1
|
Lee GS, Jeong HY, Yang HG, Seo YR, Jung EG, Lee YS, Nam KW, Kim WJ. Astragaloside IV Suppresses Hepatic Proliferation in Regenerating Rat Liver after 70% Partial Hepatectomy via Down-Regulation of Cell Cycle Pathway and DNA Replication. Molecules 2021; 26:2895. [PMID: 34068164 PMCID: PMC8152973 DOI: 10.3390/molecules26102895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
Astragaloside IV (AS-IV) is one of the major bio-active ingredients of huang qi which is the dried root of Astragalus membranaceus (a traditional Chinese medicinal plant). The pharmacological effects of AS-IV, including anti-oxidative, anti-cancer, and anti-diabetic effects have been actively studied, however, the effects of AS-IV on liver regeneration have not yet been fully described. Thus, the aim of this study was to explore the effects of AS-IV on regenerating liver after 70% partial hepatectomy (PHx) in rats. Differentially expressed mRNAs, proliferative marker and growth factors were analyzed. AS-IV (10 mg/kg) was administrated orally 2 h before surgery. We found 20 core genes showed effects of AS-IV, many of which were involved with functions related to DNA replication during cell division. AS-IV down-regulates MAPK signaling, PI3/Akt signaling, and cell cycle pathway. Hepatocyte growth factor (HGF) and cyclin D1 expression were also decreased by AS-IV administration. Transforming growth factor β1 (TGFβ1, growth regulation signal) was slightly increased. In short, AS-IV down-regulated proliferative signals and genes related to DNA replication. In conclusion, AS-IV showed anti-proliferative activity in regenerating liver tissue after 70% PHx.
Collapse
Affiliation(s)
- Gyeong-Seok Lee
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Korea; (G.-S.L.); (H.-Y.J.); (Y.-R.S.); (Y.-S.L.); (K.-W.N.)
| | - Hee-Yeon Jeong
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Korea; (G.-S.L.); (H.-Y.J.); (Y.-R.S.); (Y.-S.L.); (K.-W.N.)
| | - Hyeon-Gung Yang
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Korea;
| | - Young-Ran Seo
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Korea; (G.-S.L.); (H.-Y.J.); (Y.-R.S.); (Y.-S.L.); (K.-W.N.)
| | - Eui-Gil Jung
- Seoul Center, Korea Basic Science Institute, Seoul 02855, Korea;
| | - Yong-Seok Lee
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Korea; (G.-S.L.); (H.-Y.J.); (Y.-R.S.); (Y.-S.L.); (K.-W.N.)
| | - Kung-Woo Nam
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Korea; (G.-S.L.); (H.-Y.J.); (Y.-R.S.); (Y.-S.L.); (K.-W.N.)
| | - Wan-Jong Kim
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Korea; (G.-S.L.); (H.-Y.J.); (Y.-R.S.); (Y.-S.L.); (K.-W.N.)
| |
Collapse
|
2
|
Seminotti B, Amaral AU, Grings M, Ribeiro CAJ, Leipnitz G, Wajner M. Lipopolysaccharide-Elicited Systemic Inflammation Induces Selective Vulnerability of Cerebral Cortex and Striatum of Developing Glutaryl-CoA Dehydrogenase Deficient (Gcdh -/-) Mice to Oxidative Stress. Neurotox Res 2020; 38:1024-1036. [PMID: 33001399 DOI: 10.1007/s12640-020-00291-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/02/2020] [Accepted: 09/20/2020] [Indexed: 12/22/2022]
Abstract
We investigated redox homeostasis in cerebral and peripheral tissues of wild type (WT) and glutaryl-CoA dehydrogenase knockout mice (Gcdh-/-) submitted to inflammation induced by lipopolysaccharide (LPS) since patients with glutaric aciduria type I (GA I) manifest acute encephalopathy during catabolic events triggered by inflammation. WT and Gcdh-/- mice fed a low (0.9%) or high (4.7%) Lys chow were euthanized 4 h after LPS intraperitoneal injection. Cerebral cortex of Lys-restricted Gcdh-/- animals presented no alterations of redox homeostasis, whereas those fed a high Lys chow showed increased malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity, compared to WT mice. Furthermore, Gcdh-/- mice receiving low Lys and injected with LPS presented elevated MDA levels and decreased reduced glutathione (GSH) concentrations, glutathione peroxidase (GPx), and glutathione reductase (GR) activities in cerebral cortex. LPS administration also decreased GSH values, as well as GPx and GR activities in cerebral cortex of Gcdh-/- mice receiving Lys overload. Further experiments performed in WT and Gcdh-/- mice injected with LPS and receiving either a low or high Lys chow revealed increased MDA levels and decreased GSH concentrations in cerebral cortex and striatum, but not in hippocampus, liver and heart of Gcdh-/- mice, suggesting a selective vulnerability of these cerebral structures to oxidative stress during an inflammatory process. LPS administration also increased S100B and NF-κF protein levels in brain of Gcdh-/- mice receiving high Lys. These data support the hypothesis that low Lys diet is beneficial in GA I by preventing redox imbalance, whereas a high Lys diet or systemic inflammation per se or combined induce oxidative stress in striatum and cerebral cortex that are mainly damaged in this disorder.
