1
|
Yu F, Zeng G, Yang L, Zhou H, Wang Y. LAMB3: Central role and clinical significance in neoplastic and non-neoplastic diseases. Biomed Pharmacother 2024; 178:117233. [PMID: 39111076 DOI: 10.1016/j.biopha.2024.117233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/25/2024] Open
Abstract
Recently, topics related to targeted gene therapy and diagnosis have become increasingly important in disease research. The progression of many diseases is associated with specific gene signaling pathways. Therefore, the identification of precise gene targets in various diseases is crucial for the development of effective treatments. Laminin subunit beta 3 (LAMB3), a component of laminin 5, functions as an adhesive protein in the extracellular matrix and plays a vital role in regulating cell proliferation, migration, and cell cycle in certain diseases. Previous studies have indicated that LAMB3 is highly expressed in numerous tumorous and non-tumorous conditions, including renal fibrosis; squamous cell carcinoma of the skin, thyroid, lung, pancreatic, ovarian, colorectalr, gastric, breast, cervical, nasopharyngeal, bladder, prostate cancers; and cholangiocarcinoma. Conversely, it is underexpressed in other conditions, such as hepatocellular carcinoma, epidermolysis bullosa, and amelogenesis imperfecta. Consequently, LAMB3 may serve as a molecular diagnostic and therapeutic target for various diseases through its involvement in critical gene signaling pathways. This paper reviews the research status of LAMB3 and its role in related diseases.
Collapse
Affiliation(s)
- Fangqiu Yu
- Urological Department, First Hospital of Jilin University, Changchun, Jilin Province 130021, China
| | - Guoqiang Zeng
- Urological Department, First Hospital of Jilin University, Changchun, Jilin Province 130021, China
| | - Lei Yang
- Urological Department, First Hospital of Jilin University, Changchun, Jilin Province 130021, China
| | - Honglan Zhou
- Urological Department, First Hospital of Jilin University, Changchun, Jilin Province 130021, China
| | - Yuantao Wang
- Urological Department, First Hospital of Jilin University, Changchun, Jilin Province 130021, China.
| |
Collapse
|
2
|
Desjardins-Lecavalier N, Annis MG, Nowakowski A, Kiepas A, Binan L, Roy J, Modica G, Hébert S, Kleinman CL, Siegel PM, Costantino S. Migration speed of captured breast cancer subpopulations correlates with metastatic fitness. J Cell Sci 2023; 136:jcs260835. [PMID: 37313743 PMCID: PMC10657211 DOI: 10.1242/jcs.260835] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 06/02/2023] [Indexed: 06/15/2023] Open
Abstract
The genetic alterations contributing to migration proficiency, a phenotypic hallmark of metastatic cells required for colonizing distant organs, remain poorly defined. Here, we used single-cell magneto-optical capture (scMOCa) to isolate fast cells from heterogeneous human breast cancer cell populations, based on their migratory ability alone. We show that captured fast cell subpopulations retain higher migration speed and focal adhesion dynamics over many generations as a result of a motility-related transcriptomic profile. Upregulated genes in isolated fast cells encoded integrin subunits, proto-cadherins and numerous other genes associated with cell migration. Dysregulation of several of these genes correlates with poor survival outcomes in people with breast cancer, and primary tumors established from fast cells generated a higher number of circulating tumor cells and soft tissue metastases in pre-clinical mouse models. Subpopulations of cells selected for a highly migratory phenotype demonstrated an increased fitness for metastasis.
Collapse
Affiliation(s)
- Nicolas Desjardins-Lecavalier
- Maisonneuve-Rosemont Hospital Research Center, 5415, boulevard de l'Assomption, Montréal, QC H1T 2M4, Canada
- Institut de genie biomedical, University of Montreal, Pavillon Paul-G.-Desmarais, 2960, chemin de la Tour, Montréal, QC H3T 1J4, Canada
| | - Matthew G. Annis
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, QC H3A 1A3, Canada
- Department of Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada
| | - Alexander Nowakowski
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, QC H3A 1A3, Canada
- Department of Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada
| | - Alexander Kiepas
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health Bethesda, MA 20892-4370, USA
| | - Loïc Binan
- Maisonneuve-Rosemont Hospital Research Center, 5415, boulevard de l'Assomption, Montréal, QC H1T 2M4, Canada
| | - Joannie Roy
- Maisonneuve-Rosemont Hospital Research Center, 5415, boulevard de l'Assomption, Montréal, QC H1T 2M4, Canada
| | - Graziana Modica
- Maisonneuve-Rosemont Hospital Research Center, 5415, boulevard de l'Assomption, Montréal, QC H1T 2M4, Canada
| | - Steven Hébert
- Lady Davis Institute, McGill University, Montréal, QC H3T 1E2, Canada
| | - Claudia L. Kleinman
- Lady Davis Institute, McGill University, Montréal, QC H3T 1E2, Canada
- Department of Human Genetics, McGill University, Montréal, QC H3T 1E2, Canada
| | - Peter M. Siegel
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, QC H3A 1A3, Canada
- Department of Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada
| | - Santiago Costantino
- Maisonneuve-Rosemont Hospital Research Center, 5415, boulevard de l'Assomption, Montréal, QC H1T 2M4, Canada
- Department of Ophthalmology, University of Montreal, Pavillon Roger-Gaudry, Bureau S-700, 2900, boul. Édouard-Montpetit, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
3
|
Huang C, Chen J. Laminin‑332 mediates proliferation, apoptosis, invasion, migration and epithelial‑to‑mesenchymal transition in pancreatic ductal adenocarcinoma. Mol Med Rep 2021; 23:11. [PMID: 33179081 PMCID: PMC7673329 DOI: 10.3892/mmr.2020.11649] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
The poor prognosis of patients with pancreatic ductal adenocarcinoma (PDAC) is primarily due to the invasive and metastatic behaviors of this disease. Laminin‑332 (LM‑332) is a key component of the basement membrane barrier, and is associated with tumor metastasis. The present study provides evidence towards the potential function of LM‑332 in carcinoma, indicating the distinct roles of the three LM‑332 subunits (α3, β3 and γ2) in cell proliferation, migration, invasion, apoptosis and the epithelial‑to‑mesenchymal transition (EMT) in cancer. The roles of the α3, β3 and γ2 subunits in the malignant biological behavior of PDAC were investigated in the present study. It was revealed that the α3, β3 and γ2 subunits were upregulated in PDAC. Inhibition of all LM‑332 subunits abrogated the tumorigenic outcomes, which included cell proliferation, apoptosis, invasion, migration and EMT in vitro. However, the three LM‑332 subunits had different degrees of effects on biological behavior. It was observed that LAMA3 (α3) had a stronger effect on cell proliferation, migration and invasion. In addition, LAMB3 (β3) knockdown significantly increased E‑cadherin levels and decreased vimentin levels, indicating that LAMB3 was associated with EMT. Likewise, LAMC2 (γ2) mediated proliferation, apoptosis, invasion and migration. However, small interfering (si)‑LAMC2 promoted the progression of EMT, which was the opposite effect to that of si‑LAMB3. The LM‑332 subunits (α3, β3 and γ2) may be novel therapeutic targets of PDAC in the future.
