1
|
Plaza V, Pasten A, López-Ramírez LA, Mora-Montes HM, Rubio-Astudillo J, Silva-Moreno E, Castillo L. Botrytis cinerea PMT4 Is Involved in O-Glycosylation, Cell Wall Organization, Membrane Integrity, and Virulence. J Fungi (Basel) 2025; 11:71. [PMID: 39852490 PMCID: PMC11766925 DOI: 10.3390/jof11010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 01/26/2025] Open
Abstract
Proteins found within the fungal cell wall usually contain both N- and O-oligosaccharides. N-glycosylation is the process where these oligosaccharides (hereinafter: glycans) are attached to asparagine residues, while in O-glycosylation the glycans are covalently bound to serine or threonine residues. The PMT family is grouped into PMT1, PMT2, and PMT4 subfamilies. Using bioinformatics analysis within the Botrytis cinerea genome database, an ortholog to Saccharomyces cerevisiae Pmt4 and other fungal species was identified. The aim of this study was to assess the relevance of the bcpmt4 gene in B. cinerea glycosylation. For this purpose, the bcpmt4 gene was disrupted by homologous recombination in the B05.10 strain using a hygromycin B resistance cassette. Expression of bcpmt4 in S. cerevisiae ΔScpmt4 or ΔScpmt3 null mutants restored glycan levels like those observed in the parental strain. The phenotypic analysis showed that Δbcpmt4 null mutants exhibited significant changes in hyphal cell wall composition, including reduced mannan levels and increased amounts of chitin and glucan. Furthermore, the loss of bcpmt4 led to decreased glycosylation of glycoproteins in the B. cinerea cell wall. The null mutant lacking PMT4 was hypersensitive to a range of cell wall perturbing agents, antifungal drugs, and high hydrostatic pressure. Thus, in addition to their role in glycosylation, the PMT4 is required to virulence, biofilm formation, and membrane integrity. This study adds to our knowledge of the role of the B. cinerea bcpmt4 gene, which is involved in glycosylation and cell biology, cell wall formation, and antifungal response.
Collapse
Affiliation(s)
- Verónica Plaza
- Laboratorio de Biología Molecular y Bioquímica, Departamento de Biología, Universidad de La Serena, La Serena 1700000, Chile; (V.P.); (A.P.)
| | - Alice Pasten
- Laboratorio de Biología Molecular y Bioquímica, Departamento de Biología, Universidad de La Serena, La Serena 1700000, Chile; (V.P.); (A.P.)
| | - Luz A. López-Ramírez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Mexico; (L.A.L.-R.); (H.M.M.-M.)
| | - Héctor M. Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Mexico; (L.A.L.-R.); (H.M.M.-M.)
| | - Julia Rubio-Astudillo
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago 7500912, Chile;
| | - Evelyn Silva-Moreno
- GEMA Center for Genomics, Ecology and Environment, Faculty of Interdisciplinary Studies, Universidad Mayor, Santiago 7510041, Chile;
| | - Luis Castillo
- Laboratorio de Biología Molecular y Bioquímica, Departamento de Biología, Universidad de La Serena, La Serena 1700000, Chile; (V.P.); (A.P.)