Collapse
Affiliation(s)
- Bianca Seminotti
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Building 21111, Porto Alegre, RS, 90035-003, Brazil.
| | - Alexandre Umpierrez Amaral
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Building 21111, Porto Alegre, RS, 90035-003, Brazil.,Departamento de Ciências Biológicas, Universidade Regional Integrada do Alto Uruguai e das Missões, Avenida Sete de Setembro, 1621, Erechim, RS, 99709-910, Brazil
| | - Mateus Grings
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Building 21111, Porto Alegre, RS, 90035-003, Brazil
| | - César Augusto João Ribeiro
- Natural and Humanities Sciences Center, Universidade Federal do ABC, São Bernardo do Campo, SP, 09606-070, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Building 21111, Porto Alegre, RS, 90035-003, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 - 21111, Porto Alegre, RS, 90035-003, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Building 21111, Porto Alegre, RS, 90035-003, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 - 21111, Porto Alegre, RS, 90035-003, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-007, Brazil
| |
Collapse
|
3
|
Lee GS, Yang HG, Kim JH, Ahn YM, Han MD, Kim WJ. Pine ( Pinus densiflora ) needle extract could promote the expression of PCNA and Ki-67 after partial hepatectomy in rat. Acta Cir Bras 2019; 34:e201900606. [PMID: 31432997 PMCID: PMC6705336 DOI: 10.1590/s0102-865020190060000006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/12/2019] [Indexed: 12/16/2022] Open
Abstract
Purpose To investigate the effects of pine needle extract (PNE) on the expression of proliferating cell nuclear antigen (PCNA) and Ki-67 during liver regeneration induced by 70% partial hepatectomy (PH) in rat. Methods Forty-eight male rats (SD, 7 weeks) had surgery (70% PH). They were randomly divided into two groups. PH + PNE group was only provided PNE diluted in water (10%) for drinking and PH group was provided water from 5 days before surgery to the time of sacrifice. PNE was made by pressing and filtering. Animals were sacrificed at 12h, 24h, 36h, 60h, 84h, 168h after PH, respectively. The expressions of PCNA and Ki-67 were determined as proliferation indices. Results Immunohistochemistry turned out to increase the expression of PCNA and Ki-67. PCNA expression of PH+PNE group increased up to twice of that of PH group. Western blot also seemed to increase the PCNA expression. These results indicated the promotion of cell proliferation in liver tissue and hepatic regeneration. Conclusions Pine needle extract stimulates the expression of some mitotic proteins during liver regeneration induced by 70% PH in rats. It suggests that administration of pine needle extract could accelerate the liver regeneration after partial hepatectomy.