Collapse
Affiliation(s)
- Caiqun Huang
- Department of Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| | - Jun Chen
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| |
Collapse
|
4
|
Rousselle P, Scoazec JY. Laminin 332 in cancer: When the extracellular matrix turns signals from cell anchorage to cell movement. Semin Cancer Biol 2020; 62:149-165. [PMID: 31639412 DOI: 10.1016/j.semcancer.2019.09.026] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/22/2019] [Accepted: 09/29/2019] [Indexed: 02/07/2023]
Abstract
Laminin 332 is crucial in the biology of epithelia. This large extracellular matrix protein consists of the heterotrimeric assembly of three subunits - α3, β3, and γ2 - and its multifunctionality relies on a number of extracellular proteolytic processing events. Laminin 332 is central to normal epithelium homeostasis by sustaining cell adhesion, polarity, proliferation, and differentiation. It also supports a major function in epithelial tissue formation, repair, and regeneration by buttressing cell migration and survival and basement membrane assembly. Interest in this protein increased after the discovery that its expression is perturbed in tumor cells, cancer-associated fibroblasts, and the tumor microenvironment. This review summarizes current knowledge regarding the established involvement of the laminin 332 γ2 chain in tumor invasiveness and discusses the role of its α3 and β3 subunits.
Collapse
Affiliation(s)
- Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS - Université Lyon 1, Institut de Biologie et Chimie des Protéines, SFR BioSciences Gerland-Lyon Sud, 7 passage du Vercors, F-69367, France.
| | - Jean Yves Scoazec
- Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, 94805 Villejuif cedex, France; Université Paris Sud, Faculté de Médecine de Bicêtre, 94270 Le Kremlin Bicêtre, France
| |
Collapse
|
5
|
Liu L, Jung SN, Oh C, Lee K, Won HR, Chang JW, Kim JM, Koo BS. LAMB3 is associated with disease progression and cisplatin cytotoxic sensitivity in head and neck squamous cell carcinoma. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2019; 45:359-365. [PMID: 30414703 DOI: 10.1016/j.ejso.2018.10.543] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 10/22/2018] [Accepted: 10/31/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Laminin subunit beta-3 (LAMB3) is a major component of the basement membrane zone. In our study, we investigated the role of LAMB3 in head and neck squamous cell carcinoma (HNSCC) progression and its clinical implication as a prognostic biomarker. MATERIALS AND METHODS A retrospective analysis of 100 patients with HNSCC who had undergone curative surgery from 1999 to 2011 was performed. We evaluated LAMB3 expression by immunohistochemistry and its associations with clinicopathological characteristics and survival. For functional in vitro analyses, cell proliferation, migration, and invasion and western blot assays were performed following LAMB3 suppression. In addition, the role of LAMB3 in cisplatin-induced cytotoxicity was clarified by measuring cell proliferation. RESULTS LAMB3 expression was up-regulated in HNSCC cell lines and patient tissues. High LAMB3 expression was significantly associated with positive lymph node metastasis (odds ratio: 6.316; P < 0.001) and poor prognosis in patients with HNSCC. LAMB3 suppression reduced cell migration/invasion via down-regulation of epithelial-to-mesenchymal transition-associated proteins (Vimentin and Slug). Moreover, LAMB3 suppression increased cisplatin cytotoxicity in HNSCC cells. CONCLUSION Our findings indicate that LAMB3 may be used as a prognostic biomarker in HNSCC and support that LAMB3 silencing could induce the sensitivity of anti-cancer drugs such as cisplatin.
Collapse
Affiliation(s)
- Lihua Liu
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea; Department of Otorhinolaryngology-Head and Neck Surgery, Yanbian University Hospital, Yanji, China
| | - Seung-Nam Jung
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Chan Oh
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Kyungmin Lee
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Ho-Ryun Won
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Jae Won Chang
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Jin Man Kim
- Department of Pathology, Research Institute for Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Bon Seok Koo
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
| |
Collapse
|
6
|
Huang N, Pei X, Lin W, Chiu JF, Tao T, Li G. DNA methylation of a non-CpG island promoter represses NQO1 expression in rat arsenic-transformed lung epithelial cells. Acta Biochim Biophys Sin (Shanghai) 2018; 50:733-739. [PMID: 29889218 DOI: 10.1093/abbs/gmy063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Indexed: 02/05/2023] Open
Abstract
NAD(P)H:quinone oxidoreductase 1 (NQO1), a phase II flavoenzyme that catalyzes reduction reactions to protect cells against electrophiles and oxidants, is involved in tumorigenesis. Altered methylation of the NQO1 gene has been observed and is speculated to result in aberrant NQO1 expression in rat cells undergoing chemical carcinogenesis, although this has not been proven experimentally. In this study, we first investigated the potential epigenetic mechanisms underlying the phenomenon of NQO1 differential expression in individual subclones of rat arsenic-transformed lung epithelial cells (TLECs). NQO1 expression of TLEC subclones with or without 5-aza-2'-deoxycytidine (5-Aza-CdR) treatment was assessed by reverse transcriptase-polymerase chain reaction (RT-PCR), western blot analysis, and real-time PCR. Methylation status of the NQO1 promoter in TLEC subclones was analyzed by bisulfite sequencing. Transcriptional activity of NQO1 promoter in vitro methylated was determined by luciferase assay using a CpG-free luciferase reporter driven by the NQO1 promoter region (-435 to +229). We found that non-CpG island (non-CpGI) within the NQO1 promoter was hyper- or hypo-methylated in TLEC subclones and corresponded to low and high gene expressions, respectively. Following the treatment with 5-Aza-CdR, transcription of the NQO1 gene in the hypermethylated subclones was restored, accompanied by demethylation of the NQO1 promoter. In vitro promoter methylation almost completely silenced reporter activity in TLECs. These results indicate that DNA methylation of the non-CpGI promoter contributes to epigenetic silencing of NQO1 in rat TLECs.