| |
Collapse
|
2
|
Mierke CT. Extracellular Matrix Cues Regulate Mechanosensing and Mechanotransduction of Cancer Cells. Cells 2024; 13:96. [PMID: 38201302 PMCID: PMC10777970 DOI: 10.3390/cells13010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Extracellular biophysical properties have particular implications for a wide spectrum of cellular behaviors and functions, including growth, motility, differentiation, apoptosis, gene expression, cell-matrix and cell-cell adhesion, and signal transduction including mechanotransduction. Cells not only react to unambiguously mechanical cues from the extracellular matrix (ECM), but can occasionally manipulate the mechanical features of the matrix in parallel with biological characteristics, thus interfering with downstream matrix-based cues in both physiological and pathological processes. Bidirectional interactions between cells and (bio)materials in vitro can alter cell phenotype and mechanotransduction, as well as ECM structure, intentionally or unintentionally. Interactions between cell and matrix mechanics in vivo are of particular importance in a variety of diseases, including primarily cancer. Stiffness values between normal and cancerous tissue can range between 500 Pa (soft) and 48 kPa (stiff), respectively. Even the shear flow can increase from 0.1-1 dyn/cm2 (normal tissue) to 1-10 dyn/cm2 (cancerous tissue). There are currently many new areas of activity in tumor research on various biological length scales, which are highlighted in this review. Moreover, the complexity of interactions between ECM and cancer cells is reduced to common features of different tumors and the characteristics are highlighted to identify the main pathways of interaction. This all contributes to the standardization of mechanotransduction models and approaches, which, ultimately, increases the understanding of the complex interaction. Finally, both the in vitro and in vivo effects of this mechanics-biology pairing have key insights and implications for clinical practice in tumor treatment and, consequently, clinical translation.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Biological Physics Division, Peter Debye Institute of Soft Matter Physics, Faculty of Physics and Earth Science, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
| |
Collapse
|
3
|
Qing R, Hao S, Smorodina E, Jin D, Zalevsky A, Zhang S. Protein Design: From the Aspect of Water Solubility and Stability. Chem Rev 2022; 122:14085-14179. [PMID: 35921495 PMCID: PMC9523718 DOI: 10.1021/acs.chemrev.1c00757] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Water solubility and structural stability are key merits for proteins defined by the primary sequence and 3D-conformation. Their manipulation represents important aspects of the protein design field that relies on the accurate placement of amino acids and molecular interactions, guided by underlying physiochemical principles. Emulated designer proteins with well-defined properties both fuel the knowledge-base for more precise computational design models and are used in various biomedical and nanotechnological applications. The continuous developments in protein science, increasing computing power, new algorithms, and characterization techniques provide sophisticated toolkits for solubility design beyond guess work. In this review, we summarize recent advances in the protein design field with respect to water solubility and structural stability. After introducing fundamental design rules, we discuss the transmembrane protein solubilization and de novo transmembrane protein design. Traditional strategies to enhance protein solubility and structural stability are introduced. The designs of stable protein complexes and high-order assemblies are covered. Computational methodologies behind these endeavors, including structure prediction programs, machine learning algorithms, and specialty software dedicated to the evaluation of protein solubility and aggregation, are discussed. The findings and opportunities for Cryo-EM are presented. This review provides an overview of significant progress and prospects in accurate protein design for solubility and stability.
Collapse
Affiliation(s)
- Rui Qing
- State
Key Laboratory of Microbial Metabolism, School of Life Sciences and
Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shilei Hao
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Eva Smorodina
- Department
of Immunology, University of Oslo and Oslo
University Hospital, Oslo 0424, Norway
| | - David Jin
- Avalon GloboCare
Corp., Freehold, New Jersey 07728, United States
| | - Arthur Zalevsky
- Laboratory
of Bioinformatics Approaches in Combinatorial Chemistry and Biology, Shemyakin−Ovchinnikov Institute of Bioorganic
Chemistry RAS, Moscow 117997, Russia
| | - Shuguang Zhang
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Silvosa MJ, Romo Mercado N, Merlock N, Vidhate S, Mejia-Alvarez R, Yuan T, Willis AM, Lybrand ZR. Understanding primary blast injury: High frequency pressure acutely disrupts neuronal network dynamics in cerebral organoids. J Neurotrauma 2022; 39:1575-1590. [PMID: 35765922 DOI: 10.1089/neu.2022.0044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Blast exposure represents a common occupational risk capable of generating mild to severe traumatic brain injuries (TBI). During blast exposure, a pressure shockwave passes through the skull and exposes brain tissue to complex pressure waveforms. The primary neurophysiological response to blast-induced pressure waveforms remains poorly understood. Here, we use a computer-controlled table-top pressure chamber to expose human stem cell-derived cerebral organoids to varied frequency of pressure waves and characterize the neurophysiological response. Pressure waves that reach a maximum amplitude of 250kPa were used to model a less severe TBI and 350kPa for a more severe blast TBI event. With each amplitude, a frequency range of 500Hz, 3000Hz, and 5000Hz was tested. Following the 250 kPa overpressure a multielectrode array recorded organoid neural activity. We observed an acute suppression neuronal activity in single unit events, population events, and network oscillations that recovered within 24 hours. Additionally, we observed a network desynchronization after exposure higher frequency waveforms. Conversely, organoids exposed to higher amplitude pressure (350kPa) displayed drastic neurophysiological differences that failed to recover within 24 hours. Furthermore, lower amplitude 'blast' (250kPa) did not induce cellular damage whereas the higher amplitude 'blast' (350kPa) generated greater apoptosis throughout each organoid. Our data indicate that specific features of pressure waves found intracranially during blast TBI have varied effects on neurophysiological activity that can occur even without cellular damage.
