1
|
Vargas V, García-Martínez R, Nava-Castro KE, Garay-Canales CA, Cime-Castillo J, Lanz-Mendoza H, Del Río-Araiza VH, Morales-Montor J. Detection of heavy metals in various stages of development for wild mosquitoes of Aedes aegypti and Aedes albopictus sourced from artificial aquatic niches in arbovirus endemic areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 981:179551. [PMID: 40347752 DOI: 10.1016/j.scitotenv.2025.179551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/25/2025] [Accepted: 04/25/2025] [Indexed: 05/14/2025]
Abstract
Bioaccumulation of heavy metals was observed in Aedes aegypti and Aedes albopictus mosquitoes. Both species are recognized as primary vectors of arboviruses such as dengue, chikungunya, and Zika in an endemic arbovirus region of Iguala and Tomatal, Guerrero, Mexico; where specimens were collected from contaminated artificial aquatic niches. A total of nine heavy metals, including nickel, Cadmium, copper, and lead, were detected in the artificial aquatic niches and at various stages of mosquito development (larvae, pupae, and adults). The findings indicated that nickel and cadmium are the predominant metals in these environments. Furthermore, substantial bioaccumulation of heavy metals was evident in mosquitoes throughout their life cycle, particularly in larvae and pupae, with cadmium as the most prevalent metal. Adult females of Ae. aegypti exhibited higher concentrations of heavy metals than males, suggesting potential implications for reproduction and disease transmission capacity. The investigation underscores the significance of monitoring heavy metals accumulation and pollution in these niches, as it may influence mosquito ecology and potentially enhance their resistance to insecticides and susceptibility to viral infections.
Collapse
Affiliation(s)
- Valeria Vargas
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de Mèxico 04510, Mexico; Facultad de Medicina, Departamento de Farmacología, Universidad Nacional Autónoma de México, Coyoacán, Cuidad de México 04510, Mexico.
| | - Rocío García-Martínez
- Departamento de Aerosoles Atmosféricos, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico.
| | - Karen Elizabeth Nava-Castro
- Grupo de Biología y Química Atmosféricas, Departamento de Ciencias Ambientales, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad de México 04510, Coyoacán, Mexico.
| | - Claudia Angélica Garay-Canales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de Mèxico 04510, Mexico.
| | - Jorge Cime-Castillo
- Centro de investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos 62100, Mexico.
| | - Humberto Lanz-Mendoza
- Centro de investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos 62100, Mexico.
| | - Victor Hugo Del Río-Araiza
- Departamento de Parasitología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Coyoacán, Mexico.
| | - Jorge Morales-Montor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de Mèxico 04510, Mexico.
| |
Collapse
|
2
|
Almeida-Souza PA, de Oliveira CH, Brito LP, Teixeira TDJ, Celestino IA, Penha GB, dos Santos RM, Mendes WM, Ribeiro BM, Campos FS, Roehe PM, Guimarães NR, Iani FCM, Martins AJ, de Abreu FVS. High Frequencies of kdr Mutation and Chikungunya Infection in Aedes aegypti Population from Minas Gerais, Brazil. Pathogens 2024; 13:457. [PMID: 38921757 PMCID: PMC11206328 DOI: 10.3390/pathogens13060457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 06/27/2024] Open
Abstract
The Chikungunya virus (CHIKV) presents global health challenges, with Brazil experiencing outbreaks since its introduction in 2014. In 2023, following a CHIKV outbreak in Minas Gerais (MG), social media was used to optimize an entomological survey aimed at identifying vectors and viral lineages and assessing insecticide resistance. Following Instagram posts, residents with suspected CHIKV infection were able to schedule mosquito aspirations. In total, 421 mosquitoes (165 Aedes aegypti and 256 Culex quinquefasciatus) were captured from 40 households in Salinas city (MG) and tested for the Dengue, Zika, and Chikungunya viruses through RT-qPCR. Twelve of 57 pools (10 Ae. aegypti and two Cx. quinquefasciatus) tested positive for CHIKV RNA. Viral RNA was also detected in the heads of nine Ae. aegypti, indicating viral dissemination but not in Cx. quinquefasciatus. Genome sequencing yielded the first near-complete genome from the 2023 outbreak, unveiling that the CHIKV strain belonged to the East/Central/South African (ECSA) genotype. Additionally, genetic analyses revealed high frequencies of kdr alleles, including in CHIKV-infected mosquitoes, suggesting resistance to pyrethroid insecticides in this Ae. aegypti population. Social media was important for guiding mosquito-capture efforts in CHIKV transmission hotspots, thus optimizing the opportunity for viral detection. These findings emphasize the urgent need for innovative vector studies and control strategies, as well as interdisciplinary approaches in public health interventions.
Collapse
Affiliation(s)
- Pedro Augusto Almeida-Souza
- Laboratório de Comportamento de Insetos, Instituto Federal do Norte de Minas Gerais, Campus Salinas, Salinas 39560-000, MG, Brazil; (P.A.A.-S.); (C.H.d.O.); (T.d.J.T.); (I.A.C.); (G.B.P.)
| | - Cirilo Henrique de Oliveira
- Laboratório de Comportamento de Insetos, Instituto Federal do Norte de Minas Gerais, Campus Salinas, Salinas 39560-000, MG, Brazil; (P.A.A.-S.); (C.H.d.O.); (T.d.J.T.); (I.A.C.); (G.B.P.)