Collapse
Affiliation(s)
- Ningyu Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiaojuan Pei
- Department of Pathology, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Wenbo Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jen-Fu Chiu
- Department of Biochemistry, The Key Lab of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
- School of Biomedical Sciences, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Tao Tao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Guanwu Li
- Department of Biochemistry, The Key Lab of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, China
| |
Collapse
|
7
|
Jung SN, Lim HS, Liu L, Chang JW, Lim YC, Rha KS, Koo BS. LAMB3 mediates metastatic tumor behavior in papillary thyroid cancer by regulating c-MET/Akt signals. Sci Rep 2018; 8:2718. [PMID: 29426928 PMCID: PMC5807368 DOI: 10.1038/s41598-018-21216-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 02/01/2018] [Indexed: 01/22/2023] Open
Abstract
Laminin subunit beta-3 (LAMB3) encodes one of the three subunits of LM-332, a protein of the extracellular matrix secreted by cultured human keratinocytes. While LAMB3 is involved in the invasive and metastatic abilities of several tumor types, including those found in the colon, pancreas, lung, cervix, stomach, and prostate, its mechanism of action in thyroid cancer has not been investigated previously. Our results show that LAMB3 is up-regulated in papillary thyroid cancer, and that its suppression reduces cell migration/invasion via down-regulation of epithelial‒mesenchymal transition-associated proteins (N-cadherin, vimentin, slug) and inhibition of matrix metalloproteinase 9. LAMB3 suppression also significantly decreases Akt phosphorylation and inhibits the transcription of c-MET, reducing its activation. These results suggest that LAMB3 leads to tumor invasion via Akt activation induced by the HGF/c-MET axis in papillary thyroid cancer cells. Our findings reveal a novel mechanism of action for LAMB3 in papillary thyroid cancer cells.
Collapse
Affiliation(s)
- Seung-Nam Jung
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Hyun Sil Lim
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Lihua Liu
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jae Won Chang
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Young Chang Lim
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Konkuk University College of Medicine, Seoul, Republic of Korea
| | - Ki Sang Rha
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Bon Seok Koo
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
| |
Collapse
|
8
|
Al-Yasiri AY, Khoobchandani M, Cutler CS, Watkinson L, Carmack T, Smith CJ, Kuchuk M, Loyalka SK, Lugão AB, Katti KV. Mangiferin functionalized radioactive gold nanoparticles (MGF-198AuNPs) in prostate tumor therapy: green nanotechnology for production, in vivo tumor retention and evaluation of therapeutic efficacy. Dalton Trans 2017; 46:14561-14571. [DOI: 10.1039/c7dt00383h] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report here production of MGF-198AuNPs and its application for prostate tumor therapy.
Collapse
Affiliation(s)
- A. Y. Al-Yasiri
- Nuclear Science and Engineering Institute (NSEI)
- University of Missouri
- Columbia
- USA
| | - M. Khoobchandani
- Department of Radiology
- Institute of Green Nanotechnology
- University of Missouri
- One Hospital Drive
- Columbia
| | - C. S. Cutler
- Nuclear Science and Engineering Institute (NSEI)
- University of Missouri Research Reactor (MURR)
- University of Missouri
- Columbia
- USA
| | - L. Watkinson
- Harry S. Truman Memorial Veterans Hospital
- University of Missouri
- One Hospital Drive
- Columbia
- USA
| | - T. Carmack
- Harry S. Truman Memorial Veterans Hospital
- University of Missouri
- One Hospital Drive
- Columbia
- USA
| | - C. J. Smith
- Department of Radiology
- Harry S. Truman Memorial Veterans Hospital
- University of Missouri
- One Hospital Drive
- Columbia
| | - M. Kuchuk
- University of Missouri Research Reactor (MURR)
- University of Missouri
- One Hospital Drive
- Columbia
- USA
| | - S. K. Loyalka
- Nuclear Science and Engineering Institute (NSEI)
- University of Missouri
- Columbia
- USA
| | - A. B. Lugão
- Nuclear and Energy Research Institute – IPEN/CNEN/Sao Paulo
- Brazil
| | - K. V. Katti
- Nuclear Science and Engineering Institute (NSEI)
- Department of Radiology
- Institute of Green Nanotechnology
- University of Missouri Research Reactor (MURR)
- Harry S. Truman Memorial Veterans Hospital
| |
Collapse
|
9
|
Wang XM, Li J, Yan MX, Liu L, Jia DS, Geng Q, Lin HC, He XH, Li JJ, Yao M. Integrative analyses identify osteopontin, LAMB3 and ITGB1 as critical pro-metastatic genes for lung cancer. PLoS One 2013; 8:e55714. [PMID: 23441154 PMCID: PMC3575388 DOI: 10.1371/journal.pone.0055714] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 12/29/2012] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE To explore the key regulatory genes associated with lung cancer in order to reduce its occurrence and progress through silencing these key genes. METHODS To identify the key regulatory genes involved in lung cancer, we performed a combination of gene array and bioinformatics analyses to compare gene transcription profiles in 3 monoclonal cell strains with high, medium or low metastatic abilities, which were separated from the SPC-A-1sci and SPC-A-1 cell lines by limiting dilution monoclone assay. We then analyzed those genes' biological activities by knocking down their expression in SPC-A-1sci cells using siRNA and lenti-viral shRNA vectors, followed by determinations of the invasion and migration capabilities of the resulting cell lines in vitro as well as their potential for inducing occurrence and metastasis of lung cancer in vivo. To examine the clinical relevance of these findings, we analyzed the expression levels of the identified genes in human lung cancer tissues (n = 135) and matched adjacent normal tissues by immunohistochemical (IHC) staining. RESULTS Three monoclonal cell strains characterized with high, medium or low metastatic abilities were successfully selected. Gene array and bioinformatics analyses implied that osteopontin, LAMB3 and ITGB1 were key genes involved in lung cancer. Knockdown of these genes suppressed human lung cancer cell invasion and metastasis in vitro and in vivo. Clinical sample analyses indicated that osteopontin, LAMB3 and ITGB1 protein expression levels were higher in lung cancer patients, compared to non-cancerous adjacent tissues, and correlated with lymphatic metastasis. CONCLUSIONS We confirmed that osteopontin, LAMB3 and ITGB1 played important roles in the occurrence and metastasis of lung cancer, thus provided important clues to understanding the molecular mechanism of metastasis and contributing to the therapeutic treatment of lung cancer.