Collapse
Affiliation(s)
| | | | - Nikolas Merlock
- UTSA, 12346, Department of Neuroscience, Developmental and Regenerative Biology, San Antonio, Texas, United States;
| | - Suhas Vidhate
- National Institutes of Health, 2511, Department of Radiology and Imaging Sciences, Clinical Center, Bethesda, Maryland, United States;
| | - Ricardo Mejia-Alvarez
- Michigan State University, 3078, Department of Mechanical Engineering, East Lansing, Michigan, United States;
| | - Tony Yuan
- 59th Medical Wing, 495529, Diagnostic and Therapeutic, 1632 Nellis Street, Bldg. 5406, Rm: B-207, Joint Base San Antonio-Lackland, Texas, United States, 78236-5415;
| | - Adam M Willis
- Michigan State University, 3078, Department of Mechanical Engineering, East Lansing, Michigan, United States.,59th Medical Wing, 495529, Diagnostic and Therapeutic, Joint Base San Antonio-Lackland, Texas, United States;
| | - Zane R Lybrand
- Texas Woman's University, 2910, Biology, P.O. Box 425799, Denton, Denton, Texas, United States, 76204;
| |
Collapse
|
5
|
Funada C, Tanino N, Fukaya M, Mikajiri Y, Nishiguchi M, Otake M, Nakasuji H, Kawahito R, Abe F. SOD1 mutations cause hypersensitivity to high-pressure-induced oxidative stress in Saccharomyces cerevisiae. Biochim Biophys Acta Gen Subj 2022; 1866:130049. [PMID: 34728328 DOI: 10.1016/j.bbagen.2021.130049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/04/2021] [Accepted: 10/28/2021] [Indexed: 12/27/2022]
Abstract
Living organisms are subject to various mechanical stressors, such as high hydrostatic pressure. Empirical evidence shows that under high pressure, the oxidative stress response is activated in Saccharomyces cerevisiae. However, the mechanisms involved in its antioxidant systems are unclear. Here, we demonstrate that superoxide dismutase 1 (Sod1) plays a role in resisting high pressure for cell growth. Mutants lacking Sod1 or Ccs1, the copper chaperone for Sod1, displayed growth defects under 25 MPa. Of the various SOD1 mutations associated with familial amyotrophic lateral sclerosis, H46Q and S134N substitutions diminished SOD activity to levels comparable to those of catalytically deficient H63A and null mutants. When these mutant cells were cultured under 25 MPa, their intracellular O2•- levels increased while sod1∆ mutant genome stability was unaffected. The high-pressure sensitive sod1 mutants were also susceptible to sublethal levels of the O2•- generator paraquat. The sod1∆ mutant is known to exhibit methionine and lysine auxotrophy. However, excess methionine addition or overexpression of the lysine permease gene LYP1 did not counteract high-pressure sensitivity in the sod1 mutants, suggesting that their amino acid availability might be intact under 25 MPa. Interestingly, an exclusive localization of Sco2-Sod1 to the intermembrane space (IMS) of mitochondria appeared to partially restore the high-pressure growth ability in the sod1 mutants. Taken these results together, we suggest that high pressure enhances O2•- production and Sod1 within the IMS plays a role in scavenging O2•- allowing the cells to grow under high pressure. BACKGROUND Empirical evidence shows that under high hydrostatic pressure, the oxidative stress response is activated in Saccharomyces cerevisiae. However, the mechanisms involved in its antioxidant systems are unclear. In the current study, we aimed to explore the role of superoxide dismutase 1 (Sod1) in yeast able to grow under high pressure. METHODS Wild type and sod1 mutant cells were cultured in high-pressure chambers under 25 MPa (~250 kg/cm2). The SOD activity in whole cell extracts and 6His-tagged Sod1 recombinant proteins was analyzed using an SOD assay kit. The O2•- generation in cells was estimated by fluorescence staining. RESULTS Mutants lacking Sod1 or Ccs1, the copper chaperone for Sod1, displayed growth defects under 25 MPa. Of the various SOD1 mutations associated with familial amyotrophic lateral sclerosis, H46Q and S134N substitutions diminished SOD activity to levels comparable to those of catalytically deficient H63A and null mutants. The high-pressure sensitive sod1 mutants were also susceptible to sublethal levels of the O2•- generator paraquat. Exclusive localization of Sco2-Sod1 to the intermembrane space (IMS) of mitochondria partially restored the high-pressure growth ability in the sod1 mutants. CONCLUSIONS High pressure enhances O2•- production and Sod1 within the IMS plays a role in scavenging O2•- allowing the cells to grow under high pressure. GENERAL SIGNIFICANCE Unlike external free radical-generating compounds, high-pressure treatment appeared to increase endogenous O2•- levels in yeast cells. Our experimental system offers a unique approach to investigating the physiological responses to mechanical and oxidative stresses in human body.