- Programa de Pós-Graduação em Biodiversidade e Uso dos Recursos Naturais, Unimontes, Montes Claros 39401-089, MG, Brazil
| | - Luiz Paulo Brito
- Laboratório de Biologia, Controle e Vigilância de Insetos Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil;
| | - Thaynara de Jesus Teixeira
- Laboratório de Comportamento de Insetos, Instituto Federal do Norte de Minas Gerais, Campus Salinas, Salinas 39560-000, MG, Brazil; (P.A.A.-S.); (C.H.d.O.); (T.d.J.T.); (I.A.C.); (G.B.P.)
| | - Iago Alves Celestino
- Laboratório de Comportamento de Insetos, Instituto Federal do Norte de Minas Gerais, Campus Salinas, Salinas 39560-000, MG, Brazil; (P.A.A.-S.); (C.H.d.O.); (T.d.J.T.); (I.A.C.); (G.B.P.)
| | - Gabriele Barbosa Penha
- Laboratório de Comportamento de Insetos, Instituto Federal do Norte de Minas Gerais, Campus Salinas, Salinas 39560-000, MG, Brazil; (P.A.A.-S.); (C.H.d.O.); (T.d.J.T.); (I.A.C.); (G.B.P.)
| | - Ronaldo Medeiros dos Santos
- Departamento de Engenharia Florestal, Instituto Federal do Norte de Minas Gerais, Campus Salinas, Salinas 39560-000, MG, Brazil;
| | | | | | - Fabrício Souza Campos
- Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (F.S.C.); (P.M.R.)
| | - Paulo Michel Roehe
- Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (F.S.C.); (P.M.R.)
| | | | - Felipe C. M. Iani
- Setor de Arbovirologia, Fundação Ezequiel Dias, Belo Horizonte 30510-010, MG, Brazil;
| | - Ademir Jesus Martins
- Laboratório de Biologia, Controle e Vigilância de Insetos Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, RJ, Brazil;
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, UFRJ, Rio de Janeiro 21941-590, RJ, Brazil
| | - Filipe Vieira Santos de Abreu
- Laboratório de Comportamento de Insetos, Instituto Federal do Norte de Minas Gerais, Campus Salinas, Salinas 39560-000, MG, Brazil; (P.A.A.-S.); (C.H.d.O.); (T.d.J.T.); (I.A.C.); (G.B.P.)
| |
Collapse
|
3
|
Kaboré DPA, Soma DD, Gil P, Kientega M, Sawadogo SP, Ouédraogo GA, Van de Perre P, Baldet T, Gutierrez S, Dabiré RK. Mosquito (Diptera: Culicidae) populations in contrasting areas of the western regions of Burkina Faso: species diversity, abundance and their implications for pathogen transmission. Parasit Vectors 2023; 16:438. [PMID: 38012775 PMCID: PMC10683243 DOI: 10.1186/s13071-023-06050-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Mosquitoes (Diptera: Culicidae) can have a significant negative impact on human health. The urbanization of natural environments and their conversion for agricultural use, as well as human population growth, may affect mosquito populations and increase the risk of emerging or re-emerging mosquito-borne diseases. We report on the variety and number of adult mosquitoes found in four environments with varying degrees of human impact (rural, urban, rice fields, and forest) located in a savannah zone of West Africa. METHODS Mosquitoes were collected from two regions (Hauts-Bassins and Sud-Ouest) of Burkina Faso during five periods between August 2019 and June 2021. Sampling sites were grouped according to environment. Mosquitoes were collected using BG-Sentinel traps and double net traps, and Prokopack Aspirators. Statistical analyses were performed using R software version 4.1.2. Logistic regression, using generalised mixed linear models, was used to test the effect of environment on mosquito abundance and diversity. Alpha diversity analysis was also performed, using the vegan package. RESULTS A total of 10,625 adult mosquitoes were collected, belonging to 33 species and five genera: Culex, Aedes, Anopheles, Mansonia, and Ficalbia. The most dominant species were Culex quinquefasciatus, Anopheles gambiae sensu lato and Aedes aegypti. Alpha diversity was similar in the two regions. Habitat had a significant effect on mosquito species richness, the Shannon index and the Simpson index. The rural environment had the highest species richness (n = 28) followed by the forest environment (n = 24). The highest number of mosquitoes (4977/10,625) was collected in the urban environment. CONCLUSIONS The species composition of the mosquito populations depended on the type of environment, with fewer species in environments with a high human impact such as urban areas and rice fields. Due to the diversity and abundance of the mosquito vectors, the human populations of all of the environments examined are considered to be at potential risk of mosquito-borne diseases.
Collapse
Affiliation(s)
- Didier P Alexandre Kaboré
- Institut de Recherche en Sciences de la Santé (IRSS), 01BP 545, Bobo-Dioulasso, Burkina Faso.
- Université Nazi BONI, Bobo-Dioulasso, Burkina Faso.
| | - Dieudonné Diloma Soma
- Institut de Recherche en Sciences de la Santé (IRSS), 01BP 545, Bobo-Dioulasso, Burkina Faso
- Université Nazi BONI, Bobo-Dioulasso, Burkina Faso
| | - Patricia Gil
- ASTRE Research Unit, CIRAD, INRAe, Montpellier University, Montpellier, France
| | - Mahamadi Kientega
- Institut de Recherche en Sciences de la Santé (IRSS), 01BP 545, Bobo-Dioulasso, Burkina Faso
- Université Nazi BONI, Bobo-Dioulasso, Burkina Faso
| | - Simon P Sawadogo
- Institut de Recherche en Sciences de la Santé (IRSS), 01BP 545, Bobo-Dioulasso, Burkina Faso
| | | | - Philippe Van de Perre
- Pathogenesis and Control of Chronic and Emerging Infections, INSERM, University of Montpellier, EFS; CHU Montpellier, Montpellier, France
| | - Thierry Baldet
- ASTRE Research Unit, CIRAD, INRAe, Montpellier University, Montpellier, France
| | - Serafin Gutierrez
- ASTRE Research Unit, CIRAD, INRAe, Montpellier University, Montpellier, France
| | - Roch K Dabiré
- Institut de Recherche en Sciences de la Santé (IRSS), 01BP 545, Bobo-Dioulasso, Burkina Faso.
