1
|
Consoli V, Burò I, Gulisano M, Castellano A, D'Amico AG, D'Agata V, Vanella L, Sorrenti V. Evaluation of the Antioxidant and Antiangiogenic Activity of a Pomegranate Extract in BPH-1 Prostate Epithelial Cells. Int J Mol Sci 2023; 24:10719. [PMID: 37445909 DOI: 10.3390/ijms241310719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Benign prostatic hypertrophy (BPH) is a noncancerous enlargement of the prostate gland that develops from hyper-proliferation of the stromal and epithelium region. Activation of pathways involving inflammation and oxidative stress can contribute to cell proliferation in BPH and tumorigenesis. Agricultural-waste-derived extracts have drawn the attention of researchers as they represent a valid and sustainable way to exploit waste production. Indeed, such extracts are rich in bioactive compounds and can provide health-promoting effects. In particular, extracts obtained from pomegranate wastes and by-products have been shown to exert antioxidant and anti-inflammatory effects. This study focused on the evaluation of the anti-angiogenic effects and chemopreventive action of a pomegranate extract (PWE) in cellular models of BPH. In our experimental conditions, we observed that PWE was able to significantly (p < 0.001) reduce the proliferation and migration rates (up to 60%), together with the clonogenic capacity of BPH-1 cells concomitantly with the reduction in inflammatory cytokines (e.g., IL-6, PGE2) and pro-angiogenic factor (VEGF-ADMA) release. Additionally, we demonstrated the ability of PWE in reducing angiogenesis in an in vitro model of BPH consisting in transferring BPH-1-cell-conditioned media to human endothelial H5V cells. Indeed, PWE was able to reduce tube formation in H5V cells through VEGF level reduction even at low concentrations. Overall, we confirmed that inhibition of angiogenesis may be an alternative therapeutic option to prevent neovascularization in prostate tissue with BPH and its transformation into malignant prostate cancer.
Collapse
Affiliation(s)
- Valeria Consoli
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- CERNUT-Research Centre for Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| | - Ilaria Burò
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Maria Gulisano
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Angela Castellano
- Mediterranean Nutraceutical Extracts (Medinutrex), Via Vincenzo Giuffrida 202, 95128 Catania, Italy
| | - Agata Grazia D'Amico
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Velia D'Agata
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy
| | - Luca Vanella
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- CERNUT-Research Centre for Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| | - Valeria Sorrenti
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- CERNUT-Research Centre for Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| |
Collapse
|
2
|
Hwangbo H, Kim MY, Ji SY, Park BS, Kim T, Yoon S, Kim H, Kim SY, Jung H, Kim T, Lee H, Kim GY, Choi YH. Mixture of Corni Fructus and Schisandrae Fructus improves testosterone-induced benign prostatic hyperplasia through regulating 5α-reductase 2 and androgen receptor. Nutr Res Pract 2023; 17:32-47. [PMID: 36777802 PMCID: PMC9884594 DOI: 10.4162/nrp.2023.17.1.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND/OBJECTIVES Benign prostatic hyperplasia (BPH) characterized by an enlarged prostate gland is common in elderly men. Corni Fructus (CF) and Schisandrae Fructus (SF) are known to have various pharmacological effects, including antioxidant and anti-inflammatory activities. In this study, we evaluated the inhibitory efficacy of CF, SF, and their mixture (MIX) on the development of BPH using an in vivo model of testosterone-induced BPH. MATERIALS/METHODS Six-week-old male Sprague-Dawley rats were randomly divided into seven groups. To induce BPH, testosterone propionate (TP) was injected to rats except for those in the control group. Finasteride, saw palmetto (SP), CF, SF, and MIX were orally administered along with TP injection. At the end of treatment, histological changes in the prostate and the level of various biomarkers related to BPH were evaluated. RESULTS Our results showed that BPH induced by TP led to prostate weight and histological changes. Treatment with MIX effectively improved TP-induced BPH by reducing prostate index, lumen area, epithelial thickness, and expression of BPH biomarkers such as 5α-reductase type 2, prostate-specific antigen, androgen receptor, and proliferating cell nuclear antigen compared to treatment with CF or SF alone. Moreover, MIX further reduced levels of elevated serum testosterone, dihydrotestosterone, and prostate-specific antigen in BPH compared to the SP, a positive control. BPH was also improved more by MIX than by CF or SF alone. CONCLUSIONS Based on the results, MIX is a potential natural therapeutic candidate for BPH by regulating 5α-reductase and AR signaling pathway.
