1
|
Wenta T, Nastaly P, Lipinska B, Manninen A. Remodeling of the extracellular matrix by serine proteases as a prerequisite for cancer initiation and progression. Matrix Biol 2024; 134:197-219. [PMID: 39500383 DOI: 10.1016/j.matbio.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/16/2024] [Accepted: 10/31/2024] [Indexed: 11/25/2024]
Abstract
The extracellular matrix (ECM) serves as a physical scaffold for tissues that is composed of structural proteins such as laminins, collagens, proteoglycans and fibronectin, forming a three dimensional network, and a wide variety of other matrix proteins with ECM-remodeling and signaling functions. The activity of ECM-associated signaling proteins is tightly regulated. Thus, the ECM serves as a reservoir for water and growth regulatory signals. The ECM architecture is dynamically modulated by multiple serine proteases that process both structural and signaling proteins to regulate physiological processes such as organogenesis and tissue homeostasis but they also contribute to pathological events, especially cancer progression. Here, we review the current literature regarding the role of ECM remodeling by serine proteases (KLKs, uPA, furin, HtrAs, granzymes, matriptase, hepsin) in tumorigenesis.
Collapse
Affiliation(s)
- Tomasz Wenta
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Poland.
| | - Paulina Nastaly
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Barbara Lipinska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Poland
| | - Aki Manninen
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
2
|
Belitškin D, Munne P, Pant SM, Anttila JM, Suleymanova I, Belitškina K, Kirchhofer D, Janetka J, Käsper T, Jalil S, Pouwels J, Tervonen TA, Klefström J. Hepsin promotes breast tumor growth signaling via the TGFβ-EGFR axis. Mol Oncol 2024; 18:547-561. [PMID: 37872868 PMCID: PMC10920082 DOI: 10.1002/1878-0261.13545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/15/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023] Open
Abstract
Hepsin, a type II transmembrane serine protease, is commonly overexpressed in prostate and breast cancer. The hepsin protein is stabilized by the Ras-MAPK pathway, and, downstream, this protease regulates the degradation of extracellular matrix components and activates growth factor pathways, such as the hepatocyte growth factor (HGF) and transforming growth factor beta (TGFβ) pathway. However, how exactly active hepsin promotes cell proliferation machinery to sustain tumor growth is not fully understood. Here, we show that genetic deletion of the gene encoding hepsin (Hpn) in a WAP-Myc model of aggressive MYC-driven breast cancer inhibits tumor growth in the primary syngrafted sites and the growth of disseminated tumors in the lungs. The suppression of tumor growth upon loss of hepsin was accompanied by downregulation of TGFβ and EGFR signaling together with a reduction in epidermal growth factor receptor (EGFR) protein levels. We further demonstrate in 3D cultures of patient-derived breast cancer explants that both basal TGFβ signaling and EGFR protein expression are inhibited by neutralizing antibodies or small-molecule inhibitors of hepsin. The study demonstrates a role for hepsin as a regulator of cell proliferation and tumor growth through TGFβ and EGFR pathways, warranting consideration of hepsin as a potential indirect upstream target for therapeutic inhibition of TGFβ and EGFR pathways in cancer.