| |
Collapse
|
4
|
Kittichai V, Kaewthamasorn M, Samung Y, Jomtarak R, Naing KM, Tongloy T, Chuwongin S, Boonsang S. Automatic identification of medically important mosquitoes using embedded learning approach-based image-retrieval system. Sci Rep 2023; 13:10609. [PMID: 37391476 PMCID: PMC10313673 DOI: 10.1038/s41598-023-37574-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023] Open
Abstract
Mosquito-borne diseases such as dengue fever and malaria are the top 10 leading causes of death in low-income countries. Control measure for the mosquito population plays an essential role in the fight against the disease. Currently, several intervention strategies; chemical-, biological-, mechanical- and environmental methods remain under development and need further improvement in their effectiveness. Although, a conventional entomological surveillance, required a microscope and taxonomic key for identification by professionals, is a key strategy to evaluate the population growth of these mosquitoes, these techniques are tedious, time-consuming, labor-intensive, and reliant on skillful and well-trained personnel. Here, we proposed an automatic screening, namely the deep metric learning approach and its inference under the image-retrieval process with Euclidean distance-based similarity. We aimed to develop the optimized model to find suitable miners and suggested the robustness of the proposed model by evaluating it with unseen data under a 20-returned image system. During the model development, well-trained ResNet34 are outstanding and no performance difference when comparing five data miners that showed up to 98% in its precision even after testing the model with both image sources: stereomicroscope and mobile phone cameras. The robustness of the proposed-trained model was tested with secondary unseen data which showed different environmental factors such as lighting, image scales, background colors and zoom levels. Nevertheless, our proposed neural network still has great performance with greater than 95% for sensitivity and precision, respectively. Also, the area under the ROC curve given the learning system seems to be practical and empirical with its value greater than 0.960. The results of the study may be used by public health authorities to locate mosquito vectors nearby. If used in the field, our research tool in particular is believed to accurately represent a real-world scenario.
Collapse
Affiliation(s)
- Veerayuth Kittichai
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Morakot Kaewthamasorn
- Veterinary Parasitology Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Yudthana Samung
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rangsan Jomtarak
- Faculty of Science and Technology, Suan Dusit University, Bangkok, Thailand
| | - Kaung Myat Naing
- College of Advanced Manufacturing Innovation, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Teerawat Tongloy
- College of Advanced Manufacturing Innovation, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Santhad Chuwongin
- College of Advanced Manufacturing Innovation, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Siridech Boonsang
- Department of Electrical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.
| |
Collapse
|
5
|
Carrillo MA, Cardenas R, Yañez J, Petzold M, Kroeger A. Risk of dengue, Zika, and chikungunya transmission in the metropolitan area of Cucuta, Colombia: cross-sectional analysis, baseline for a cluster-randomised controlled trial of a novel vector tool for water containers. BMC Public Health 2023; 23:1000. [PMID: 37254133 DOI: 10.1186/s12889-023-15893-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/15/2023] [Indexed: 06/01/2023] Open
Abstract
BACKGROUND Arbovirus diseases such as dengue, Zika, and chikungunya are a public health threat in tropical and subtropical areas. In the absence of a vaccine or specific treatment, vector management (in this case the control of the primary vector Aedes aegypti) is the best practice to prevent the three diseases. A good understanding of vector behaviour, ecology, human mobility and water use can help design effective vector control programmes. This study collected baseline information on these factors for identifying the arbovirus transmission risk and assessed the requirements for a large intervention trial in Colombia. METHODS Baseline surveys were conducted in 5,997 households, randomly selected from 24 clusters (neighbourhoods with on average 2000 houses and 250 households inspected) in the metropolitan area of Cucuta, Colombia. The study established population characteristics including water management and mobility as well as larval-pupal indices which were estimated and compared in all clusters. Additionally, the study estimated disease incidence from two sources: self-reported dengue cases in the household survey and cases notified by the national surveillance system. RESULTS In all 24 study clusters similar social and demographic characteristics were found but the entomological indicators and estimated disease incidence rates varied. The entomological indicators showed a high vector infestation: House Index = 25.1%, Container Index = 12.3% and Breteau Index = 29.6. Pupae per person Index (PPI) as an indicator of the transmission risk showed a large range from 0.22 to 2.04 indicating a high transmission risk in most clusters. The concrete ground tanks for laundry -mostly outdoors and uncovered- were the containers with the highest production of Ae. aegypti as 86.3% of all 17,613 pupae were identified in these containers. Also, the annual incidence of dengue was high: 841.6 self-reported cases per 100,000 inhabitants and the dengue incidence notified by the National surveillance system was 1,013.4 cases per 100,000 in 2019. Only 2.2% of the households used container water for drinking. 40.3% of the study population travelled during the day (when Aedes mosquitoes bite) outside their clusters. CONCLUSIONS The production of Ae. aegypti mosquitoes occurred almost exclusively in concrete ground tanks for laundry (lavadero), the primary intervention target. The baseline study provides necessary evidence for the design and implementation of a cluster randomized intervention trial in Colombia.