Collapse
Affiliation(s)
- Hyun Hwangbo
- Korea Nanobiotechnology Center, Pusan National University, Busan 46241, Korea.,Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
| | - Min Yeong Kim
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea.,Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea
| | - Seon Yeong Ji
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea.,Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea
| | - Beom Su Park
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea
| | - TaeHee Kim
- Hamsoapharm Central Research, Jinan 55442, Korea
| | - Seonhye Yoon
- R&D Center, Naturetech Co. Ltd., Jincheon 27858, Korea
| | - Hyunjin Kim
- R&D Center, Naturetech Co. Ltd., Jincheon 27858, Korea
| | - Sung Yeon Kim
- BIO Center, Chungbuk Technopark, Ochang 28115, Korea
| | - Haeun Jung
- BIO Center, Chungbuk Technopark, Ochang 28115, Korea
| | - Taeiung Kim
- BIO Center, Chungbuk Technopark, Ochang 28115, Korea
| | - Hyesook Lee
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea.,Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea.,Anti-Aging Research Center, Dong-eui University, Busan 47340, Korea
| |
Collapse
|
3
|
Inhibition of testosterone-mediated benign prostatic enlargement of orchiectomized Sprague-Dawley rats by diets supplemented with bio-elicited peanut sprout powder (BPSP) and three new BPSP-extracted natural compounds identified. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
4
|
Sarkhosh-Khorasani S, Sangsefidi ZS, Hosseinzadeh M. The effect of grape products containing polyphenols on oxidative stress: a systematic review and meta-analysis of randomized clinical trials. Nutr J 2021; 20:25. [PMID: 33712024 PMCID: PMC7971097 DOI: 10.1186/s12937-021-00686-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/03/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The literature showed that Grape Products Containing Polyphenols (GPCP) had anti-oxidant activity. However, the effects of GPCP on different biomarkers of oxidative stress are still controversial. In this regard, this systematic review and meta-analysis aimed to evaluate the effect of Grape Products Containing Polyphenols (GPCP) intake on oxidative stress markers. METHODS PubMed, Scopus, Web of Science, and Google Scholar data bases were searched up to August 20, 2020. A random-effects model, weighted mean difference (WMD), and 95% confidence interval (CI) were applied for data analysis. Meta-analysis was conducted over 17 eligible RCTs with a total of 633 participants. The study registration number is CRD42019116696. RESULTS A significant increase was observed in Total Antioxidant Capacity (TAC) (weighted mean difference (WMD) = 1.524 mmol/L, 95% confidence interval (CI): 0.83, 2.21). Intake of GPCP enhanced Superoxide Dismutase (SOD) (WMD = 0.450 mmol/L, 95% CI: 0.23, 0.66), TAC (WMD = 2.829 mmol/L, 95% CI: 0.13, 5.52), and Oxygen Radical Absorbance Capacity (ORAC) (WMD = 0.524 μmol/L, 95% CI: 0.42, 0.62) among healthy participants. Higher GPCP doses increased SOD (WMD = 0.539 U/mgHb, 95% CI: 0.24, 0.82) and ORAC (WMD = 0.377 μmol/L, 95% CI: 0.08, 0.67), whereas longer intervention periods enhanced ORAC (WMD = 0.543 μmol/L, 95% CI: 0.43, 0.64). CONCLUSION GPCP intake may partly improve status of oxidative stress, but further well-designed trials are required to confirm these results.