Collapse
Affiliation(s)
- Xiao-Min Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Xia Yan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - De-Shui Jia
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Geng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - He-Chun Lin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang-Huo He
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin-Jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Tseng CW, Huang HC, Shih ACC, Chang YY, Hsu CC, Chang JY, Li WH, Juan HF. Revealing the anti-tumor effect of artificial miRNA p-27-5p on human breast carcinoma cell line T-47D. Int J Mol Sci 2012; 13:6352-6369. [PMID: 22754369 PMCID: PMC3382822 DOI: 10.3390/ijms13056352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 05/09/2012] [Accepted: 05/18/2012] [Indexed: 02/06/2023] Open
Abstract
microRNAs (miRNAs) cause mRNA degradation or translation suppression of their target genes. Previous studies have found direct involvement of miRNAs in cancer initiation and progression. Artificial miRNAs, designed to target single or multiple genes of interest, provide a new therapeutic strategy for cancer. This study investigates the anti-tumor effect of a novel artificial miRNA, miR P-27-5p, on breast cancer. In this study, we reveal that miR P-27-5p downregulates the differential gene expressions associated with the protein modification process and regulation of cell cycle in T-47D cells. Introduction of this novel artificial miRNA, miR P-27-5p, into breast cell lines inhibits cell proliferation and induces the first “gap” phase (G1) cell cycle arrest in cancer cell lines but does not affect normal breast cells. We further show that miR P-27-5p targets the 3′-untranslated mRNA region (3′-UTR) of cyclin-dependent kinase 4 (CDK4) and reduces both the mRNA and protein level of CDK4, which in turn, interferes with phosphorylation of the retinoblastoma protein (RB1). Overall, our data suggest that the effects of miR p-27-5p on cell proliferation and G1 cell cycle arrest are through the downregulation of CDK4 and the suppression of RB1 phosphorylation. This study opens avenues for future therapies targeting breast cancer.
Collapse
Affiliation(s)
- Chien-Wei Tseng
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan; E-Mails: (C.-W.T.); (Y.-Y.C.); (C.-C.H.); (J.-Y.C.)
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei 112, Taiwan; E-Mail:
| | - Arthur Chun-Chieh Shih
- Institute of Information Science, Research Center for Information Technology Innovation, Academia Sinica, Taipei 115, Taiwan; E-Mail:
| | - Ya-Ya Chang
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan; E-Mails: (C.-W.T.); (Y.-Y.C.); (C.-C.H.); (J.-Y.C.)
| | - Chung-Cheng Hsu
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan; E-Mails: (C.-W.T.); (Y.-Y.C.); (C.-C.H.); (J.-Y.C.)
| | - Jen-Yun Chang
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan; E-Mails: (C.-W.T.); (Y.-Y.C.); (C.-C.H.); (J.-Y.C.)
| | - Wen-Hsiung Li
- Biodiversity Research Center and Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
- Authors to whom correspondence should be addressed; E-Mails: (W.-H.L.); (H.-F.J.); Tel.: +1-773-702-3104 (W.-H.L.); +886-2-33664536 (H.-F.J.); Fax: +1-773-702-9740 (W.-H.L.); +886-2-23673374 (H.-F.J.)
| | - Hsueh-Fen Juan
- Department of Life Science, Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan; E-Mails: (C.-W.T.); (Y.-Y.C.); (C.-C.H.); (J.-Y.C.)
- Authors to whom correspondence should be addressed; E-Mails: (W.-H.L.); (H.-F.J.); Tel.: +1-773-702-3104 (W.-H.L.); +886-2-33664536 (H.-F.J.); Fax: +1-773-702-9740 (W.-H.L.); +886-2-23673374 (H.-F.J.)
| |
Collapse
|
11
|
Matrix-dependent regulation of AKT in Hepsin-overexpressing PC3 prostate cancer cells. Neoplasia 2011; 13:579-89. [PMID: 21750652 DOI: 10.1593/neo.11294] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 04/27/2011] [Accepted: 04/29/2011] [Indexed: 01/08/2023] Open
Abstract
The serine-protease hepsin is one of the most prominently overexpressed genes in human prostate carcinoma. Forced expression of the enzyme in mice prostates is associated with matrix degradation, invasive growth, and prostate cancer progression. Conversely, hepsin overexpression in metastatic prostate cancer cell lines was reported to induce cell cycle arrest and reduction of invasive growth in vitro. We used a system for doxycycline (dox)-inducible target gene expression in metastasis-derived PC3 cells to analyze the effects of hepsin in a quantitative manner. Loss of viability and adhesion correlated with hepsin expression levels during anchorage-dependent but not anchorage-independent growth. Full expression of hepsin led to cell death and detachment and was specifically associated with reduced phosphorylation of AKT at Ser(473), which was restored by growth on matrix derived from RWPE1 normal prostatic epithelial cells. In the chorioallantoic membrane xenograft model, hepsin overexpression in PC3 cells reduced the viability of tumors but did not suppress invasive growth. The data presented here provide evidence that elevated levels of hepsin interfere with cell adhesion and viability in the background of prostate cancer as well as other tissue types, the details of which depend on the microenvironment provided. Our findings suggest that overexpression of the enzyme in prostate carcinogenesis must be spatially and temporally restricted for the efficient development of tumors and metastases.
Collapse
|
12
|
Han H, Cortez CC, Yang X, Nichols PW, Jones PA, Liang G. DNA methylation directly silences genes with non-CpG island promoters and establishes a nucleosome occupied promoter. Hum Mol Genet 2011; 20:4299-310. [PMID: 21835883 PMCID: PMC3196883 DOI: 10.1093/hmg/ddr356] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/22/2011] [Accepted: 08/08/2011] [Indexed: 12/31/2022] Open
Abstract
Despite the fact that 45% of all human gene promoters do not contain CpG islands, the role of DNA methylation in control of non-CpG island promoters is controversial and its relevance in normal and pathological processes is poorly understood. Among the few studies which investigate the correlation between DNA methylation and expression of genes with non-CpG island promoters, the majority do not support the view that DNA methylation directly leads to transcription silencing of these genes. Our reporter assays and gene reactivation by 5-aza-2'-deoxycytidine, a DNA demethylating agent, show that DNA methylation occurring at CpG poor LAMB3 promoter and RUNX3 promoter 1(RUNX3 P1) can directly lead to transcriptional silencing in cells competent to express these genes in vitro. Using Nucleosome Occupancy Methylome- Sequencing, NOMe-Seq, a single-molecule, high-resolution nucleosome positioning assay, we demonstrate that active, but not inactive, non-CpG island promoters display a nucleosome-depleted region (NDR) immediately upstream of the transcription start site (TSS). Furthermore, using NOMe-Seq and clonal analysis, we show that in RUNX3 expressing 623 melanoma cells, RUNX3 P1 has two distinct chromatin configurations: one is unmethylated with an NDR upstream of the TSS; another is methylated and nucleosome occupied, indicating that RUNX3 P1 is monoallelically methylated. Together, these results demonstrate that the epigenetic signatures comprising DNA methylation, histone marks and nucleosome occupancy of non-CpG island promoters are almost identical to CpG island promoters, suggesting that aberrant methylation patterns of non-CpG island promoters may also contribute to tumorigenesis and should therefore be included in analyses of cancer epigenetics.