Collapse
Affiliation(s)
- Denis Belitškin
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of MedicineUniversity of HelsinkiFinland
| | - Pauliina Munne
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of MedicineUniversity of HelsinkiFinland
| | - Shishir M. Pant
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of MedicineUniversity of HelsinkiFinland
| | - Johanna M. Anttila
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of MedicineUniversity of HelsinkiFinland
| | - Ilida Suleymanova
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of MedicineUniversity of HelsinkiFinland
| | - Kati Belitškina
- Pathology DepartmentNorth Estonia Medical CentreTallinnEstonia
| | - Daniel Kirchhofer
- Department of Early Discovery BiochemistryGenentech, Inc.South San FranciscoCAUSA
| | - James Janetka
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMOUSA
| | | | - Sami Jalil
- Stem Cells and Metabolism Research Program, Faculty of MedicineUniversity of HelsinkiFinland
| | - Jeroen Pouwels
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of MedicineUniversity of HelsinkiFinland
| | - Topi A. Tervonen
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of MedicineUniversity of HelsinkiFinland
| | - Juha Klefström
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of MedicineUniversity of HelsinkiFinland
- Foundation for the Finnish Cancer Institute, Helsinki & FICAN SouthHelsinki University HospitalFinland
| |
Collapse
|
3
|
Schmid R, Kaiser J, Willbold R, Walther N, Wittig R, Lindén M. Towards a simple in vitro surface chemistry pre-screening method for nanoparticles to be used for drug delivery to solid tumours. Biomater Sci 2023; 11:6287-6298. [PMID: 37551433 DOI: 10.1039/d3bm00966a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
An efficient nanoparticulate drug carrier intended for chemotherapy based on intravenous administration must exhibit a long enough blood circulation time, a good penetrability into the tumour volume, as well as an efficient uptake by cancer cells. Limiting factors for the therapeutic outcome in vivo are recognition of the nanoparticles as foreign objects, which triggers nanoparticle uptake by defence organs rich in macrophages, e.g. liver and spleen, on the time-scale of accumulation and uptake in/by the tumour. However, the development of nanomedicine towards efficient nanoparticle-based delivery to solid tumours is hampered by the lack of simple, reproducible, cheap, and predictive means for early identification of promising nanoparticle formulations. The surface chemistry of nanoparticles is known to be the most important determinant for the biological fate of nanoparticles, as it influences the extent of serum protein adsorption, and also the relative composition of the protein corona. Here we preliminarily evaluate an extremely simple screening method for nanoparticle surface chemistry pre-optimization based on nanoparticle uptake in vitro by PC-3 cancer cells and THP-1 macrophages. Only when both selectivity for the cancer cells as well as the extent of nanoparticle uptake are taken into consideration do the in vitro results mirror literature results obtained for small animal models. Furthermore, although not investigated here, the screening method does also lend itself to the study of actively targeted nanoparticles.
Collapse
Affiliation(s)
- Roman Schmid
- Inorganic Chemistry II, Albert-Einstein-Allee 11, Ulm University, 89081 Ulm, Germany.
| | - Juliane Kaiser
- Institute for Laser Technologies in Medicine & Metrology (ILM) at Ulm University, Helmholtzstrasse 12, 89081 Ulm, Germany.
| | - Ramona Willbold
- Institute for Laser Technologies in Medicine & Metrology (ILM) at Ulm University, Helmholtzstrasse 12, 89081 Ulm, Germany.
| | - Nomusa Walther
- Institute for Laser Technologies in Medicine & Metrology (ILM) at Ulm University, Helmholtzstrasse 12, 89081 Ulm, Germany.
| | - Rainer Wittig
- Institute for Laser Technologies in Medicine & Metrology (ILM) at Ulm University, Helmholtzstrasse 12, 89081 Ulm, Germany.
| | - Mika Lindén
- Inorganic Chemistry II, Albert-Einstein-Allee 11, Ulm University, 89081 Ulm, Germany.
| |
Collapse
|
4
|
Koistinen H, Kovanen RM, Hollenberg MD, Dufour A, Radisky ES, Stenman UH, Batra J, Clements J, Hooper JD, Diamandis E, Schilling O, Rannikko A, Mirtti T. The roles of proteases in prostate cancer. IUBMB Life 2023; 75:493-513. [PMID: 36598826 PMCID: PMC10159896 DOI: 10.1002/iub.2700] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/22/2022] [Indexed: 01/05/2023]
Abstract
Since the proposition of the pro-invasive activity of proteolytic enzymes over 70 years ago, several roles for proteases in cancer progression have been established. About half of the 473 active human proteases are expressed in the prostate and many of the most well-characterized members of this enzyme family are regulated by androgens, hormones essential for development of prostate cancer. Most notably, several kallikrein-related peptidases, including KLK3 (prostate-specific antigen, PSA), the most well-known prostate cancer marker, and type II transmembrane serine proteases, such as TMPRSS2 and matriptase, have been extensively studied and found to promote prostate cancer progression. Recent findings also suggest a critical role for proteases in the development of advanced and aggressive castration-resistant prostate cancer (CRPC). Perhaps the most intriguing evidence for this role comes from studies showing that the protease-activated transmembrane proteins, Notch and CDCP1, are associated with the development of CRPC. Here, we review the roles of proteases in prostate cancer, with a special focus on their regulation by androgens.