Collapse
Affiliation(s)
- Gyeong Seok Lee
- Department of Life Science and Biotechnology , Soonchunhyang University , Asan , Korea . Conception and design; acquisition, analysis and interpretation of data; technical procedures; histopathological examinations; statistics analysis; manuscript writing, final approval
| | - Hyeon Gung Yang
- Department of Life Science and Biotechnology , Soonchunhyang University , Asan , Korea . Conception and design; acquisition, analysis and interpretation of data; technical procedures; histopathological examinations; statistics analysis; manuscript preparation and writing, final approval
| | - Ji Hun Kim
- Department of Life Science and Biotechnology , Soonchunhyang University , Asan , Korea . Acquisition of data, manuscript preparation, final approval
| | - Young Mo Ahn
- PhD, Department of Life Science and Biotechnology , Soonchunhyang University , Asan , Korea . Acquisition of data, histopathological examinations, critical revision, final approval
| | - Man Deuk Han
- PhD, Professor, Department of Life Science and Biotechnology , Soonchunhyang University , Asan , Korea . Analysis and interpretation of data, histopathological examinations, critical revision, final approval
| | - Wan Jong Kim
- PhD, Professor, Department of Life Science and Biotechnology , Soonchunhyang University , Asan , Korea . Conception and design of the study, histopathological examinations, manuscript writing, critical revision, final approval
| |
Collapse
|
4
|
Moreira MC, Azevedo ÍM, Oliveira CN, Medeiros ADC. Influence of the colon in liver regeneration of rats submitted to hepatectomy and colectomy. ACTA ACUST UNITED AC 2017; 44:476-481. [PMID: 29019577 DOI: 10.1590/0100-69912017005009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/01/2017] [Indexed: 11/22/2022]
Abstract
OBJECTIVE to evaluate whether colectomy, associated with 70% hepatectomy, influences liver regeneration in rats. METHODS we distributed 18 Wistar rats in three groups of six animals each. In group I (sham), we performed laparotomy; In group II, colectomy + 70% hepatectomy; In group III, only 70% hepatectomy. On the 6th postoperative day, we collected blood by cardiac puncture under anesthesia, followed by euthanasia. We performed serum dosages of aspartate aminotransferase (AST), alanine aminotransferase (ALT), albumin and alkaline phosphatase (AF), hepatocyte growth factor (HGF) and transforming growth factor-α (TGF-α). We calculated liver regeneration by the formula: liver weight ratio per 100g body weight at the time of euthanasia / liver weight preoperatively projected for 100g body weight × 100. RESULTS ALT and AST levels were significantly lower in group II when compared with group III (p<0.001). Albuminemia showed significantly higher levels in group II. Levels of HGF and TGF-α in group II were significantly higher than in group III. The percentage of hepatic regeneration was significantly higher in group II than in group III. CONCLUSION Colectomy performed simultaneously with 70% hepatectomy had a positive influence on liver regeneration in rats. Further research is needed to reveal the molecular mechanisms of this effect and to characterize the colon influence in liver physiology.
Collapse
Affiliation(s)
- Marília Carvalho Moreira
- - Federal University of Rio Grande do Norte, Post-graduation Program in Health Sciences, Natal, RN, Brazil
| | - Ítalo Medeiros Azevedo
- - Federal University of Rio Grande do Norte, Post-graduation Program in Health Sciences, Natal, RN, Brazil
| | - Cláudia Nunes Oliveira
- - Federal University of Rio Grande do Norte, Post-graduation Program in Health Sciences, Natal, RN, Brazil
| | - Aldo da Cunha Medeiros
- - Federal University of Rio Grande do Norte, Post-graduation Program in Health Sciences, Natal, RN, Brazil
| |
Collapse
|
5
|
Silva RMD, Malafaia O, Torres OJM, Czeczko NG, Marinho Junior CH, Kozlowski RK. Evaluation of liver regeneration diet supplemented with omega-3 fatty acids: experimental study in rats. Rev Col Bras Cir 2017; 42:393-7. [PMID: 26814992 DOI: 10.1590/0100-69912015006008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/30/2015] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE to evaluate liver regeneration in rats after partial hepatectomy of 60% with and without action diet supplemented with fatty acids through the study of the regenerated liver weight, laboratory parameters of liver function and histological study. METHODS thirty-six Wistar rats, males, adults were used, weighing between 195 and 330 g assigned to control and groups. The supplementation group received the diet by gavage and were killed after 24h, 72h and seven days. Evaluation of regeneration occurred through analysis of weight gain liver, serum aspartate aminotransferase, alanine aminotransferase, gamma-glutamyltranspeptidase, and mitosis of the liver stained with H&E. RESULTS the diet supplemented group showed no statistical difference (p>0.05) on the evolution of weights. Administration of fatty acids post-hepatectomy had significant reduction in gamma glutamyltransferase levels and may reflect liver regeneration. Referring to mitotic index, it did not differ between period of times among the groups. CONCLUSION supplementation with fatty acids in rats undergoing 60% hepatic resection showed no significant interference related to liver regeneration.