Collapse
Affiliation(s)
- Maria Angelica Carrillo
- Centre for Medicine and Society, Master Programme Global Urban Health, Albert-Ludwigs University Freiburg, Freiburg in Breisgau, Germany.
| | - Rocio Cardenas
- Centre for Medicine and Society, Master Programme Global Urban Health, Albert-Ludwigs University Freiburg, Freiburg in Breisgau, Germany
| | - Johanna Yañez
- Vector Control Programme, Instituto Departamental de Salud Norte de Santander, Cucuta, Colombia
| | - Max Petzold
- Institute of Public Health, Gothenburg University, Göteborg, Sweden
| | - Axel Kroeger
- Centre for Medicine and Society, Master Programme Global Urban Health, Albert-Ludwigs University Freiburg, Freiburg in Breisgau, Germany
| |
Collapse
|
6
|
Gómez M, Martínez D, Hernández C, Luna N, Patiño LH, Bohórquez Melo R, Suarez LA, Palma-Cuero M, Murcia LM, González Páez L, Estrada Bustos L, Medina MA, Ariza Campo K, Padilla HD, Zamora Flórez A, De las Salas JL, Muñoz M, Ramírez JD. Arbovirus infection in Aedes aegypti from different departments of Colombia. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.999169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The lack of precise and timely knowledge about the molecular epidemiology of arboviruses of public health importance, particularly in the vector, has limited the comprehensive control of arboviruses. In Colombia and the Americas, entomovirological studies are scarce. Therefore, this study aimed to describe the frequency of natural infection and/or co-infection by Dengue (DENV), Zika (ZIKV), and Chikungunya (CHIKV) in Aedes spp. circulating in different departments of Colombia (Amazonas, Boyacá, Magdalena, and Vichada) and identifying vector species by barcoding. Aedes mosquitoes were collected in departments with reported prevalence or incidence of arbovirus cases during 2020–2021, located in different biogeographic zones of the country: Amazonas, Boyacá, Magdalena, and Vichada. The insects were processed individually for RNA extraction, cDNA synthesis, and subsequent detection of DENV (serotypes DENV1-4 by multiplex PCR), CHIKV, and ZIKV (qRT-PCR). The positive mosquitoes for arboviruses were sequenced (Sanger method) using the subunit I of the cytochrome oxidase (COI) gene for species-level identification. In total, 558 Aedes mosquitoes were captured, 28.1% (n = 157) predominantly infected by DENV in all departments. The serotypes with the highest frequency of infection were DENV-1 and DENV-2 with 10.7% (n = 58) and 14.5% (n = 81), respectively. Coinfections between serotypes represented 3.9% (n = 22). CHIKV infection was detected in one individual (0.2%), and ZIKV infections were not detected. All infected samples were identified as A. aegypti (100%). From the COI dataset (593 bp), high levels of haplotype diversity (H = 0.948 ± 0.012) and moderate nucleotide diversity (π = 0.0225 ± 0.003) were identified, suggesting recent population expansions. Constructed phylogenetic analyses showed our COI sequences’ association with lineage I, which was reported widespread and related to a West African conspecific. We conclude that natural infection in A. aegypti by arbovirus might reflect the country’s epidemiological behavior, with a higher incidence of serotypes DENV-1 and DENV-2, which may be associated with high seroprevalence and asymptomatic infections in humans. This study demonstrates the high susceptibility of this species to arbovirus infection and confirms that A. aegypti is the main vector in Colombia. The importance of including entomovirological surveillance strategy within public health systems to understand transmission dynamics and the potential risk to the population is highlighted herein.
Collapse
|
7
|
Liu Q, Wang J, Hou J, Wu Y, Zhang H, Xing D, Gao J, Li C, Guo X, Jiang Y, Gong Z, Zhao T. Entomological Investigation and Detection of Dengue Virus Type 1 in Aedes (Stegomyia) albopictus (Skuse) During the 2018–2020 Outbreak in Zhejiang Province, China. Front Cell Infect Microbiol 2022; 12:834766. [PMID: 35846756 PMCID: PMC9283783 DOI: 10.3389/fcimb.2022.834766] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Mosquito-borne diseases are still threats to public health in the Zhejiang province of China. Surveillance of mosquitoes and the mosquito-borne pathogen is a vital approach for early warning, prevention, and control of the infectious disease. In this study, from 2018 to 2020, a total of 141607 female mosquitoes were caught by means of the light trap method. The main species were Culex pipiens quinquefasciatus/pallens (41.32%), Culex tritaeniorhynchus (47.6%), Aedes albopictus (2.5%), Anopheles sinensis (5.87%), Armigeres subalbatus (2.64%) and other mosquito species (0.07%). Cx. pipiens s.l. were the dominant species in two urban habitats and rural residential areas while Cx. tritaeniorhynchus was the main dominant species in the rural livestock sheds. In terms of seasonal fluctuation, Cx. pipiens s.l fluctuated at a high level from May to October. The peaks of Cx. tritaeniorhynchus, An. sinensis and Ar. subalbatus were in July. In addition, a total of 693 Ae. albopictus were collected with Biogents Mosquitaire CO2 traps in emergency surveillance of dengue fever (DF) and screened for dengue virus infection. There were three circumstances of collection: The first: the sampling time before mosquito control during the local outbreak of DF in Lucheng of Wenzhou, 2019; The second circumstance: the sampling time after mosquito control during the local outbreak of DF of other cities in 2018-2019; The third circumstance: past DF epidemic areas the sampling time before mosquito control during the local outbreak of DF in Lucheng, Wenzhou, Zhejiang, 2019. The pools formed by mosquitoes collected in these three circumstances were 3 (6.1%), 35 (71.5%), and 11 (22.4%) respectively. Of the 49 pools tested, only one in the first circumstance was positive. The full-length dengue virus sequence of ZJWZ/2019 was obtained by sequencing and uploaded to the NCBI as number OK448162. Full-length nucleotide and amino acid homology analyses showed that ZJWZ2019 and Wenzhou DF serum isolates ZJWZ-62/2019 (MW582816) and ZJWZ-18/2019 (MW582815) had the highest homology. The analysis of full genome and E gene phylogenetic trees showed that ZJWZ2019 belonged to serotype 1, genotype I, lineage II, which was evolutionarily related to OK159963/Cambodia/2019. It implies that ZJWZ2019 originated in Cambodia. This study showed the species composition, seasonal dynamics of mosquitoes in different habitats in Zhejiang province and confirmed the role of Ae. albopictus in the transmission cycle of in outbreak of DF in the Lucheng district of Wenzhou in 2019, suggesting the importance of monitoring of vector Aedes infected dengue virus in the prevention and control of DF.