Collapse
Affiliation(s)
- Hannu Koistinen
- Department of Clinical Chemistry and Haematology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Finland
| | - Ruusu-Maaria Kovanen
- Department of Clinical Chemistry and Haematology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Finland
- Department of Pathology, HUS Diagnostic Centre, Helsinki University Hospital, Helsinki, Finland
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology and Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Antoine Dufour
- Department of Physiology & Pharmacology and Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Evette S. Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, U.S.A
| | - Ulf-Håkan Stenman
- Department of Clinical Chemistry and Haematology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Finland
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - John D. Hooper
- Mater Research Institute, The University of Queensland, Brisbane, Australia
| | - Eleftherios Diamandis
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Oliver Schilling
- Institute for Surgical Pathology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Antti Rannikko
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Finland
- Department of Urology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tuomas Mirtti
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Finland
- Department of Pathology, HUS Diagnostic Centre, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
5
|
Lu L, Cole A, Huang D, Wang Q, Guo Z, Yang W, Lu J. Clinical Significance of Hepsin and Underlying Signaling Pathways in Prostate Cancer. Biomolecules 2022; 12:biom12020203. [PMID: 35204704 PMCID: PMC8961580 DOI: 10.3390/biom12020203] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 02/04/2023] Open
Abstract
The hepsin gene encodes a type II transmembrane serine protease. Previous studies have shown the overexpression of hepsin in prostate cancer, and the dysregulation of hepsin promotes cancer cell proliferation, migration, and metastasis in vitro and in vivo. The review incorporated with our work showed that hepsin expression levels were specifically increased in prostate cancer, and higher expression in metastatic tumors than in primary tumors was also observed. Moreover, increased expression was associated with poor outcomes for patients with prostate cancer. Using in silico protein–protein interaction prediction, mechanistic analysis showed that hepsin interacted with eight other oncogenic proteins, whose expression was significantly correlated with hepsin expression in prostate cancer. The oncogenic functions of hepsin are mainly linked to proteolytic activities that disrupt epithelial integrity and regulatorily interact with other genes to influence cell-proliferation, EMT/metastasis, inflammatory, and tyrosine-kinase-signaling pathways. Moreover, genomic amplifications of hepsin, not deletions or other alterations, were significantly associated with prostate cancer metastasis. Targeting hepsin using a specific inhibitor or antibodies significantly attenuates its oncogenic behaviors. Therefore, hepsin could be a novel biomarker and therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Lucy Lu
- GoPath Laboratories, Buffalo Grove, IL 60089, USA; (L.L.); (D.H.); (Q.W.); (Z.G.)
| | - Adam Cole
- TruCore Pathology, Little Rock, AR 72204, USA;
| | - Dan Huang
- GoPath Laboratories, Buffalo Grove, IL 60089, USA; (L.L.); (D.H.); (Q.W.); (Z.G.)
| | - Qiang Wang
- GoPath Laboratories, Buffalo Grove, IL 60089, USA; (L.L.); (D.H.); (Q.W.); (Z.G.)
| | - Zhongming Guo
- GoPath Laboratories, Buffalo Grove, IL 60089, USA; (L.L.); (D.H.); (Q.W.); (Z.G.)
| | - Wancai Yang
- GoPath Laboratories, Buffalo Grove, IL 60089, USA; (L.L.); (D.H.); (Q.W.); (Z.G.)
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Correspondence: (W.Y.); (J.L.)
| | - Jim Lu
- GoPath Laboratories, Buffalo Grove, IL 60089, USA; (L.L.); (D.H.); (Q.W.); (Z.G.)
- Correspondence: (W.Y.); (J.L.)
| |
Collapse
|
6
|
Wei X, Xu L, Jeddo SFA, Li K, Li X, Li J. MARK2 enhances cisplatin resistance via PI3K/AKT/NF-κB signaling pathway in osteosarcoma cells. Am J Transl Res 2020; 12:1807-1823. [PMID: 32509178 PMCID: PMC7270034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Osteosarcoma is the most common primary bone malignancy found in children and young adults. Chemotherapy resistance, especially to cisplatin, presents a major clinical challenge in the treatment and prognosis of osteosarcoma. New biomarkers and mechanisms of cisplatin resistance in osteosarcoma are urgently needed due to poor survival outcomes and currently inadequate treatments. In this study, we investigate the role and potential mechanisms of microtubule-affinity regulating kinase2 (MARK2) during osteosarcoma cisplatin resistance. Gene Expression Omnibus dataset analyses indicated that high MARK2 expression was associated with poor prognosis and may positively correlate with chemoresistance. Moreover, we showed that MARK2 was significantly upregulated in osteosarcoma cells compared with normal cells. The overexpression and inhibition of MARK2 promoted and suppressed, respectively, cisplatin resistance in osteosarcoma cells in vitro and in vivo. Mechanistically, MARK2 overexpression enhanced P-glycoprotein expression and decreased cell apoptosis through PI3K/AKT/NF-κB signaling pathway activation, resulting in cisplatin resistance. Our results suggest that high MARK2 expression can enhance cisplatin resistance in osteosarcoma cells, supporting the potential of MARK2 as a new therapeutic target and biomarker for predicting cisplatin resistance in osteosarcoma.