Collapse
Affiliation(s)
- Han Han
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy
- Department of Urology, Norris Comprehensive Cancer Center, Keck School of Medicine and
| | - Connie C. Cortez
- Department of Urology, Norris Comprehensive Cancer Center, Keck School of Medicine and
| | - Xiaojing Yang
- Department of Urology, Norris Comprehensive Cancer Center, Keck School of Medicine and
| | - Peter W. Nichols
- Department of Pathology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Peter A. Jones
- Department of Urology, Norris Comprehensive Cancer Center, Keck School of Medicine and
| | - Gangning Liang
- Department of Urology, Norris Comprehensive Cancer Center, Keck School of Medicine and
| |
Collapse
|
13
|
Li Y, Liu J, Yuan C, Cui B, Zou X, Qiao Y. High-risk human papillomavirus reduces the expression of microRNA-218 in women with cervical intraepithelial neoplasia. J Int Med Res 2011; 38:1730-6. [PMID: 21309487 DOI: 10.1177/147323001003800518] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This study was designed to investigate whether there is a correlation between the down-regulation of microRNA-218 (miR-218) and the presence of human papillomavirus (HPV) infection in the pathogenesis of cervical cancer. The participants comprised 78 women with cervical intraepithelial neoplasia (CIN); 22 (28.2%) had CIN 1, 27 (34.6%) had CIN 2 and 29 (37.2%) had CIN 3. MiR-218 expression was determined by reverse transcriptase polymerase chain reaction and HPV genotypes in tissue specimens were identified with a microarray test kit. The findings showed that miR-218 levels in patients with high-risk HPV infection were lower than in those infected with low-risk or intermediate-risk HPV, or in those who were HPV-free. MiR-218 levels in patients with high-risk CIN were lower than in those with low-risk CIN. We concluded that infection with high-risk HPV lowered the expression of miR-218 and that down-regulation of miR-218 was involved in the pathogenesis of cervical cancer.
Collapse
Affiliation(s)
- Y Li
- Department of Clinical Laboratory Medicine, Qilu Hospital, Shandong University, Jinan, China
| | | | | | | | | | | |
Collapse
|
14
|
Zhou X, Chen X, Hu L, Han S, Qiang F, Wu Y, Pan L, Shen H, Li Y, Hu Z. Polymorphisms involved in the miR-218-LAMB3 pathway and susceptibility of cervical cancer, a case-control study in Chinese women. Gynecol Oncol 2010; 117:287-90. [PMID: 20163849 DOI: 10.1016/j.ygyno.2010.01.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 01/06/2010] [Accepted: 01/09/2010] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Laminin-5 is required in RAS and NF-kappaB blockade induced tumorigenesis of human squamous cell carcinoma and a marker of invasiveness in cervical lesions. MicroRNA-218 (miR-218) can target laminin-5 beta3 (LAMB3), but suppressed by HPV-16 E6 protein. Therefore, we hypothesized that single nucleotide polymorphisms (SNPs) in pri-miR-218 and LAMB3 may individually and/or jointly contribute to cervical cancer carcinogenesis. METHODS We identified one SNP rs11134527 located in pri-miR-218 sequence and one SNP rs2566 in 3'UTR of LAMB3 and genotyped these two SNPs in a case-control study of 703 cervical cancer cases and 713 cancer-free controls in Chinese women. RESULTS Logistic regression analyses showed that the pri-miR-218 rs11134527 variant homozygote GG was associated with a decreased risk of cervical cancer compared with the AA genotype (adjusted OR=0.72, 95% CI=0.52-0.99), while the LAMB3 rs2566 variant CT/TT genotypes were associated with a significantly increased risk of cervical cancer (adjusted OR=1.57, 95% CI=1.25-1.96), compared with the wild type CC genotype. A significant dose-response effect was observed between the number of risk alleles, rs11134527A and rs2566 T, and the risk of cervical cancer (P for trend=0.0006). CONCLUSION These findings indicate that pri-miR-218 rs11134527 and LAMB3 rs2566 may contribute to cervical cancer carcinogenesis, and further validations in diverse populations and functional characterizations are warranted.
Collapse
Affiliation(s)
- Xiaoyi Zhou
- Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Torres A, Torres K, Maciejewski R, Harvey WH. MicroRNAs and their role in gynecological tumors. Med Res Rev 2010; 31:895-923. [PMID: 20358579 DOI: 10.1002/med.20205] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There have been only few events in the history of molecular biology that could be compared to the discovery of microRNAs and their role in cell physiology and pathology. MicroRNAs are small, single-stranded, noncoding RNAs composed of 19-25 nucleotides (∼22 nt), which have been proven to regulate gene expression at the posttranscriptional level. The regulatory function of microRNAs was demonstrated in normal and diseased conditions. In particular, it has been linked to cell cycle regulation, cell proliferation and differentiation, inflammatory response, and apoptosis. Altered expression profiles of microRNA have been observed in many pathologies, including diabetes, rheumatoid arthritis, and several cancers. To date, more than 700 human microRNAs have been identified and in silico-based analyses estimate at least 500 more to be identified. The purpose of this review is to present the current perspective on microRNAs structure and biogenesis as well as their contribution to the etiopathogenesis of gynecological tumors. We discuss results of the recent publications that indicate possibilities of microRNAs use as novel markers for tumors screening, early diagnosis, and treatment monitoring. The possible utilization of microRNAs as prognostic factors and specific therapy targets is also reviewed.