Collapse
Affiliation(s)
- Qinmei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector-Borne and Natural Focus Infectious Diseases, Institute of Microbiology and Epidemiology, Beijing, China
- Department of Infectious Diseases Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jinna Wang
- Department of Infectious Diseases Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Juan Hou
- Department of Infectious Diseases Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yuyan Wu
- Department of Infectious Diseases Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Hengduan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector-Borne and Natural Focus Infectious Diseases, Institute of Microbiology and Epidemiology, Beijing, China
| | - Dan Xing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector-Borne and Natural Focus Infectious Diseases, Institute of Microbiology and Epidemiology, Beijing, China
| | - Jian Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector-Borne and Natural Focus Infectious Diseases, Institute of Microbiology and Epidemiology, Beijing, China
| | - Chunxiao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector-Borne and Natural Focus Infectious Diseases, Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaoxia Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector-Borne and Natural Focus Infectious Diseases, Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuting Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector-Borne and Natural Focus Infectious Diseases, Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhenyu Gong
- Department of Infectious Diseases Control and Prevention, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
- *Correspondence: Zhenyu Gong, ; Tongyan Zhao,
| | - Tongyan Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Key Laboratory of Vector-Borne and Natural Focus Infectious Diseases, Institute of Microbiology and Epidemiology, Beijing, China
- *Correspondence: Zhenyu Gong, ; Tongyan Zhao,
| |
Collapse
|
8
|
Carrasquilla MC, Ortiz MI, León C, Rondón S, Kulkarni MA, Talbot B, Sander B, Vásquez H, Cordovez JM, González C. Entomological characterization of Aedes mosquitoes and arbovirus detection in Ibagué, a Colombian city with co-circulation of Zika, dengue and chikungunya viruses. Parasit Vectors 2021; 14:446. [PMID: 34488857 PMCID: PMC8419972 DOI: 10.1186/s13071-021-04908-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/30/2021] [Indexed: 02/08/2023] Open
Abstract
Background Dengue, Zika and chikungunya are arboviruses of significant public health importance that are transmitted by Aedes aegypti and Aedes albopictus mosquitoes. In Colombia, where dengue is hyperendemic, and where chikungunya and Zika were introduced in the last decade, more than half of the population lives in areas at risk. The objective of this study was to characterize Aedes spp. vectors and study their natural infection with dengue, Zika and chikungunya in Ibagué, a Colombian city and capital of the department of Tolima, with case reports of simultaneous circulation of these three arboviruses. Methods Mosquito collections were carried out monthly between June 2018 and May 2019 in neighborhoods with different levels of socioeconomic status. We used the non-parametric Friedman, Mann–Whitney and Kruskal–Wallis tests to compare mosquito density distributions. We applied logistic regression analyses to identify associations between mosquito density and absence/presence of breeding sites, and the Spearman correlation coefficient to analyze the possible relationship between climatic variables and mosquito density. Results We collected Ae. aegypti in all sampled neighborhoods and found for the first time Ae. albopictus in the city of Ibagué. A greater abundance of mosquitoes was collected in neighborhoods displaying low compared to high socioeconomic status as well as in the intradomicile compared to the peridomestic space. Female mosquitoes predominated over males, and most of the test females had fed on human blood. In total, four Ae. aegypti pools (3%) were positive for dengue virus (serotype 1) and one pool for chikungunya virus (0.8%). Interestingly, infected females were only collected in neighborhoods of low socioeconomic status, and mostly in the intradomicile space. Conclusions We confirmed the co-circulation of dengue (serotype 1) and chikungunya viruses in the Ae. aegypti population in Ibagué. However, Zika virus was not detected in any mosquito sample, 3 years after its introduction into the country. The positivity for dengue and chikungunya viruses, predominance of mosquitoes in the intradomicile space and the high proportion of females fed on humans highlight the high risk for arbovirus transmission in Ibagué, but may also provide an opportunity for establishing effective control strategies. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04908-x.