Collapse
Affiliation(s)
| | - Osvaldo Malafaia
- Hospital Universitário Evangélico de Curitiba, Curitiba, PR, Brasil
| | | | | | | | | |
Collapse
|
6
|
α-Ketoadipic Acid and α-Aminoadipic Acid Cause Disturbance of Glutamatergic Neurotransmission and Induction of Oxidative Stress In Vitro in Brain of Adolescent Rats. Neurotox Res 2017; 32:276-290. [DOI: 10.1007/s12640-017-9735-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/30/2017] [Accepted: 04/05/2017] [Indexed: 12/21/2022]
|
7
|
Cecatto C, Amaral AU, da Silva JC, Wajner A, Godoy KDS, Ribeiro RT, Gonçalves ADM, Vargas CR, Wajner M. Mevalonolactone disrupts mitochondrial functions and induces permeability transition pore opening in rat brain mitochondria: Implications for the pathogenesis of mevalonic aciduria. Neurochem Int 2017; 108:133-145. [PMID: 28284974 DOI: 10.1016/j.neuint.2017.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/07/2017] [Accepted: 03/06/2017] [Indexed: 12/13/2022]
Abstract
Mevalonic aciduria (MVA) is caused by severe deficiency of mevalonic kinase activity leading to tissue accumulation and high urinary excretion of mevalonic acid (MA) and mevalonolactone (ML). Patients usually present severe neurologic symptoms whose pathophysiology is poorly known. Here, we tested the hypothesis that the major accumulating metabolites are toxic by investigating the in vitro effects of MA and ML on important mitochondrial functions in rat brain and liver mitochondria. ML, but not MA, markedly decreased mitochondrial membrane potential (ΔΨm), NAD(P)H content and the capacity to retain Ca2+ in the brain, besides inducing mitochondrial swelling. These biochemical alterations were totally prevented by the classical inhibitors of mitochondrial permeability transition (MPT) cyclosporine A and ADP, as well as by ruthenium red in Ca2+-loaded mitochondria, indicating the involvement of MPT and an important role for mitochondrial Ca2+ in these effects. ML also induced lipid peroxidation and markedly inhibited aconitase activity, an enzyme that is highly susceptible to free radical attack, in brain mitochondrial fractions, indicating that lipid and protein oxidative damage may underlie some of ML-induced deleterious effects including MTP induction. In contrast, ML and MA did not compromise oxidative phosphorylation in the brain and all mitochondrial functions evaluated in the liver, evidencing a selective toxicity of ML towards the central nervous system. Our present study provides for the first time evidence that ML impairs essential brain mitochondrial functions with the involvement of MPT pore opening. It is therefore presumed that disturbance of brain mitochondrial homeostasis possibly contributes to the neurologic symptoms in MVA.
Collapse
Affiliation(s)
- Cristiane Cecatto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alexandre Umpierrez Amaral
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Janaína Camacho da Silva
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alessandro Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Kálita Dos Santos Godoy
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rafael Teixeira Ribeiro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Aline de Mello Gonçalves
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carmen Regla Vargas
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|
8
|
Magalhães CR, Malafaia O, Torres OJM, Moreira LB, Tefil SCDSG, Pinherio MDR, Harada BA. Liver regeneration with l-glutamine supplemented diet: experimental study in rats. Rev Col Bras Cir 2016; 41:117-21. [PMID: 24918725 DOI: 10.1590/s0100-69912014000200008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 02/08/2013] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To assess liver regeneration in rats after 60% hepatectomy with and without supplementation of L-glutamine through liver weight changes, laboratory parameters and histological study. METHODS 36 male rats were divided into two groups: glutamine group and control group. Each group was subdivided into three subgroups, with death in 24h, 72h and seven days. The glutamine group received water and standard diet supplemented with L-glutamine, and the control recieved 0.9% saline. In all subgroups analysis of liver regeneration was made by the Kwon formula, study of liver function (AST, ALT, GGT, total bilirubin, indirect and indirect bilirubin and albumin) and analysis of cell mitosis by hematoxylin-eosin. RESULTS In both groups there was liver regeneration by weight gain. Gamma-GT increased significantly in the control group (p < 0.05); albumin increased in the glutamine group. The other indicators of liver function showed no significant differences. Histological analysis at 72h showed a higher number of mitoses in the glutamine group, with no differences in other subgroups. CONCLUSION Diet supplementation with L glutamine is beneficial for liver regeneration.