Collapse
Affiliation(s)
- Sahar Sarkhosh-Khorasani
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zohreh Sadat Sangsefidi
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahdieh Hosseinzadeh
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
5
|
Pharmacological Effects and Potential Clinical Usefulness of Polyphenols in Benign Prostatic Hyperplasia. Molecules 2021; 26:molecules26020450. [PMID: 33467066 PMCID: PMC7829696 DOI: 10.3390/molecules26020450] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) is arguably the most common benign disease among men. This disease is often associated with lower urinary tract symptoms (LUTS) in men and significantly decreases the quality of life. Polyphenol consumption reportedly plays an important role in the prevention of many diseases, including BPH. In recent years, in addition to disease prevention, many studies have reported the efficacy and safety of polyphenol treatment against various pathological conditions in vivo and in vitro. Furthermore, numerous studies have also revealed the molecular mechanisms of the antioxidant and anti-inflammatory effects of polyphenols. We believe that an improved understanding of the detailed pharmacological roles of polyphenol-induced activities at a molecular level is important for the prevention and treatment of BPH. Polyphenols are composed of many members, and their biological roles differ. In this review, we first provide information regarding the pathological roles of oxidative stress and inflammation in BPH. Next, the antioxidant and anti-inflammatory effects of polyphenols, including those of flavonoids and non-flavonoids, are discussed. Finally, we talk about the results and limitations of previous clinical trials that have used polyphenols in BPH, with particular focus on their molecular mechanisms of action.
Collapse
|
6
|
Lamas CA, Kido LA, Montico F, Collares-Buzato CB, Maróstica MR, Cagnon VHA. A jaboticaba extract prevents prostatic damage associated with aging and high-fat diet intake. Food Funct 2020; 11:1547-1559. [DOI: 10.1039/c9fo02621e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Jaboticaba extract prevented the prostatic lesion development in aging and/or overweight mice, mainly interfering in cell proliferation, hormonal and angiogenesis pathways.
Collapse
Affiliation(s)
- C. A. Lamas
- Department of Structural and Functional Biology
- Institute of Biology
- University of Campinas
- São Paulo
- Brazil
| | - L. A. Kido
- Department of Structural and Functional Biology
- Institute of Biology
- University of Campinas
- São Paulo
- Brazil
| | - F. Montico
- Department of Structural and Functional Biology
- Institute of Biology
- University of Campinas
- São Paulo
- Brazil
| | - C. B. Collares-Buzato
- Department of Biochemistry and Tissue Biology
- Biology Institute
- University of Campinas
- São Paulo
- Brazil
| | - M. R. Maróstica
- Department of Food and Nutrition
- School of Food Engineering
- University of Campinas
- São Paulo
- Brazil
| | - V. H. A. Cagnon
- Department of Structural and Functional Biology
- Institute of Biology
- University of Campinas
- São Paulo
- Brazil
| |
Collapse
|
7
|
Tepedelen BE, Soya E, Korkmaz M. Epigallocatechin-3-gallate reduces the proliferation of benign prostatic hyperplasia cells via regulation of focal adhesions. Life Sci 2017; 191:74-81. [PMID: 29032114 DOI: 10.1016/j.lfs.2017.10.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/29/2017] [Accepted: 10/11/2017] [Indexed: 12/13/2022]
Abstract
AIMS Benign prostatic hyperplasia (BPH) is the most common urological disease that is characterized by the excessive growth of prostatic epithelial and stromal cells. Pharmacological therapy for BPH has limited use due to the many side effects so there is a need for new agents including natural compounds such as epigallocatechin-3-gallate (EGCG). This study was undertaken to assess the role of EGCG, suppressing the formation of BPH by reducing inflammation and oxidative stress, in cytoskeleton organization and ECM interactions via focal adhesions. MAIN METHODS We performed MTT assay to investigate cell viability of BPH-1 cells, wound healing assay to examine cell migration, immunofluorescence assay for F-actin organization and paxillin distribution and finally immunoblotting to investigate focal adhesion protein levels in the presence and absence of EGCG. KEY FINDINGS We found that EGCG inhibits cell proliferation at the concentration of 89.12μM, 21.2μM and 2.39μM for 24, 48 and 72h, respectively as well as inhibitory effects of EGCG on BPH-1 cell migration were observed in a wound healing assay. Furthermore, it was determined by immunofluorescence labeling that EGCG disrupts F-actin organization and reduces paxillin distribution. Additionally, EGCG decreases the activation of FAK (Focal Adhesion Kinase) and the levels of paxillin, RhoA (Ras homolog gene family, member A), Cdc42 (cell division cycle 42) and PAK1 (p21 protein-activated kinase 1) in a dose-dependent manner. SIGNIFICANCE For the first time, by this study, we found evidence that BPH-1 cell proliferation could be inhibited with EGCG through the disruption of cytoskeleton organization and ECM interactions. Consequently, EGCG might be useful in the prevention and treatment of diseases characterized by excessive cell proliferation such as BPH.