Collapse
Affiliation(s)
- María C Carrasquilla
- Centro de Investigaciones en Microbiología y Parasitología Tropical (CIMPAT), Universidad de Los Andes, Bogotá, Colombia.
| | - Mario I Ortiz
- Centro de Investigaciones en Microbiología y Parasitología Tropical (CIMPAT), Universidad de Los Andes, Bogotá, Colombia.
| | - Cielo León
- Centro de Investigaciones en Microbiología y Parasitología Tropical (CIMPAT), Universidad de Los Andes, Bogotá, Colombia
| | - Silvia Rondón
- Centro de Investigaciones en Microbiología y Parasitología Tropical (CIMPAT), Universidad de Los Andes, Bogotá, Colombia
| | - Manisha A Kulkarni
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Benoit Talbot
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Beate Sander
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada.,Public Health Ontario, Toronto, Canada.,Institute for Clinical Evaluative Sciences (ICES), Toronto, Canada
| | | | - Juan M Cordovez
- Grupo de Investigación en Biología Matemática y Computacional (BIOMAC), Universidad de Los Andes, Bogotá, Colombia
| | - Camila González
- Centro de Investigaciones en Microbiología y Parasitología Tropical (CIMPAT), Universidad de Los Andes, Bogotá, Colombia
| | | |
Collapse
|
9
|
Abstract
CoVID-19 is a multi-symptomatic disease which has made a global impact due to its ability to spread rapidly, and its relatively high mortality rate. Beyond the heroic efforts to develop vaccines, which we do not discuss herein, the response of scientists and clinicians to this complex problem has reflected the need to detect CoVID-19 rapidly, to diagnose patients likely to show adverse symptoms, and to treat severe and critical CoVID-19. Here we aim to encapsulate these varied and sometimes conflicting approaches and the resulting data in terms of chemistry and biology. In the process we highlight emerging concepts, and potential future applications that may arise out of this immense effort.
Collapse
Affiliation(s)
| | - Yimon Aye
- Swiss Federal Institute of Technology in Lausanne (EPFL)1015LausanneSwitzerland
| |
Collapse
|
10
|
Akhtar ZR, Tariq K, Mavian C, Ali A, Ullah F, Zang LS, Ali F, Nazir T, Ali S. Trophic transfer and toxicity of heavy metals from dengue mosquito Aedes aegypti to predator dragonfly Tramea cophysa. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1108-1115. [PMID: 34165678 DOI: 10.1007/s10646-021-02448-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Heavy metal pollution in aquatic habitats can be detrimental to both prey and predators in a food web. To investigate the potential for bio-transfer and bioaccumulation of heavy metals between specific trophic levels, 3rd instar larvae of Aedes aegypti were exposed to mercury (Hg), lead (Pb), cadmium (Cd), copper (Cu), and zinc (Zn) for three consecutive generations and fed to dragonfly (Tramea cophysa) nymphs. Exposure to Hg caused the highest mortality in A. aegypti larvae and T. cophysa nymphs. Bioaccumulation and life-history parameters of A. aegypti, including egg hatching time, larval and pupal duration, male and female life span, and fecundity, were also evaluated after metals exposure. All life-history parameters except larval duration were significantly affected by heavy metal treatments. Bioaccumulation of metals in A. aegypti larvae and adults gradually and significantly increased from 1st to 3rd generation. To the best of our knowledge, this is the first study describing the acute toxicity of heavy metals to mosquitoes. Our study shows that heavy metals cause dietary toxicity to an aquatic predator, dragonfly, via trophic transfer, which could have considerable consequences on aquatic ecosystems.
Collapse
Affiliation(s)
- Zunnu Raen Akhtar
- Department of Entomology, University of Agriculture, Faisalabad, Pakistan
| | - Kaleem Tariq
- Department of Agriculture Entomology, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan.
- Entomology and Nematology Department, Steinmetz Hall, University of Florida, Gainesville, FL, 32611, USA.
- U.S. Department of Agriculture, Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL, 32608, USA.
| | - Carla Mavian
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Asad Ali
- Department of Agriculture Entomology, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Farman Ullah
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Lian-Sheng Zang
- Ayub Agricultural Research Institute, Faisalabad, Punjab, Pakistan
| | - Farman Ali
- Department of Agriculture Entomology, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Tamsila Nazir
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang, P. R. China
| | - Sajjad Ali
- Department of Entomology, UCA & ES, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| |
Collapse
|
11
|
Adaptive Evolution of New Variants of Dengue Virus Serotype 1 Genotype V Circulating in the Brazilian Amazon. Viruses 2021; 13:v13040689. [PMID: 33923511 PMCID: PMC8072778 DOI: 10.3390/v13040689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/04/2021] [Accepted: 04/12/2021] [Indexed: 01/04/2023] Open
Abstract
Dengue virus (DENV) is a mosquito-borne viral pathogen that plagues many tropical-climate nations around the world, including Brazil. Molecular epidemiology is a growing and increasingly invaluable tool for understanding the dispersal, persistence, and diversity of this impactful virus. In this study, plasma samples (n = 824) from individuals with symptoms consistent with an arboviral febrile illness were analyzed to identity the molecular epidemiological dynamics of DENV circulating in the Brazilian state of Amapá. Twelve DENV type 1 (DENV-1) genomes were identified, which were phylogenetically related to the BR4 lineage of genotype V. Phylodynamics analysis suggested that DENV-1 BR-4 was introduced into Amapá around early 2010, possibly from other states in northern Brazil. We also found unique amino acids substitutions in the DENV-1 envelope and NS5 protein sequences in the Amapá isolates. Characterization of the DENV-1 BR-4 sequences highlights the potential of this new lineage to drive outbreaks of dengue in the Amazon region.