Collapse
Affiliation(s)
| | - Osvaldo Malafaia
- Medical Research Institute, Evangelical Faculty of Paraná, Evangelical University Hospital
| | | | | | | | | | - Bruna Ayumi Harada
- Hospital Universitário Evangélico de Curitiba, Faculdade Evangélica do Paraná, PR, Brasil
| |
Collapse
|
9
|
Toderke EL, Baretta GAP, Gama Filho OP, Matias JEF. Sirolimus influence on hepatectomy-induced liver regeneration in rats. Rev Col Bras Cir 2014; 41:203-7. [DOI: 10.1590/s0100-69912014000300012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 07/25/2013] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE: To evaluate the influence of sirolimus on liver regeneration triggered by resection of 70% of the liver of adult rats. METHODS: we used 40 Wistar rats randomly divided into two groups (study and control), each group was divided into two equal subgroups according to the day of death (24 hours and seven days). Sirolimus was administered at a dose of 1mg/kg in the study group and the control group was given 1 ml of saline. The solutions were administered daily since three days before hepatectomy till the rats death to removal of the regenerated liver, conducted in 24 hours or 7 days after hepatectomy. Liver regeneration was measured by the KWON formula, by thenumber of mitotic figures (hematoxylin-eosin staining) and by the immunohistochemical markers PCNA and Ki-67. RESULTS: there was a statistically significant difference between the 24h and the 7d groups. When comparing the study and control groups in the same period, there was a statistically significant variation only for Ki-67, in which there were increased numbers of hepatocytes in cell multiplication in the 7d study group compared with the 7d control group (p = 0.04). CONCLUSION: there was no negative influence of sirolimus in liver regeneration and there was a positive partial effect at immunohistochemistry with Ki-67.
Collapse
|
10
|
Bertoldi K, Spindler C, dos Santos Moysés F, Vanzella C, Lovatel GA, Elsner VR, Rodrigues MAS, Siqueira IR. Effect of landfill leachate on oxidative stress of brain structures and liver from rodents: modulation by photoelectrooxidation process. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 84:319-324. [PMID: 22910280 DOI: 10.1016/j.ecoenv.2012.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 07/29/2012] [Accepted: 08/01/2012] [Indexed: 06/01/2023]
Abstract
The decomposition of solid waste in landfill is responsible for the formation of leachate, a dark liquid with an unpleasant odor; studies investigating its toxicity on mammals are rare. Oxidative stress has been considered as an important biochemical mechanism of the toxicity of several xenobiotics. The aim of this study was to evaluate the effects of landfill leachate on oxidative parameters in striatum, hippocampus and liver homogenates of mice and rats. In order to propose a clean technology for the treatment of leachate, we also investigated the effects of landfill leachate submitted to photoelectrooxidation process (PEO). The homogenates of cerebral structures and liver of Swiss albino mice and Wistar rats were incubated with different concentrations of non-PEO landfill leachate and PEO-treated landfill leachate. After the incubation, the levels of free radicals, determined by 2',7'-dichlorofluorescein diacetate probe, and the lipoperoxidation, quantified by the thiobarbituric acid reactive substances, were evaluated. There was an increase on the levels of free radicals in striatum of both mice and rats when exposed to non-PEO leachate. Moreover, PEO-treated leachate increased the lipoperoxidation in striatum homogenates from rodents. However, both leachates did not alter any of the parameters evaluated in the hippocampus. In the liver, the incubation with leachates induced an augment on levels of free radicals only in samples of mice. In addition, PEO-treated leachate increased the lipoperoxidation indexes in the liver of mice and rats. These results suggest that the landfill leachate can induce an oxidative stress state in the liver and the striatum of rodents. Additionally, the PEO process was unable to efficiently alter the toxic compounds of landfill leachate.