Collapse
Affiliation(s)
- Anna Torres
- Laboratory of Biostructure, Human Anatomy Department, Medical University of Lublin, Lublin, Poland.
| | | | | | | |
Collapse
|
16
|
Integrin involvement in freeze resistance of androgen-insensitive prostate cancer. Prostate Cancer Prostatic Dis 2010; 13:151-61. [PMID: 20066006 PMCID: PMC2869388 DOI: 10.1038/pcan.2009.59] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cryoablation has emerged as a primary therapy to treat prostate cancer. While effective, the assumption that freezing serves as a ubiquitous lethal stress is challenged by clinical experience and experimental evidence demonstrating time-temperature related cell death dependence. The age-related transformation from an androgen-sensitive (AS) to an androgen-insensitive (AI) phenotype is a major challenge in the management of prostate cancer. AI cells exhibit morphological changes and treatment resistance to many therapies. Since this resistance has been linked with α6β4 integrin overexpression as a result of androgen receptor (AR) loss, we investigated whether α6β4 integrin expression, as a result AR loss, contributes to the reported increased freeze tolerance of AI prostate cancer. A series of studies using AS (LNCaP LP and PC-3 AR) and AI (LNCaP HP and PC-3) cell lines were designed to investigate the cellular mechanisms contributing to variations in freezing response. Investigation into α6β4 integrin expression revealed that AI cell lines overexpressed this protein, thereby altering morphological characteristics and increasing adhesion characteristics. Molecular investigations revealed a significant decrease in caspase 8, 9, and 3 levels AI cells following freezing. Inhibition of α6β4 integrin resulted in increased caspase activity following freezing (similar to AS cells) and enhanced cell death. These data demonstrate that AI cells show an increase in post-freeze susceptibility following inhibition of α6β4 integrin function. Further understanding the role of androgen-receptor related α6β4 integrin expression in prostate cancer cells responses to freezing might lead to novel options for neo-adjunctive treatments targeting the AR signaling pathway.
Collapse
|
17
|
Guess CM, Quaranta V. Defining the role of laminin-332 in carcinoma. Matrix Biol 2009; 28:445-55. [PMID: 19686849 PMCID: PMC2875997 DOI: 10.1016/j.matbio.2009.07.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 07/27/2009] [Accepted: 07/28/2009] [Indexed: 01/10/2023]
Abstract
The deadly feature of cancer, metastasis, requires invasion of cells through basement membranes (BM), which normally act as barriers between tissue compartments. In the case of many epithelially-derived cancers (carcinomas), laminin-332 (Ln-332) is a key component of the BM barrier. This review provides a historical examination of Ln-332 from its discovery through identification of its functions in BM and possible role in carcinomas. Current understanding points to distinct roles for the three Ln-332 subunits (alpha3, beta3, gamma2) in cell adhesion, extracellular matrix stability, and cell signaling processes in cancer. Given the large number of studies linking Ln-332 gamma2 subunit with cancer prognosis, particular attention is given to the crucial role of this subunit in cancer invasion and to the unanswered questions in this area.
Collapse
Affiliation(s)
- Cherise M Guess
- Meharry Medical College, Department of Microbial Pathogenesis & Immune Response; Nashville, TN 37232-6840, USA.
| | | |
Collapse
|
18
|
Zhang C, Fu L, Fu J, Hu L, Yang H, Rong TH, Li Y, Liu H, Fu SB, Zeng YX, Guan XY. Fibroblast growth factor receptor 2-positive fibroblasts provide a suitable microenvironment for tumor development and progression in esophageal carcinoma. Clin Cancer Res 2009; 15:4017-27. [PMID: 19509166 DOI: 10.1158/1078-0432.ccr-08-2824] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Tumor fibroblasts (TF) have been suggested to play an essential role in the complex process of tumor-stroma interactions and tumorigenesis. The aim of the present study was to investigate the specific role of TF in the esophageal cancer microenvironment. EXPERIMENTAL DESIGN An Affymetrix expression microarray was used to compare gene expression profiles between six pairs of TFs and normal fibroblasts from esophageal squamous cell carcinoma (ESCC). Differentially expressed genes were identified, and a subset was evaluated by quantitative real-time PCR and immunohistochemistry. RESULTS About 43% (126 of 292) of known deregulated genes in TFs were associated with cell proliferation, extracellular matrix remodeling, and immune response. Up-regulation of fibroblast growth factor receptor 2 (FGFR2), which showed the most significant change, was detected in all six tested TFs compared with their paired normal fibroblasts. A further study found that FGFR2-positive fibroblasts were only observed inside the tumor tissues and not in tumor-surrounding stromal tissues, suggesting that FGFR2 could be used as a TF-specific marker in ESCC. Moreover, the conditioned medium from TFs was found to be able to promote ESCC tumor cell growth, migration, and invasion in vitro. CONCLUSIONS Our study provides new candidate genes for the esophageal cancer microenvironment. Based on our results, we hypothesize that FGFR2(+)-TFs might provide cancer cells with a suitable microenvironment via secretion of proteins that could promote cancer development and progression through stimulation of cancer cell proliferation, induction of angiogenesis, inhibition of cell adhesion, enhancement of cell mobility, and promotion of the epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Chunyu Zhang
- Department of Surgery, State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Senescence-induced alterations of laminin chain expression modulate tumorigenicity of prostate cancer cells. Neoplasia 2009; 10:1350-61. [PMID: 19048114 DOI: 10.1593/neo.08746] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 08/28/2008] [Accepted: 09/02/2008] [Indexed: 01/01/2023] Open
Abstract
Prostate cancer is an age-associated epithelial cancer, and as such, it contributes significantly to the mortality of the elderly. Senescence is one possible mechanism by which the body defends itself against various epithelial cancers. Senescent cells alter the microenvironment, in part, through changes to the extracellular matrix. Laminins (LMs) are extracellular proteins important to both the structure and function of the microenvironment. Overexpression of the senescence-associated gene mac25 in human prostate cancer cells resulted in increased mRNA levels of the LM alpha4 and beta2 chains compared to empty vector control cells. The purpose of this study was to examine the effects of these senescence-induced LM chains on tumorigenicity of prostate cancer cells. We created stable M12 human prostate cancer lines overexpressing either the LM alpha4 or beta2 chain or both chains. Increased expression of either the LM alpha4 or beta2 chain resulted in increased in vitro migration and in vivo tumorigenicity of those cells, whereas high expression of both chains led to decreased in vitro proliferation and in vivo tumorigenicity compared to M12 control cells. This study demonstrates that senescent prostate epithelial cells can alter the microenvironment and that these changes modulate progression of prostate cancer.