Collapse
|
12
|
Rossi da Silva K, Ribeiro da Silva W, Silva BP, Arcos AN, da Silva Ferreira FA, Soares-da-Silva J, Pontes GO, Roque RA, Tadei WP, Navarro-Silva MA, Zequi JAC. New traps for the capture of Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse) (Diptera: Culicidae) eggs and adults. PLoS Negl Trop Dis 2021; 15:e0008813. [PMID: 33861744 PMCID: PMC8081340 DOI: 10.1371/journal.pntd.0008813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/28/2021] [Accepted: 03/04/2021] [Indexed: 11/19/2022] Open
Abstract
The control of arboviruses carried by Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse) can be performed with tools that monitor and reduce the circulation of these vectors. Therefore, the efficiency of four types of traps in capturing A. aegypti and A. albopictus eggs and adults, with the biological product Vectobac WG, was evaluated in the field. For this, 20 traps were installed in two locations, which were in the South (Londrina, Paraná) and North (Manaus, Amazonas) Regions of Brazil, from March to April 2017 and January to February 2018, respectively. The UELtrap-E (standard trap) and UELtrap-EA traps captured A. aegypti and A. albopictus eggs: 1703/1866 eggs in Londrina, and 10268/2149 eggs in Manaus, respectively, and presented high ovitraps positivity index (OPI) values (averages: 100%/100% in Londrina, and 100%/96% in Manaus, respectively); and high egg density index (EDI) values (averages: 68/75 in Londrina, and 411/89 in Manaus, respectively), so they had statistically superior efficiency to that of the CRtrap-E and CRtrap-EA traps in both regions, that captured less eggs and adults: 96/69 eggs in Londrina, and 1091/510 eggs in Manaus, respectively. Also presented lower OPI values (averages: 28%/4% in Londrina, and 88%/60% in Manaus, respectively); and lower EDI values (averages: 10.5/9 in Londrina, and 47/30 in Manaus, respectively). The capture ratios of Aedes adults in the UELtrap-EA and CRtrap-EA traps in Londrina and Manaus were 53.3%/29.5% and 0%/9.8%, respectively. UELtrap-EA can be adopted as efficient tool for Aedes monitoring due to their high sensitivity, low cost and ease of use.
Collapse
Affiliation(s)
- Karina Rossi da Silva
- Laboratório de Entomologia Médica, Departamento de Biologia Animal e Vegetal, Universidade Estadual de Londrina (UEL), Programa de Pós-Graduação em Ciências Biológicas, Londrina, Paraná, Brasil
| | - William Ribeiro da Silva
- Programa de Pós-Graduação em Ciências Biológicas (Entomologia), Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brasil
- Laboratório de Controle Biológico e Biotecnologia da Malária e Dengue, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brasil
| | - Bianca Piraccini Silva
- Laboratório de Entomologia Médica, Departamento de Biologia Animal e Vegetal, Universidade Estadual de Londrina (UEL), Programa de Pós-Graduação em Ciências Biológicas, Londrina, Paraná, Brasil
| | - Adriano Nobre Arcos
- Laboratório de Controle Biológico e Biotecnologia da Malária e Dengue, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brasil
- Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brasil
| | - Francisco Augusto da Silva Ferreira
- Programa de Pós-Graduação em Ciências Biológicas (Entomologia), Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brasil
- Laboratório de Controle Biológico e Biotecnologia da Malária e Dengue, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brasil
| | - Joelma Soares-da-Silva
- Curso de Ciências Naturais, Campus VII, Universidade Federal do Maranhão (UFMA), Codó, Maranhão, Brasil
| | - Grafe Oliveira Pontes
- Laboratório de Controle Biológico e Biotecnologia da Malária e Dengue, Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brasil
- Centro de Entomologia, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT–HVD), Manaus, Amazonas, Brasil
| | - Rosemary Aparecida Roque
- Centro de Entomologia, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT–HVD), Manaus, Amazonas, Brasil
| | - Wanderli Pedro Tadei
- Programa de Pós-Graduação em Ciências Biológicas (Entomologia), Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brasil
- Centro de Entomologia, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT–HVD), Manaus, Amazonas, Brasil
| | - Mário Antonio Navarro-Silva
- Laboratório de Morfologia e Fisiologia de Culicidae e Chironomidae, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brasil
| | - João Antonio Cyrino Zequi
- Laboratório de Entomologia Médica, Departamento de Biologia Animal e Vegetal, Universidade Estadual de Londrina (UEL), Programa de Pós-Graduação em Ciências Biológicas, Londrina, Paraná, Brasil
| |
Collapse
|
13
|
Ngugi HN, Nyathi S, Krystosik A, Ndenga B, Mbakaya JO, Aswani P, Musunzaji PS, Irungu LW, Bisanzio D, Kitron U, Desiree LaBeaud A, Mutuku F. Risk factors for Aedes aegypti household pupal persistence in longitudinal entomological household surveys in urban and rural Kenya. Parasit Vectors 2020; 13:499. [PMID: 33004074 PMCID: PMC7528257 DOI: 10.1186/s13071-020-04378-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/23/2020] [Indexed: 12/31/2022] Open
Abstract