Collapse
Affiliation(s)
- Karine Bertoldi
- Programa de Pós-Graduação em Ciências Biológicas-Fisiologia, Instituto de Ciências Básicas da Saúde, Departamento de Farmacología, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Silva S, Carbonel A, Taha M, Simões M, Montero E. Proliferative Activity in Ischemia/Reperfusion Injury in Hepatectomized Mice: Effect of N-Acetylcysteine. Transplant Proc 2012; 44:2321-5. [DOI: 10.1016/j.transproceed.2012.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
12
|
Sánchez-Hidalgo JM, Naranjo A, Ciria R, Ranchal I, Aguilar-Melero P, Ferrín G, Valverde A, Rufián S, López-Cillero P, Muntané J, Briceño J. Impact of age on liver regeneration response to injury after partial hepatectomy in a rat model. J Surg Res 2011; 175:e1-9. [PMID: 22341343 DOI: 10.1016/j.jss.2011.11.1022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 10/12/2011] [Accepted: 11/17/2011] [Indexed: 12/29/2022]
Abstract
BACKGROUND Liver resection is a feasible treatment for multiple liver diseases. There is no evidence about the impact of age on liver regeneration. OBJECTIVE To assess the effect of age on liver regeneration in an experimental in vivo animal model of 70%-partial hepatectomy. METHODS Forty young (Y) and old (O) Wistar male rats (n = 80) were distributed into four groups [controls (C), sham operated (SO), hepatectomy 6 h (H6), and 48 h (H48)]. Different morphometric and biochemical factors, oxidative and nitrosative stress, lipid peroxidation, cytokines kinetics, and histopathologic tissular parameters were determined. RESULTS Early postoperative mortality was higher in aged rats (P = 0.049). Morphometric determinations, liver regeneration index, and total volume weight were favorable to young rats. Serum transaminase levels were higher in aged rats. Parameters of necrosis (measured by histopathologic injury [HI: 0-I-II-III]), regeneration (measured by bromodeoxyuridine-BrdU incorporation) and apoptosis (determined by the TDT-mediated dUTP nick end labeling-TUNEL) were well-synchronized in young rats. Parameters of oxidative stress such as reduced (GSH), oxidized (GSSG) glutathione and lipid peroxidation (measured by hepatic malondialdehyde -MDA-) were lower in young animals throughout the studied period. Nitrosative stress measured by nitric oxide (NO) end-products was higher in late stages in resected old rats. Pro-inflammatory cytokines (TNF- α) reached higher and earlier levels in aged rats while pro-regenerative cytokines (IL-6) were significantly higher in early stages for young rats and in late stages for aged rats. The levels of TGF-β were higher in young rats. CONCLUSION Liver regeneration is delayed and reduced in aged animals submitted to liver resection.
Collapse
|
13
|
Yoshioka K, Kunitomo M, Yanai K, Shimizu H, Nakasono S, Negishi T, Dateki M. Hepatocyte nuclear factor 1β induced by chemical stress accelerates cell proliferation and increases genomic instability in mouse liver. J Recept Signal Transduct Res 2011; 31:132-8. [DOI: 10.3109/10799893.2010.538852] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Rychtrmoc D, Libra A, Buncek M, Garnol T, Cervinková Z. Studying liver regeneration by means of molecular biology: how far we are in interpreting the findings? ACTA MEDICA (HRADEC KRÁLOVÉ) 2010; 52:91-9. [PMID: 20073420 DOI: 10.14712/18059694.2016.112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Liver regeneration in mammals is a unique phenomenon attracting scientific interest for decades. It is a valuable model for basic biology research of cell cycle control as well as for clinically oriented studies of wide and heterogeneous group of liver diseases. This article provides a concise review of current knowledge about the liver regeneration, focusing mainly on rat partial hepatectomy model. The three main recognized phases of the regenerative response are described. The article also summarizes history of molecular biology approaches to the topic and finally comments on obstacles in interpreting the data obtained from large scale microarray-based gene expression analyses.
Collapse
Affiliation(s)
- David Rychtrmoc
- Department of Physiology, Charles University in Prague, Faculty of Medicine in Hradec Králové, Czech Republic.