Collapse
Affiliation(s)
- Xianfu Wei
- Department of Orthopedics, Qilu Hospital, Shandong UniversityJinan 250012, Shandong, China
| | - Liang Xu
- Department of Orthopedics, Qilu Hospital, Shandong UniversityJinan 250012, Shandong, China
- Department of Orthopedics, Affiliated Hospital of Shandong Academy of Medical SciencesJinan 250031, Shandong, China
| | - Salim FA Jeddo
- Department of Orthopedics, Qilu Hospital, Shandong UniversityJinan 250012, Shandong, China
| | - Ka Li
- Department of Orthopedics, Qilu Hospital, Shandong UniversityJinan 250012, Shandong, China
| | - Xin Li
- Department of Orthopedics, Qilu Hospital, Shandong UniversityJinan 250012, Shandong, China
| | - Jianmin Li
- Department of Orthopedics, Qilu Hospital, Shandong UniversityJinan 250012, Shandong, China
| |
Collapse
|
7
|
Abstract
Over the last two decades, a novel subgroup of serine proteases, the cell surface-anchored serine proteases, has emerged as an important component of the human degradome, and several members have garnered significant attention for their roles in cancer progression and metastasis. A large body of literature describes that cell surface-anchored serine proteases are deregulated in cancer and that they contribute to both tumor formation and metastasis through diverse molecular mechanisms. The loss of precise regulation of cell surface-anchored serine protease expression and/or catalytic activity may be contributing to the etiology of several cancer types. There is therefore a strong impetus to understand the events that lead to deregulation at the gene and protein levels, how these precipitate in various stages of tumorigenesis, and whether targeting of selected proteases can lead to novel cancer intervention strategies. This review summarizes current knowledge about cell surface-anchored serine proteases and their role in cancer based on biochemical characterization, cell culture-based studies, expression studies, and in vivo experiments. Efforts to develop inhibitors to target cell surface-anchored serine proteases in cancer therapy will also be summarized.
Collapse
|
8
|
Excess hepsin proteolytic activity limits oncogenic signaling and induces ER stress and autophagy in prostate cancer cells. Cell Death Dis 2019; 10:601. [PMID: 31399560 PMCID: PMC6689070 DOI: 10.1038/s41419-019-1830-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/05/2019] [Accepted: 07/22/2019] [Indexed: 02/06/2023]
Abstract
The serine protease hepsin is frequently overexpressed in human prostate cancer (PCa) and is associated with matrix degradation and PCa progression in mice. Curiously, low expression of hepsin is associated with poor survival in different cancer types, and transgenic overexpression of hepsin leads to loss of viability in various cancer cell lines. Here, by comparing isogenic transfectants of the PCa cell line PC-3 providing inducible overexpression of wild-type hepsin (HPN) vs. the protease-deficient mutant HPNS353A, we were able to attribute hepsin-mediated tumor-adverse effects to its excess proteolytic activity. A stem-like expression signature of surface markers and adhesion molecules, Notch intracellular domain release, and increased pericellular protease activity were associated with low expression levels of wild-type hepsin, but were partially lost in response to overexpression. Instead, overexpression of wild-type hepsin, but not of HPNS353A, induced relocalization of the protein to the cytoplasm, and increased autophagic flux in vitro as well as LC3B punctae frequency in tumor xenografts. Confocal microscopy revealed colocalization of wild-type hepsin with both LC3B punctae as well as with the autophagy cargo receptor p62/SQSTM1. Overexpression of wild type, but not protease-deficient hepsin induced expression and nuclear presence of CHOP, indicating activation of the unfolded protein response and ER-associated protein degradation (ERAD). Whereas inhibitors of ER stress and secretory protein trafficking slightly increased viability, combined inhibition of the ubiquitin-proteasome degradation pathway (by bortezomib) with either ER stress (by salubrinal) or autophagy (by bafilomycin A1) revealed a significant decrease of viability during overexpression of wild-type hepsin in PC-3 cells. Our results demonstrate that a precise control of Hepsin proteolytic activity is critical for PCa cell fate and suggest, that the interference with ERAD could be a promising therapeutic option, leading to induction of proteotoxicity in hepsin-overexpressing tumors.