Background Aedes aegypti is an efficient vector of several arboviruses of public health importance, including Zika and dengue. Currently vector management is the only available avenue for disease control. Development of efficient vector control strategies requires a thorough understanding of vector ecology. In this study, we identified households that are consistently productive for Ae. aegypti pupae and determined the ecological and socio-demographic factors associated with the persistence and abundance of pupae in households in rural and urban Kenya. Methods We collected socio-demographic, environmental and entomological data monthly from July 2014 to June 2018 from 80 households across four sites in Kenya. Pupae count data were collected via entomological surveillance of households and paired with socio-demographic and environmental data. We calculated pupal persistence within a household as the number of months of pupal presence within a year. We used spatially explicit generalized additive mixed models (GAMMs) to identify the risk factors for pupal abundance, and a logistic regression to identify the risk factors for pupal persistence in households. Results The median number of months of pupal presence observed in households was 4 and ranged from 0 to 35 months. We identified pupal persistence in 85 house-years. The strongest risk factors for high pupal abundance were the presence of bushes or tall grass in the peri-domicile area (OR: 1.60, 95% CI: 1.13–2.28), open eaves (OR: 2.57, 95% CI: 1.33–4.95) and high habitat counts (OR: 1.42, 95% CI: 1.21–1.66). The main risk factors for pupal persistence were the presence of bushes or tall grass in the peri-domicile (OR: 4.20, 95% CI: 1.42–12.46) and high number of breeding sites (OR: 2.17, 95% CI: 1.03–4.58). Conclusions We observed Ae. aegypti pupal persistence at the household level in urban and rural and in coastal and inland Kenya. High counts of potential breeding containers, vegetation in the peri-domicile area and the presence of eaves were strongly associated with increased risk of pupal persistence and abundance. Targeting households that exhibit pupal persistence alongside the risk factors for pupal abundance in vector control interventions may result in more efficient use of limited resources.![]()
Collapse
Affiliation(s)
- Harun N Ngugi
- School of Biological Sciences, Department of Zoology, University of Nairobi, Nairobi, Kenya.,Department of Biological Sciences, Chuka University, Chuka, Kenya
| | - Sindiso Nyathi
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Stanford, CA, USA
| | - Amy Krystosik
- Department of Pediatrics, Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, USA
| | - Bryson Ndenga
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Joel O Mbakaya
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Peter Aswani
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | | | - Lucy W Irungu
- School of Biological Sciences, Department of Zoology, University of Nairobi, Nairobi, Kenya
| | - Donal Bisanzio
- RTI International, Washington, DC, USA.,Epidemiology and Public Health Division, School of Medicine, University of Nottingham, Nottingham, UK
| | - Uriel Kitron
- Department of Environmental Sciences, Emory University, Atlanta, GA, USA
| | - A Desiree LaBeaud
- Department of Pediatrics, Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, USA
| | - Francis Mutuku
- Department of Environment and Health Sciences, Technical University of Mombasa, Mombasa, Kenya.
| |
Collapse
|
14
|
Ribeiro GDO, Morais VS, Monteiro FJC, Ribeiro ESD, Rego MODS, Souto RNP, Villanova F, Tahmasebi R, Hefford PM, Deng X, Delwart E, Cerdeira Sabino E, Fernandes LN, da Costa AC, Leal É. Aedes aegypti from Amazon Basin Harbor High Diversity of Novel Viral Species. Viruses 2020; 12:E866. [PMID: 32784421 PMCID: PMC7472207 DOI: 10.3390/v12080866] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/25/2020] [Accepted: 08/03/2020] [Indexed: 11/25/2022] Open
Abstract
Viruses are the most diverse and abundant microorganisms on earth, highly adaptive to a wide range of hosts. Viral diversity within invertebrate hosts has gained notoriety in recent years in public health as several such viruses have been of medical importance. Aedes aegypti serves as a vector for several viruses that have caused epidemics within the last year throughout Brazil; including Dengue, Zika and Chikungunya. This study aimed to identify new viral agents within Aedes aegypti mosquito in a city of the Amazonian region, where it is highly endemic. Metagenomic investigation was performed on 60 mosquito pools and viral RNA sequences present in their microbiota were characterized using genomic and phylogenetic tools. In total, we identified five putative novel virus species related to the Sobemovirus genus, Iflavirus genus and Permutatetraviridae family. These findings indicate a diverse taxonomy of viruses present in the mosquito microbiota of the Amazon, the region with the greatest invertebrate diversity in the world.
Collapse
Affiliation(s)
| | - Vanessa S Morais
- Institute of Tropical Medicine, University of São Paulo, São Paulo 05403-000, Brazil
| | - Fred Julio Costa Monteiro
- Public Health Laboratory of Amapa-LACEN/AP, Health Surveillance Superintendence of Amapa, Macapa 68905-230, Amapa, Brazil
| | | | - Marlisson Octavio da S Rego
- Public Health Laboratory of Amapa-LACEN/AP, Health Surveillance Superintendence of Amapa, Macapa 68905-230, Amapa, Brazil
| | | | - Fabiola Villanova
- Institute of Biological Sciences, Federal University of Pará, Belém, Pará, 66075-000, Brazil
| | - Roozbeh Tahmasebi
- Institute of Tropical Medicine, University of São Paulo, São Paulo 05403-000, Brazil
| | - Philip Michael Hefford
- University Hospitals Plymouth NHS Trust, Derriford Road, Crownhill, Plymouth PL6 8DH, UK
| | - Xutao Deng
- Vitalant Research Institute, 270 Masonic Avenue, San Francisco, CA 94118-4417, USA
- Department Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Eric Delwart
- Vitalant Research Institute, 270 Masonic Avenue, San Francisco, CA 94118-4417, USA
- Department Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Ester Cerdeira Sabino
- Institute of Tropical Medicine, University of São Paulo, São Paulo 05403-000, Brazil
| | - Licia Natal Fernandes
- Institute of Tropical Medicine, University of São Paulo, São Paulo 05403-000, Brazil
| | | | - Élcio Leal
- Institute of Biological Sciences, Federal University of Pará, Belém, Pará, 66075-000, Brazil
| |
Collapse
|