Collapse
Affiliation(s)
- Chisako Funada
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Nanami Tanino
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Miina Fukaya
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Yu Mikajiri
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Masayoshi Nishiguchi
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Masato Otake
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Hiroko Nakasuji
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Reika Kawahito
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Fumiyoshi Abe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan.
| |
Collapse
|
6
|
Yancey PH. Cellular responses in marine animals to hydrostatic pressure. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:398-420. [DOI: 10.1002/jez.2354] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Paul H. Yancey
- Department of BiologyWhitman CollegeWalla Walla Washington
| |
Collapse
|
7
|
Ogren JI, Tong AL, Gordon SC, Chenu A, Lu Y, Blankenship RE, Cao J, Schlau-Cohen GS. Impact of the lipid bilayer on energy transfer kinetics in the photosynthetic protein LH2. Chem Sci 2018; 9:3095-3104. [PMID: 29732092 PMCID: PMC5914429 DOI: 10.1039/c7sc04814a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/05/2018] [Indexed: 01/28/2023] Open
Abstract
Photosynthetic purple bacteria convert solar energy to chemical energy with near unity quantum efficiency. The light-harvesting process begins with absorption of solar energy by an antenna protein called Light-Harvesting Complex 2 (LH2). Energy is subsequently transferred within LH2 and then through a network of additional light-harvesting proteins to a central location, termed the reaction center, where charge separation occurs. The energy transfer dynamics of LH2 are highly sensitive to intermolecular distances and relative organizations. As a result, minor structural perturbations can cause significant changes in these dynamics. Previous experiments have primarily been performed in two ways. One uses non-native samples where LH2 is solubilized in detergent, which can alter protein structure. The other uses complex membranes that contain multiple proteins within a large lipid area, which make it difficult to identify and distinguish perturbations caused by protein-protein interactions and lipid-protein interactions. Here, we introduce the use of the biochemical platform of model membrane discs to study the energy transfer dynamics of photosynthetic light-harvesting complexes in a near-native environment. We incorporate a single LH2 from Rhodobacter sphaeroides into membrane discs that provide a spectroscopically amenable sample in an environment more physiological than detergent but less complex than traditional membranes. This provides a simplified system to understand an individual protein and how the lipid-protein interaction affects energy transfer dynamics. We compare the energy transfer rates of detergent-solubilized LH2 with those of LH2 in membrane discs using transient absorption spectroscopy and transient absorption anisotropy. For one key energy transfer step in LH2, we observe a 30% enhancement of the rate for LH2 in membrane discs compared to that in detergent. Based on experimental results and theoretical modeling, we attribute this difference to tilting of the peripheral bacteriochlorophyll in the B800 band. These results highlight the importance of well-defined systems with near-native membrane conditions for physiologically-relevant measurements.