Collapse
|
20
|
Carpenter PM, Dao AV, Arain ZS, Chang MK, Nguyen HP, Arain S, Wang-Rodriguez J, Kwon SY, Wilczynski SP. Motility induction in breast carcinoma by mammary epithelial laminin 332 (laminin 5). Mol Cancer Res 2009; 7:462-75. [PMID: 19351903 DOI: 10.1158/1541-7786.mcr-08-0148] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Host interactions with tumor cells contribute to tumor progression by several means. This study was done to determine whether mammary epithelium could interact with breast carcinoma by producing substances capable of inducing motility in the cancer cells. Conditioned medium of immortalized 184A1 mammary epithelium collected in serum-free conditions induced dose-dependent motility in the MCF-7 breast carcinoma cell line by both a semiquantitative scattering assay and a Boyden chamber assay. Purification of the motility factor revealed that it was laminin 332 (formerly laminin 5) by mass spectroscopy. A Western blot of the 184A1 conditioned medium using a polyclonal antibody confirmed the presence of laminin 332 in the conditioned medium. Blockage of the motility with antibodies to the laminin 332 and its receptor components, alpha(3) and beta(1) integrins, provided further evidence that tumor cell motility was caused by the laminin 332 in the conditioned medium. Invasion of MCF-7, BT-20, and MDA-MB-435 S was induced by purified laminin 332 and 184A1 conditioned medium and blocked by an anti-alpha(3) integrin antibody. Staining of carcinoma in situ from breast cancer specimens revealed that laminin 332 in the myoepithelium adjacent to the preinvasive cells provided a source of laminin 332 that could potentially encourage the earliest steps of stromal invasion. In metaplastic breast carcinomas, the presence of laminin 332-producing cells coexpressing alpha(3) integrin and the greater metastatic potential of tumors with higher laminin 332 levels suggest that laminin 332 expression is associated with aggressive features in these human breast cancers.
Collapse
Affiliation(s)
- Philip M Carpenter
- Department of Pathology and Laboratory Medicine, University of California, Orange, CA 92868, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kita Y, Mimori K, Tanaka F, Matsumoto T, Haraguchi N, Ishikawa K, Matsuzaki S, Fukuyoshi Y, Inoue H, Natsugoe S, Aikou T, Mori M. Clinical significance of LAMB3 and COL7A1 mRNA in esophageal squamous cell carcinoma. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2009; 35:52-8. [PMID: 18331784 DOI: 10.1016/j.ejso.2008.01.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2007] [Accepted: 01/24/2008] [Indexed: 10/22/2022]
Abstract
AIMS LAMB3 and COL7A1 genes code for the laminin-5beta3 chain and type VII collagen, respectively. They constitute the major components of the basement membrane zone. The aim of the current study was to clarify the clinical significance of LAMB3 and COL7A1 mRNA expression in esophageal squamous cell carcinoma (ESC). METHODS We quantitated the expression of LAMB3 mRNA and COL7A1 mRNA in malignant esophageal tissues (T) and corresponding normal tissues (N) by real-time quantitative reverse transcription-polymerase chain reaction assays. The clinicopathologic significance of LAMB3 and COL7A1 expression was also determined. Paired T and N tissues were obtained from 66 patients who underwent curative esophagectomy. RESULTS The expression levels of LAMB3 and COL7A1 mRNAs were higher in malignant tissues than in the corresponding normal tissues. The level of LAMB3 expression was significantly correlated with the depth of invasion and venous invasion (p=0.007 and 0.001, respectively). COL7A1 expression was significantly correlated with depth of tumor invasion and lymphatic invasion (p=0.046, 0.013, respectively). The five-year survival rate was better in the 22 patients with relatively low expression of both LAMB3 and COL7A1 in comparison with the other 44 cases (p<0.05). CONCLUSION The evaluation of LAMB3 and COL7A1 mRNA expression is useful for predicting the malignant properties of ESC and may prove valuable in predicting the future course of the disease.
Collapse
Affiliation(s)
- Y Kita
- Department of Surgery, Medical Institute of Bioregulation, Kyushu University, Tsurumihara, Beppu, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Martinez I, Gardiner AS, Board KF, Monzon FA, Edwards RP, Khan SA. Human papillomavirus type 16 reduces the expression of microRNA-218 in cervical carcinoma cells. Oncogene 2008; 27:2575-82. [PMID: 17998940 PMCID: PMC2447163 DOI: 10.1038/sj.onc.1210919] [Citation(s) in RCA: 276] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 09/10/2007] [Accepted: 10/10/2007] [Indexed: 12/15/2022]
Abstract
Human papillomaviruses (HPVs) are involved in the pathogenesis of cancer of the cervix (CaCx). MicroRNA (miRNA) expression analysis using Ambion (Austin, TX, USA) arrays showed that three miRNAs were overexpressed and 24 underexpressed in cervical cell lines containing integrated HPV-16 DNA compared to the normal cervix. Furthermore, nine miRNAs were overexpressed and one underexpressed in integrated HPV-16 cell lines compared to the HPV-negative CaCx cell line C-33A. Based on microarray and/or quantitative real-time PCR and northern blot analyses, microRNA-218 (miR-218) was specifically underexpressed in HPV-positive cell lines, cervical lesions and cancer tissues containing HPV-16 DNA compared to both C-33A and the normal cervix. Expression of the E6 oncogene of high-risk HPV-16, but not that of low-risk HPV-6, reduced miR-218 expression, and conversely, RNA interference of E6/E7 oncogenes in an HPV-16-positive cell line increased miR-218 expression. We also demonstrate that the epithelial cell-specific marker LAMB3 is a target of miR-218. We also show that LAMB3 expression is increased in the presence of the HPV-16 E6 oncogene and this effect is mediated through miR-218. These findings may contribute to a better understanding of the molecular mechanisms involved in cervical carcinogenesis.
Collapse
Affiliation(s)
- I Martinez
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - AS Gardiner
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - KF Board
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - FA Monzon
- Department of Pathology and Center for Pathology Informatics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - RP Edwards
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - SA Khan
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
23
|
Malik M, Gürcan HM, Christen W, Ahmed AR. Relationship between cancer and oral pemphigoid patients with antibodies to α6-integrin. J Oral Pathol Med 2006; 36:1-5. [PMID: 17181734 DOI: 10.1111/j.1600-0714.2006.00483.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Mucous membrane pemphigoid is an autoimmune mucocutaneous blistering disease. A subset, known as anti-epiligrin cicatricial pemphigoid is associated with a high risk for malignancy. Oral pemphigoid (OP) is limited to the oral cavity. The purpose of this study was to determine the association between malignancy and patients with OP with antibodies to alpha6-integrin subunit. METHODS We determined the incidence of cancer in 72 patients with OP and compared it to the expected incidence using age and sex-specific rates of malignancy in the National Cancer Institute's Surveillance, Epidemiology, and End Results (NCI SEER) Registry. RESULTS During a mean observation period of 9.1 years (range: 2.8-40), for 70, three OP patients developed malignancies. The expected number of cancers based on the NCI SEER Registry was 8.83. The relative risk for cancer in OP patients, with autoantibodies to alpha6-integrin, was 0.34 (95% CI, 0.07-0.99, P < 0.05). CONCLUSION It appears that patients with OP, with antibodies to alpha6, may have a possible reduced relative risk for developing cancer.