| | | | | | | | | |
Collapse
|
15
|
Wang P, Liu T, Cong M, Wu X, Bai Y, Yin C, An W, Wang B, Jia J, You H. Expression of extracellular matrix genes in cultured hepatic oval cells: an origin of hepatic stellate cells through transforming growth factor beta? Liver Int 2009; 29:575-84. [PMID: 19323784 DOI: 10.1111/j.1478-3231.2009.01992.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND Hepatic oval cells, progenitor cells in the liver, can differentiate into hepatocytes and bile duct cells both in vitro and in vivo. Although hepatic stellate cells are another important cell component in the liver, less attention has been focused on the relationship between hepatic oval cells and hepatic stellate cells. METHODS Hepatic oval cells were isolated from rats fed a choline-deficient diet supplemented with 0.1% ethionine for 6 weeks and characterized by electron microscopy, flow cytometry, reverse transcription polymerase chain reaction, Western blot and bi-direction differentiation. After treatment with transforming growth factor-beta1 (TGF-beta1), changes in cell viability, morphology, extracellular matrix (ECM) expression and immune phenotype were analysed in these cultured and adherent hepatic oval cells. RESULTS The primary cultured hepatic oval cells were positive for the oval cell-specific markers OV-6, BD-1/BD-2 and M2PK as well as the hepatocyte markers albumin and alpha-foetoprotein. These hepatic oval cells differentiated bipotentially into hepatocytes or bile duct-like cells under appropriate conditions. It is noteworthy that these bipotential hepatic oval cells expressed ECM genes stably, including collagens, matrix metalloproteinases and tissue inhibitor of mellatoproteinase. Furthermore, except for growth inhibition and morphological changes in the hepatic oval cells after exposure to TGF-beta1, there was an increased expression of ECM genes, the onset expression of snail and loss expression of E-cadherin. During this process, TGF-beta1 treatment induced an upregulation of marker genes for hepatic stellate cells in hepatic oval cells, such as desmin and GFAP. CONCLUSION Except for the expression of ECM, the cultured hepatic oval cells could induce an increased expression of hepatic stellate cell markers by TGF-beta1 through an epithelial-mesenchymal transition process, which might indicate the contribution of hepatic oval cells to liver fibrosis.
Collapse
Affiliation(s)
- Ping Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Leipnitz G, Seminotti B, Fernandes CG, Amaral AU, Beskow AP, Silva LDB, Zanatta Â, Ribeiro CA, Vargas CR, Wajner M. Striatum is more vulnerable to oxidative damage induced by the metabolites accumulating in 3‐hydroxy‐3‐methylglutaryl‐CoA lyase deficiency as compared to liver. Int J Dev Neurosci 2009; 27:351-6. [DOI: 10.1016/j.ijdevneu.2009.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 02/11/2009] [Accepted: 03/03/2009] [Indexed: 01/20/2023] Open
Affiliation(s)
- Guilhian Leipnitz
- Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUFRGSPorto AlegreRSBrazil
| | - Bianca Seminotti
- Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUFRGSPorto AlegreRSBrazil
| | - Carolina G. Fernandes
- Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUFRGSPorto AlegreRSBrazil
| | - Alexandre U. Amaral
- Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUFRGSPorto AlegreRSBrazil
| | - Ana Paula Beskow
- Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUFRGSPorto AlegreRSBrazil
| | - Lucila de B. Silva
- Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUFRGSPorto AlegreRSBrazil
| | - Ângela Zanatta
- Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUFRGSPorto AlegreRSBrazil
| | - César A.J. Ribeiro
- Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUFRGSPorto AlegreRSBrazil
| | - Carmen R. Vargas
- Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUFRGSPorto AlegreRSBrazil
| | - Moacir Wajner
- Departamento de BioquímicaInstituto de Ciências Básicas da SaúdeUFRGSPorto AlegreRSBrazil
- Serviço de Genética MédicaHospital de Clínicas de Porto AlegreRSBrazil
- Universidade Luterana do BrasilCanoasRSBrazil
| |
Collapse
|
17
|
Latini A, Scussiato K, Leipnitz G, Gibson KM, Wajner M. Evidence for oxidative stress in tissues derived from succinate semialdehyde dehydrogenase-deficient mice. J Inherit Metab Dis 2007; 30:800-10. [PMID: 17885820 DOI: 10.1007/s10545-007-0599-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 04/19/2007] [Accepted: 06/08/2007] [Indexed: 02/06/2023]
Abstract
Animal models of inborn errors of metabolism are useful for investigating the pathogenesis associated with the corresponding human disease. Since the mechanisms involved in the pathophysiology of succinate semialdehyde dehydrogenase (SSADH) deficiency (Aldh5a1; OMIM 271980) are still not established, in the present study we evaluated the tissue antioxidant defences and lipid peroxidation in various cerebral structures (cortex, cerebellum, thalamus and hippocampus) and in the liver of SSADH-deficient mice. The parameters analysed were total radical-trapping antioxidant potential (TRAP) and glutathione (GSH) levels, the activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), as well as thiobarbituric acid-reactive substances (TBARS). We first observed that the tissue nonenzymatic antioxidant defences were significantly reduced in the SSADH-deficient animals, particularly in the liver (decreased TRAP and GSH) and in the cerebral cortex (decreased GSH), as compared to the wild-type mice. Furthermore, SOD activity was significantly increased in the liver and cerebellum, whereas the activity of CAT was significantly higher in the thalamus. In contrast, GPx activity was significantly diminished in the hippocampus. Finally, we observed that lipid peroxidation (TBARS levels) was markedly increased in the liver and cerebral cortex, reflecting a high lipid oxidative damage in these tissues. Our data showing an imbalance between tissue antioxidant defences and oxidative attack strongly indicate that oxidative stress is involved in the pathophysiology of SSADH deficiency in mice, and likely the corresponding human disorder.