Collapse
Affiliation(s)
- John I Ogren
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , MA 02139 , USA .
| | - Ashley L Tong
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , MA 02139 , USA .
| | - Samuel C Gordon
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , MA 02139 , USA .
| | - Aurélia Chenu
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , MA 02139 , USA .
| | - Yue Lu
- Department of Biology and Chemistry , Washington University in St. Louis , St. Louis , MO 63130 , USA
| | - Robert E Blankenship
- Department of Biology and Chemistry , Washington University in St. Louis , St. Louis , MO 63130 , USA
| | - Jianshu Cao
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , MA 02139 , USA .
| | - Gabriela S Schlau-Cohen
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , MA 02139 , USA .
| |
Collapse
|
8
|
Fels B, Nielsen N, Schwab A. Role of TRPC1 channels in pressure-mediated activation of murine pancreatic stellate cells. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:657-670. [PMID: 27670661 DOI: 10.1007/s00249-016-1176-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 12/18/2022]
Abstract
The tumor environment contributes importantly to tumor cell behavior and cancer progression. Aside from biochemical constituents, physical factors of the environment also influence the tumor. Growing evidence suggests that mechanics [e.g., tumor (stroma) elasticity, tissue pressure] are critical players of cancer progression. Underlying mechanobiological mechanisms involve among others the regulation of focal adhesion molecules, cytoskeletal modifications, and mechanosensitive (MS) ion channels of cancer- and tumor-associated cells. After reviewing the current concepts of cancer mechanobiology, we will focus on the canonical transient receptor potential 1 (TRPC1) channel and its role in mechano-signaling in tumor-associated pancreatic stellate cells (PSCs). PSCs are key players of pancreatic fibrosis, especially in cases of pancreatic ductal adenocarcinoma (PDAC). PDAC is characterized by the formation of a dense fibrotic stroma (desmoplasia), primarily formed by activated PSCs. Desmoplasia contributes to high pancreatic tissue pressure, which in turn activates PSCs, thereby perpetuating matrix deposition. Here, we investigated the role of the putatively mechanosensitive TRPC1 channels in murine PSCs exposed to elevated ambient pressure. Pressurization leads to inhibition of mRNA expression of MS ion channels. Migration of PSCs representing a readout of their activation is enhanced in pressurized PSCs. Knockout of TRPC1 leads to an attenuated phenotype. While TRPC1-mediated calcium influx is increased in wild-type PSCs after pressure incubation, loss of TRPC1 abolishes this effect. Our findings provide mechanistic insight how pressure, an important factor of the PDAC environment, contributes to PSC activation. TRPC1-mediated activation could be a potential target to disrupt the positive feedback of PSC activation and PDAC progression.
Collapse
Affiliation(s)
- Benedikt Fels
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Munster, Germany
| | - Nikolaj Nielsen
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Munster, Germany. .,Novo Nordisk A/S, Smørmosevej 10-12, 2880, Bagsværd, Denmark.
| | - Albrecht Schwab
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Munster, Germany
| |
Collapse
|
9
|
Villaverde-Morcillo S, Esteso MC, Castaño C, Santiago-Moreno J. Influence of Post-Mortem Sperm Recovery Method and Extender on Unstored and Refrigerated Rooster Sperm Variables. Reprod Domest Anim 2015; 51:40-6. [PMID: 26602054 DOI: 10.1111/rda.12643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/23/2015] [Indexed: 11/27/2022]
Abstract
Many post-mortem sperm collection techniques have been described for mammalian species, but their use in birds is scarce. This paper compares the efficacy of two post-mortem sperm retrieval techniques - the flushing and float-out methods - in the collection of rooster sperm, in conjunction with the use of two extenders, i.e., L&R-84 medium and Lake 7.1 medium. To determine whether the protective effects of these extenders against refrigeration are different for post-mortem and ejaculated sperm, pooled ejaculated samples (procured via the massage technique) were also diluted in the above extenders. Post-mortem and ejaculated sperm variables were assessed immediately at room temperature (0 h), and after refrigeration at 5°C for 24 and 48 h. The flushing method retrieved more sperm than the float-out method (596.5 ± 75.4 million sperm vs 341.0 ± 87.6 million sperm; p < 0.05); indeed, the number retrieved by the former method was similar to that obtained by massage-induced ejaculation (630.3 ± 78.2 million sperm). For sperm collected by all methods, the L&R-84 medium provided an advantage in terms of sperm motility variables at 0 h. In the refrigerated sperm samples, however, the Lake 7.1 medium was associated with higher percentages of viable sperm, and had a greater protective effect (p < 0.05) with respect to most motility variables. In conclusion, the flushing method is recommended for collecting sperm from dead birds. If this sperm needs to be refrigerated at 5°C until analysis, Lake 7.1 medium is recommended as an extender.