Collapse
Affiliation(s)
- Burcu Erbaykent Tepedelen
- Department of Molecular Biology and Genetic, Faculty of Arts and Science, Uludağ University, Bursa 16059, Turkey
| | - Elif Soya
- Department of Medical Biology, Faculty of Medicine, Manisa Celal Bayar University, Manisa 45030, Turkey
| | - Mehmet Korkmaz
- Department of Medical Biology, Faculty of Medicine, Manisa Celal Bayar University, Manisa 45030, Turkey.
| |
Collapse
|
8
|
Cordaro M, Impellizzeri D, Siracusa R, Gugliandolo E, Fusco R, Inferrera A, Esposito E, Di Paola R, Cuzzocrea S. Effects of a co-micronized composite containing palmitoylethanolamide and polydatin in an experimental model of benign prostatic hyperplasia. Toxicol Appl Pharmacol 2017; 329:231-240. [DOI: 10.1016/j.taap.2017.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/30/2017] [Accepted: 06/09/2017] [Indexed: 12/31/2022]
|
9
|
Ishola IO, Tijani HK, Dosumu OO, Anunobi CC, Oshodi TO. Atorvastatin attenuates testosterone-induced benign prostatic hyperplasia in rats: role of peroxisome proliferator-activated receptor-γ and cyclo-oxygenase-2. Fundam Clin Pharmacol 2017. [PMID: 28636803 DOI: 10.1111/fcp.12301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Diabetes and obesity have been reported to alter sex steroid hormone metabolism. In this study, an attempt was made to investigate the protective effect of atorvastatin (ATR) in combination with celecoxib (CEL) or pioglitazone (PIO) on testosterone-induced BPH in rats. Male Wistar rats (200-250 g) were randomly divided into nine groups (n = 8) and orally treated as follows for 28 consecutive days: group 1: vehicle control (10 mL/kg); group 2: vehicle testosterone (10 mL/kg); groups 3 - 5: ATR (0.5, 2.5, and 5 mg/kg, respectively); group 6: CEL (20 mg/kg); group 7: PIO (20 mg/kg); and groups 8-9: ATR 0.5 mg/kg, and 15 min later, animals were given CEL (20 mg/kg) or PIO (20 mg/kg), respectively. One hour post-treatment, animals in groups 2-9 were given testosterone propionate (3 mg/kg, s.c.). Twenty-four hours after last treatment on day 28, blood was collected for serum testosterone and prostate-specific antigen (PSA) analysis. Prostate was harvested for biochemical and histological assays. Subcutaneous injection of testosterone increased serum levels of testosterone and PSA which was ameliorated by pretreatments of rat with ATR, celecoxib, or pioglitazone. Similarly, testosterone-induced increase in MDA and reduction in the activity of GSH, superoxide dismutase (SOD), and catalase were attenuated by ATR. Conversely, celecoxib or pioglitazone treatment failed to affect the activity of antioxidant enzymes. The histology of the prostate showed significant improvement in prostatic cells of ATR, celecoxib, or pioglitazone treated. Findings from the study showed that atorvastatin attenuated testosterone-induced BPH. Moreover, synergistic effect was observed when atorvastatin was combined with celecoxib.
Collapse
Affiliation(s)
- Ismail O Ishola
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, 234, Lagos, Nigeria
| | - Habeeb K Tijani
- Department of Surgery, Urology Unit, Faculty of Clinical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Olufunke O Dosumu
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Charles C Anunobi
- Department of Anatomic and Molecular Pathology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Tolulope O Oshodi
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, 234, Lagos, Nigeria
| |
Collapse
|