on intoxication by metals are possibly related to other tissues and/or if the probable metal-chelating complex formed is more toxic than the metal itself.
Collapse
Affiliation(s)
- Taciane Roza
- Department of Chemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | | | | | | |
Collapse
|
47
|
Rocha JBT, Gabriel D, Zeni G, Posser T, Siqueira L, Nogueira CW, Folmer V. Ebselen and diphenyl diselenide change biochemical hepatic responses to overdosage with paracetamol. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2005; 19:255-261. [PMID: 21783484 DOI: 10.1016/j.etap.2004.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Accepted: 07/19/2004] [Indexed: 05/31/2023]
Abstract
The toxicity of paracetamol is largely related to its conversion to the reactive intermediate alkylating metabolite N-acetyl-para-benzo-quinoneimine (NAPQI). δ-Aminolevulinate dehydratase (δ-ALA-D) is a sulfhydril containing enzyme which is extremely sensitive to oxidizing and alkylating agents. In the present study, we examined whether acute treatment with paracetamol changes δ-ALA-D activity. The influence of two organochalcogenides with glutathione peroxidase-like activity, diphenyl diselenide [(PhSe)(2)] and ebselen was also assessed as potential protecting agents against paracetamol toxicity. Paracetamol (1200mg/kg for three days 4h after the injection of DMSO, diphenyl diselenide (100μmol/kg) or ebselen (100μmol/kg) caused an inhibition of about 40% (P < 0.01) in hepatic δ-ALA-D. Ebselen restored enzyme activity to control values. Non-protein-SH and ascorbic acid were diminished to 50% of control value by paracetamol, independent of chalcogenides treatment (all P values <0.05). In view of the fact that paracetamol caused a massive reduction in non-protein-SH and ascorbic acid, we realize that the protective effect of ebselen on δ-ALA-D activity is mediated by its thiol peroxidase-like activity or by a direct interaction with NAPQI and other reactive species formed during paracetamol metabolism.
Collapse
Affiliation(s)
- J B T Rocha
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
48
|
Nogueira CW, Zeni G, Rocha JBT. Organoselenium and Organotellurium Compounds: Toxicology and Pharmacology. Chem Rev 2004; 104:6255-85. [PMID: 15584701 DOI: 10.1021/cr0406559] [Citation(s) in RCA: 1459] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Cristina W Nogueira
- Laboratório de Síntese, Reatividade e Avaliacão Farmacológica e Toxicológica de Organocalcogênios, CCNE, UFSM, Santa Maria, CEP 97105-900 Rio Grande do Sul, Brazil
| | | | | |
Collapse
|
49
|
Folmer V, Farina M, Maciel EN, Nogueira CW, Zeni G, Emanuelli T, Rocha JBT. Methyl Phenyl Selenide Causes Heme Biosynthesis Impairment and Its Toxicity Is Not Modified by Dimethyl Sulphoxide In Vivo. Drug Chem Toxicol 2004; 27:331-40. [PMID: 15573470 DOI: 10.1081/dct-200039720] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Organoselenium compounds can cause anemia in mice, possibly as a consequence of impairment of the heme biosynthesis pathway. Such compounds can inhibit the sulfhydryl-containing enzyme delta-aminolevulinate dehydratase (delta-ALA-D), which is involved in the heme biosynthetic pathway, leading to a decrease in the syntheses of hemoglobin, cytochromes and other heme-proteins. Methyl phenyl selenide (CH3SePh) has chemopreventive activity against cancer in rodents, raising the possibility of therapeutic use of this compound by humans. Treatment with methyl phenyl selenide (500 micromol/kg/day, 30 days) inhibited the delta-aminolevulinate dehydratase activity in adult male mice. Furthermore, the exposure to methyl phenyl selenide caused an increase in the liver/body weight ratio and a decrease in the hemoglobin content when compared to the control animals. The vehicle used (DMSO or corn oil) did not affect any of the analyzed parameters or the selenide effects towards these parameters. In summary, results presented here support that delta-aminolevulinate dehydratase is a potential target to CH3SePh, leading to an impairment of hemoglobin content, a heme biosynthetic endpoint.
Collapse
Affiliation(s)
- Vanderlei Folmer
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brasil.
| | | | | | | | | | | | | |
Collapse
|
50
|
Perottoni J, Lobato LP, Silveira A, Rocha JBT, Emanuelli T. Effects of mercury and selenite on delta-aminolevulinate dehydratase activity and on selected oxidative stress parameters in rats. ENVIRONMENTAL RESEARCH 2004; 95:166-173. [PMID: 15147922 DOI: 10.1016/j.envres.2003.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2003] [Revised: 08/14/2003] [Accepted: 08/29/2003] [Indexed: 05/24/2023]
Abstract
The present study evaluates the effects of Na(2)SeO(3) and HgCl(2) on kidney and liver of adult rats. In vivo, HgCl(2) (17 micromol/kg, sc) reduced ascorbic acid levels in liver ( approximately 15%), whereas in kidney it reduced ALA-D activity ( approximately 60%) and ascorbic acid levels ( approximately 35%) and increased TBARS content ( approximately 50%). Na(2)SeO(3) (17 micromol/kg, sc) exposure increased the content of nonprotein thiol groups in liver (35-60%) and kidney ( approximately 50-160%), partially prevented mercury-induced ALA-D inhibition in kidney, and completely prevented a mercury-induced increase of TBARS content and decrease of ascorbic acid levels in kidney. In vitro, HgCl(2) and Na(2)SeO(3) inhibited renal and hepatic ALA-D, while HgCl(2) increased TBARS in renal and hepatic tissue preparations. Na(2)SeO(3) increased the rate of glutathione oxidation in vitro. Results indicated that Na(2)SeO(3) protected against HgCl(2) effects in vivo (prevention of mercury interaction with thiol groups and of mercury-induced oxidative damage). In vitro, Na(2)SeO(3) did not prevent mercury effects, but potentiated ALA-D inhibition by mercury, probably due to its ability to oxidize thiol groups.
Collapse
Affiliation(s)
- Juliano Perottoni
- Master Science Course in Biochemical Toxicology, Department of Chemistry, Center of Nature and Exacts Sciences, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | | | | | | | | |
Collapse
|