Collapse
Affiliation(s)
- S Villaverde-Morcillo
- Veterinary Clinical and Research Services, Fieb Foundation, Tres Cantos, Madrid, Spain
| | - M C Esteso
- Department of Animal Reproduction, INIA, Madrid, Spain
| | - C Castaño
- Department of Animal Reproduction, INIA, Madrid, Spain
| | | |
Collapse
|
10
|
Suladze S, Cinar S, Sperlich B, Winter R. Pressure Modulation of the Enzymatic Activity of Phospholipase A2, A Putative Membrane-Associated Pressure Sensor. J Am Chem Soc 2015; 137:12588-96. [DOI: 10.1021/jacs.5b07009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Saba Suladze
- Department of Chemistry and
Chemical Biology, Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 6, D-44221 Dortmund, Germany
| | - Suleyman Cinar
- Department of Chemistry and
Chemical Biology, Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 6, D-44221 Dortmund, Germany
| | - Benjamin Sperlich
- Department of Chemistry and
Chemical Biology, Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 6, D-44221 Dortmund, Germany
| | - Roland Winter
- Department of Chemistry and
Chemical Biology, Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 6, D-44221 Dortmund, Germany
| |
Collapse
|
11
|
Bravim F, de Freitas JM, Fernandes AAR, Fernandes PMB. High hydrostatic pressure and the cell membrane: stress response of Saccharomyces cerevisiae. Ann N Y Acad Sci 2010; 1189:127-32. [PMID: 20233378 DOI: 10.1111/j.1749-6632.2009.05182.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The brewing and baking yeast Saccharomyces cerevisiae is a useful eukaryotic model of stress response systems whose study could lead to the understanding of stress response mechanisms in other organisms. High hydrostatic pressure (HHP) exerts broad effects upon yeast cells, interfering with cell membranes, cellular architecture, and the processes of polymerization and denaturation of proteins. In this review, we focus on the effect of HHP on the S. cerevisiae cell membrane and describe the main signaling pathways involved in the pressure response.
Collapse
|
12
|
Influence of recovery method and microbial contamination on the response to freezing–thawing in ibex (Capra pyrenaica) epididymal spermatozoa. Cryobiology 2009; 59:357-62. [DOI: 10.1016/j.cryobiol.2009.09.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Revised: 09/22/2009] [Accepted: 09/22/2009] [Indexed: 01/08/2023]
|
13
|
Santiago-Moreno J, Toledano-Díaz A, Dorado J, Pulido-Pastor A, Coloma MA, López-Sebastián A. Recovery and cryopreservation of Spanish ibex epididymal spermatozoa. ACTA ACUST UNITED AC 2008; 53:309-16. [PMID: 18357960 DOI: 10.1080/01485010701730674] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A Tris-citric acid-glucose (TCG) diluent containing low concentrations (6%) of egg yolk, and a TCG extender containing lactose (without egg yolk), were compared for use in the cryopreservation of Spanish ibex (Capra pyrenaica) epididymal spermatozoa. To optimize the collection of epididymal spermatozoa, two spermatozoa recovery methods were tested: i) by using small cuts in the cauda epididymides and ii) by the application of air pressure (from a syringe) inside the vas deferens. The percentage of viable spermatozoa recovered was lower (P < 0.05) with the air pressure method. No significant differences were seen in the efficacy of the two diluents as determined by percentage viability of thawed sperm, membrane integrity (as determined by the hypo-osmotic swelling test), or acrosome integrity. The use of the TCG-lactose medium strongly reduced sperm motility (P < 0.001). The sperm samples that had been diluted with TCG-6% egg yolk extender showed a greater incidence (P < 0.05) of morphological abnormalities. TCG-lactose alone, does not well preserve motility when cryopreserving Spanish ibex epididymal spermatozoa.