Collapse
Affiliation(s)
- Mohsin Malik
- Department of Medicine, New England Baptist Hospital, Harvard School of Dental Medicine, Boston, MA, USA
| | | | | | | |
Collapse
|
24
|
Remy L, Trespeuch C, Bachy S, Scoazec JY, Rousselle P. Matrilysin 1 influences colon carcinoma cell migration by cleavage of the laminin-5 beta3 chain. Cancer Res 2006; 66:11228-37. [PMID: 17145868 DOI: 10.1158/0008-5472.can-06-1187] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Matrilysin 1 [matrix metalloproteinase 7 (MMP7)] is one of the most important metalloproteinases expressed in human tissues. This enzyme is generally not expressed by normal differentiated epithelial colon cells, but has been shown to be up-regulated in human colon adenomas and adenocarcinomas. Little is known about the role of MMP7 in cell invasion and its involvement in proteolytic processes. By searching the ligands of MMP7 in the colonic carcinoma cells HT29, we identified laminin-5/laminin-332 (LN5) as a specific target for MMP7 enzymatic activity. LN5, composed of alpha3, beta3, and gamma2 chains, is an important component of epithelial basement membranes where it induces firm adhesion and hemidesmosome formation. In this study, we show that LN5 and MMP7 are coexpressed in HT29 cells as well as in HT29 xenograft tumors and human colorectal adenocarcinomas. We provide evidence that human LN5 is a ligand for MMP7 and that a specific cleavage occurs in its beta3 chain, giving rise to a carboxyl-terminal beta3 chain fragment of 90 kDa. We have identified the MMP7 cleavage site at position Ala(515)-Ile(516) in the beta3 chain. Videomicroscopic analysis of HT29 cells plated on LN5 substrates reveals that the MMP7-processed LN5 significantly enhances cell motility. Moreover, the delayed migration of HT29 cells obtained after specific inhibition of MMP7 reinforces the hypothesis supporting its involvement in cell migration. Altogether, our results show that MMP7 is likely to play a crucial role in the regulation of carcinoma cell migration by targeting specific proteolytic processing of the LN5 beta3 chain.
Collapse
Affiliation(s)
- Lionel Remy
- Institut National de la Sante et de la Recherche Medicale, U 45/IFR62, Université Claude Bernard Lyon I, France
| | | | | | | | | |
Collapse
|
25
|
Calaluce R, Beck SK, Bair EL, Pandey R, Greer KA, Hoying AM, Hoying JB, Mount DW, Nagle RB. Human laminin-5 and laminin-10 mediated gene expression of prostate carcinoma cells. Prostate 2006; 66:1381-90. [PMID: 16804886 DOI: 10.1002/pros.20393] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In prostate cancer progression, the basal lamina switches from predominantly laminin-5 to laminin-10. DU-145 prostate cancer cells were treated with either soluble laminin-5 (20 ng/ml) or laminin-10 (1 microg/ml) for 6, 24, and 48 hr. Total RNA was harvested for a 7,500 human cDNA microarray. Hybridizations were carried out in accordance with a 10 sample analysis of variance (ANOVA) statistical model. One thousand one hundred sixteen genes had measurable expression 2 standard deviations above background and 50% of spots for any given sample for all hybridizations were positive. Expression values of significantly varying genes were clustered and a list of 408 genes (P < 0.05) with a 1.5 or greater fold change in at least one time point were chosen for further analysis. Seventy eight changed in a time-dependent manner with laminin-10 treatment, 85 changed with laminin-5, and 13 showed changes with both treatments. The 408 genes that passed a paired t-test in at least one time-dependent category were further analyzed using Pathway Miner. One of the largest gene association networks involved signal transduction in the growth factor-MAP kinase pathways. EGFR was validated by real-time PCR and laminin-10 mediated cell adhesion activated EGFR in DU-145 cells. Both laminins appear to be important signal transducers in prostate cancer.
Collapse
Affiliation(s)
- Robert Calaluce
- Arizona Cancer Center, University of Arizona Health Sciences Center, Tucson, Arizona 85724-5024, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lotem J, Sachs L. Epigenetics and the plasticity of differentiation in normal and cancer stem cells. Oncogene 2006; 25:7663-72. [PMID: 16847453 DOI: 10.1038/sj.onc.1209816] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Embryonic stem cells are characterized by their differentiation to all cell types during embryogenesis. In adult life, different tissues also have somatic stem cells, called adult stem cells, which in specific niches can undergo multipotent differentiation. The use of these adult stem cells has considerable therapeutic potential for the regeneration of damaged tissues. In both embryonic and adult stem cells, differentiation is controlled by epigenetic mechanisms, and the plasticity of differentiation in these cells is associated with transcription accessibility for genes expressed in different normal tissues. Abnormalities in genetic and/or epigenetic controls can lead to development of cancer, which is maintained by self-renewing cancer stem cells. Although the genetic abnormalities produce defects in growth and differentiation in cancer stem cells, these cells have not always lost the ability to undergo differentiation through epigenetic changes that by-pass the genomic abnormalities, thus creating the basis for differentiation therapy. Like normal stem cells, cancer stem cells can show plasticity for differentiation. This plasticity of cancer stem cells is also associated with transcription accessibility for genes that are normally expressed in different tissues, including tissues other than those from which the cancers originated. This broad transcription accessibility can also contribute to the behavior of cancer cells by overexpressing genes that promote cell viability, growth and metastasis.
Collapse
Affiliation(s)
- J Lotem
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
27
|
Rehemtulla A, Ross BD. A review of the past, present, and future directions of neoplasia. Neoplasia 2006; 7:1039-46. [PMID: 16354585 PMCID: PMC1501177 DOI: 10.1593/neo.05793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
28
|
Coming of Age in the Life of Neoplasia. Neoplasia 2004. [DOI: 10.1593/neo.6-6ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|