Collapse
Affiliation(s)
- A Latini
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | | | | | | |
Collapse
|
18
|
Latini A, Ferreira GC, Scussiato K, Schuck PF, Solano AF, Dutra-Filho CS, Vargas CR, Wajner M. Induction of oxidative stress by chronic and acute glutaric acid administration to rats. Cell Mol Neurobiol 2007; 27:423-38. [PMID: 17235690 PMCID: PMC11881809 DOI: 10.1007/s10571-006-9134-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 12/07/2006] [Indexed: 10/23/2022]
Abstract
: 1. Glutaric acidemia type I (GA I) is a neurometabolic disorder caused by deficiency of glutaryl-CoA dehydrogenase, which leads to tissue accumulation of predominantly glutaric acid (GA) and also 3-hydroxyglutaric acid to a lesser amount. Affected patients usually present progressive cortical atrophy and acute striatal degeneration attributed to the toxic accumulating metabolites.2. In the present study, we determined a number of oxidative stress parameters, namely chemiluminescence, thiobarbituric acid-reactive substances (TBA-RS), total antioxidant reactivity (TAR), glutathione (GSH) levels, and the activities of catalase and glutathione peroxidase (GPx), in various tissues from rats chronically exposed to GA or to saline (controls). High GA concentrations, similar to those found in glutaric aciduria type I, were induced in the brain by three daily subcutaneous injections of saline-buffered GA (5 micromol/g body weight) to Wistar rats of 5-22 days of life. The parameters were assessed 12 h after the last GA administration in different brain structures, skeletal muscle, heart, liver, erythrocytes, and plasma. The lipid peroxidation parameters chemiluminescence and/or TBA-RS measurements were found significantly increased in midbrain, liver, and erythrocytes of GA-injected rats. The activity of GPx was significantly reduced in midbrain and markedly increased in liver. TAR measurement was significantly reduced in midbrain and liver. Furthermore, GSH levels were reduced in liver and heart. We also investigated the acute in vivo effect of GA administration on the same oxidative stress parameters in cerebral structures and erythrocytes from 22-day-old rats. We found that TBA-RS values were significantly increased in erythrocytes, TAR levels were markedly decreased in midbrain and cerebellum, and GPx activity mildly reduced in the midbrain.3. These data showing an imbalance between antioxidant defences and oxidative damage, particularly in midbrain, liver, and erythrocytes from GA-injected rats, indicate that oxidative stress might be involved in GA toxicity and that the midbrain, where the striatum is located, is the brain structure more susceptible to GA chronic and acute exposition.
Collapse
Affiliation(s)
- Alexandra Latini
- Departamento de Bioquímica, Instituto de Ciências Básicas da
Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 Anexo, Porto Alegre, RS Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS Brazil
| | - Gustavo C. Ferreira
- Departamento de Bioquímica, Instituto de Ciências Básicas da
Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 Anexo, Porto Alegre, RS Brazil
| | - Karina Scussiato
- Departamento de Bioquímica, Instituto de Ciências Básicas da
Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 Anexo, Porto Alegre, RS Brazil
| | - Patrícia F. Schuck
- Departamento de Bioquímica, Instituto de Ciências Básicas da
Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 Anexo, Porto Alegre, RS Brazil
| | - Alexandre F. Solano
- Departamento de Bioquímica, Instituto de Ciências Básicas da
Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 Anexo, Porto Alegre, RS Brazil
| | - Carlos S. Dutra-Filho
- Departamento de Bioquímica, Instituto de Ciências Básicas da
Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 Anexo, Porto Alegre, RS Brazil
| | - Carmen R. Vargas
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS Brazil
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS Brazil
| | - Moacir Wajner
- Departamento de Bioquímica, Instituto de Ciências Básicas da
Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 Anexo, Porto Alegre, RS Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS Brazil
- Universidade Luterana do Brazil, Canoas, RS Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da
Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 Anexo, Porto Alegre, RS Brazil
| |
Collapse
|