Collapse
Affiliation(s)
- Julián Santiago-Moreno
- Departamento de Reproducción Animal, SGIT-INIA, Avda. Puerta de Hierro km 5.9, 28040 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
14
|
Hurst AC, Petrov E, Kloda A, Nguyen T, Hool L, Martinac B. MscS, the bacterial mechanosensitive channel of small conductance. Int J Biochem Cell Biol 2008; 40:581-5. [PMID: 17466568 DOI: 10.1016/j.biocel.2007.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 03/20/2007] [Accepted: 03/20/2007] [Indexed: 11/16/2022]
Abstract
The mechanosensitive channel of small conductance, MscS, is one of the most extensively studied MS channels to date. Past and present research involves the discovery of its physiological role as an emergency valve in prokaryotes up to detailed investigations of its conductive properties and gating mechanism. In this review, we summarize the findings on its structure and function obtained by experimental and theoretical approaches. A special focus is given to its pharmacology, since various compounds have been shown to affect the activity of this channel. These compounds have particularly been helpful for understanding the interaction of MscS with the lipid bilayer, as well as recognizing the potential of this channel as a target for novel types of antibiotics.
Collapse
Affiliation(s)
- Annette C Hurst
- School of Biomedical Sciences, University of Queensland, St. Lucia, Qld 4072, Australia.
| | | | | | | | | | | |
Collapse
|
15
|
López Cascales JJ, Otero TF, Fernandez Romero AJ, Camacho L. Phase transition of a DPPC bilayer induced by an external surface pressure: from bilayer to monolayer behavior. a molecular dynamics simulation study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:5818-24. [PMID: 16768513 DOI: 10.1021/la0602315] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Understanding the lipid phase transition of lipid bilayers is of great interest from biophysical, physicochemical, and technological points of view. With the aim of elucidating the structural changes that take place in a DPPC phospholipid bilayer induced by an external isotropic surface pressure, five computer simulations were carried out in a range from 0.1 to 40 mN/m. Molecular dynamics simulations provided insight into the structural changes that took place in the lipid structure. It was seen that low pressures ranging from 0.1 to 1 mN/m had hardly any effect on the structure, electrical properties, or hydration of the lipid bilayer. However, for pressures above 40 mN/m, there was a sharp change in the lipid-lipid interactions, hydrocarbon lipid fluidity, and electrostatic potential, corresponding to the mesomorphic transition from a liquid crystalline state (L(alpha)) to its gel state (P'(beta)). The head lipid orientation remained almost unaltered, parallel to the lipid layer, as the surface pressure was increased, although a noticeable change in its angular distribution function was evident with the phase transition.
Collapse
Affiliation(s)
- J J López Cascales
- Centro de Electroquíca y Materiales Inteligentes (CEMI), Universidad Politécnica de Cartagena, Aulario II, Campus de Alfonso XIII, 30203 Cartagena, Murcia, Spain. javier.lopez@ upct.es
| | | | | | | |
Collapse
|
16
|
Nicolini C, Kraineva J, Khurana M, Periasamy N, Funari SS, Winter R. Temperature and pressure effects on structural and conformational properties of POPC/SM/cholesterol model raft mixtures--a FT-IR, SAXS, DSC, PPC and Laurdan fluorescence spectroscopy study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:248-58. [PMID: 16529710 DOI: 10.1016/j.bbamem.2006.01.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 01/24/2006] [Accepted: 01/26/2006] [Indexed: 11/17/2022]
Abstract
We report on the effects of temperature and pressure on the structure, conformation and phase behavior of aqueous dispersions of the model lipid "raft" mixture palmitoyloleoylphosphatidylcholine (POPC)/bovine brain sphingomyelin (SM)/cholesterol (Chol) (1:1:1). We investigated interchain interactions, hydrogen bonding, conformational and structural properties as well as phase transformations of this system using Fourier transform-infrared (FT-IR) spectroscopy, small-angle X-ray scattering (SAXS), differential scanning calorimetry (DSC) coupled with pressure perturbation calorimetry (PPC), and Laurdan fluorescence spectroscopy. The IR spectral parameters in combination with the scattering patterns from the SAXS measurements were used to detect structural and conformational transformations upon changes of pressure up to 7-9 kbar and temperature in the range from 1 to about 80 degrees C. The generalized polarization function (GP) values, obtained from the Laurdan fluorescence spectroscopy studies also reveal temperature and pressure dependent phase changes. DSC and PPC were used to detect thermodynamic properties accompanying the temperature-dependent phase changes. In combination with literature fluorescence spectroscopy and microscopy data, a tentative p,T stability diagram of the mixture has been established. The data reveal a broad liquid-order/solid-ordered (lo+so) two-phase coexistence region below 8+/-2 degrees C at ambient pressure. With increasing temperature, a lo+ld+so three-phase region is formed, which extends up to approximately 27 degrees C, where a liquid-ordered/liquid-disordered (lo+ld) immiscibility region is formed. Finally, above 48+/-2 degrees C, the POPC/SM/Chol (1:1:1) mixture becomes completely fluid-like (liquid-disordered, ld). With increasing pressure, all phase transition lines shift to higher temperatures. Notably, the lo+ld (+so) phase coexistence region, mimicking raft-like lateral phase separation in natural membranes, extends over a rather wide temperature range of about 40 degrees C, and a pressure range, which extends up to about 2 kbar for T=37 degrees C. Interestingly, in this pressure range, ceasing of membrane protein function in natural membrane environments has been observed for a variety of systems.
Collapse
Affiliation(s)
- Chiara Nicolini
- University of Dortmund, Department of Chemistry, Physical Chemistry I-Biophysical Chemistry, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Periasamy N, Winter R. The effects of temperature, pressure and peptide incorporation on ternary model raft mixtures--a Laurdan fluorescence spectroscopy study. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1764:398-404. [PMID: 16330267 DOI: 10.1016/j.bbapap.2005.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 10/14/2005] [Accepted: 10/17/2005] [Indexed: 11/21/2022]
Abstract
Recently, an increasing evidence accumulated for the existence of lipid microdomains, called lipid rafts, in cell membranes, which may play an important role in many important membrane-associated biological processes. Suitable model systems for studying biophysical properties of lipid rafts are lipid vesicles composed of three-component lipid mixtures, such as POPC/SM/cholesterol, which exhibit a rich phase diagram, including raft-like liquid-ordered/liquid-disordered phase coexistence regions. We explored the temperature, pressure and concentration-dependent phase behavior of such canonical model raft mixtures using the Laurdan fluorescence spectroscopic technique. Hydrostatic pressure has not only been used as a physical parameter for studying the stability and energetics of these systems, but also because high pressure is an important feature of certain natural membrane environments. We show that the liquid-disordered/liquid-ordered phase coexistence regions of POPC/SM/cholesterol model raft mixtures extends over a very wide temperature range of about 50 degrees C. Upon pressurization, an overall ordered membrane state is reached at pressures of approximately 1,000 bar at 20 degrees C, and of approximately 2,000 bar at 40 degrees C. Incorporation of 5 mol% gramicidin as a model ion channel slightly increases the overall order parameter profile in the l(o)+l(d) two-phase coexistence region, probably by selectively partitioning into l(d) domains, does not change the overall phase behavior, however. This behavior is in contrast to the effect of the peptide incorporation into simple, one-component phospholipid bilayer systems.
Collapse
Affiliation(s)
- Nagarajan Periasamy
- University of Dortmund, Physical Chemistry I-Biophysical Chemistry, D-44227 Dortmund, Germany
| | | |
Collapse
|
18
|
Mignaco JA, Lima LMTR, Rosenthal A, Foguel D, Silva JL. Highlights of the 3rd International Conference on High Pressure Bioscience and Biotechnology. Braz J Med Biol Res 2005; 38:1147-55. [PMID: 16082454 DOI: 10.1590/s0100-879x2005000800001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The 3rd International Conference on High Pressure Bioscience and Biotechnology was held in the city of Rio de Janeiro from September 27 to September 30, 2004. The meeting, promoted by the International Association of High Pressure Bioscience and Biotechnology (IAHPBB), congregated top scientists and researchers from all over the world. In common, they shared the use of hydrostatic pressure for research, technical development, or industrial applications. The meeting consisted of invited lectures, contributed papers and a well-attended poster session. Very exciting discussions were held inside and outside the sessions, and the goals of discussing state-of-the-art data and establishing working collaborations and co-operations were fully attained.
Collapse
Affiliation(s)
- J A Mignaco
- Instituto de Bioquímica Médica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Brasil
| | | | | | | | | |
Collapse
|