Collapse
|
9
|
Zhang C, Zhang M, Song S. Cathepsin D enhances breast cancer invasion and metastasis through promoting hepsin ubiquitin-proteasome degradation. Cancer Lett 2018; 438:105-115. [PMID: 30227221 DOI: 10.1016/j.canlet.2018.09.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 11/16/2022]
Abstract
Hepsin is required for the growth and maintenance of normal morphology, as well as for cell motility and development, initiation of blood coagulation and pro-inflammatory immune response. Here we showed that Cathepsin D (CtsD) as a novel protein is involved in the regulation of hepsin. CtsD destabilizes hepsin by promoting its ubiquitylation and subsequent proteasomal degradation in breast cancer cells. Breast cancer tissue microarray also indicated that hepsin expression was negatively correlated with CtsD by immunohistochemistry. Overexpression of CtsD promoted breast cancer cell migration, invasion and metastasis by enhancing the expression of intercellular cell adhesion molecule-1 (ICAM-1) in vitro and in vivo. These effects were inhibited by ectopic hepsin expression. Taken together, our data reveal a critical CtsD-hepsin signaling axis in migration and metastasis, which may contribute to a better understanding of the function and molecular mechanism in breast cancer progression.
Collapse
Affiliation(s)
- Chunyi Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Mingming Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Shushu Song
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| |
Collapse
|
10
|
Abstract
PURPOSE Endometrial carcinoma is the sixth most common cancer in women worldwide and the most common invasive cancer of the female genital tract in developed countries. It is hoped that through a better understanding of the alterations implicated in endometrial cancer pathogenesis and prognosis, a more complete profile of risk factors and targeted therapy can be developed. Hepsin is a member of the type II transmembrane serine protease family. The importance of hepsin in prostate cancer has been demonstrated by several studies. However, the role of hepsin in endometrial carcinoma is yet to be identified. This study aimed to evaluate the immunohistochemical expression of hepsin in endometrial carcinoma, trying to explore its diagnostic and prognostic value. MATERIALS AND METHODS This retrospective study was conducted on 27 endometrial carcinoma and 18 endometrial hyperplasia cases. Immunohistochemical expression of hepsin was evaluated in tissue specimens and results were correlated with the available clinicopathlogic parameters. RESULTS Positive hepsin expression was seen in all (100%) carcinoma and 17/18 (94.44%) endometrial hyperplasia cases. The H-score of hepsin expression in endometrial carcinoma was significantly higher than that of hyperplasia cases (P=0.012). A significant negative association was found between hepsin expression in endometrial carcinoma cases regarding the grade and the size of tumors (P=0.018 and 0.008, respectively) as well as myometrial invasion (P=0.027). CONCLUSIONS Hepsin could play an important role in the pathogenesis and the early carcinogenesis of endometrial carcinoma and could serve as a prognostic biomarker in this tumor.
Collapse
|
11
|
Sperling S, Aung T, Martin S, Rohde V, Ninkovic M. Riluzole: a potential therapeutic intervention in human brain tumor stem-like cells. Oncotarget 2017; 8:96697-96709. [PMID: 29228563 PMCID: PMC5722515 DOI: 10.18632/oncotarget.18043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 05/15/2017] [Indexed: 11/30/2022] Open
Abstract
A small subpopulation of tumor stem-like cells has the capacity to initiate tumors and mediate radio- and chemoresistance in diverse cancers hence also in glioblastoma (GBM). It has been reported that this capacity of tumor initiation in the brain is mainly dependent on the body's nutrient supply. This population of so-called brain tumor initiating or brain tumor stem-like cells (BTSCs) is able to extract nutrients like glucose with a higher affinity. Riluzole, a drug approved for treating amyotrophic lateral sclerosis (ALS), was reported to possess anticancer properties, affecting the glutamate metabolism. We report that riluzole treatment inhibits the growth of brain tumor stem-like cells enriched cultures isolated from two human glioblastomas. The effects of riluzole on these cells were associated with an inhibition of a poor prognostic indicator: glucose transporter 3 (GLUT3). A decrease in GLUT3 is associated with a decrease in the p-Akt/HIF1α pathway. Further, downregulation of the DNA (Cytosine-5-)-methyltransferase 1 (DNMT1) gene that causes hypermethylation of various tumor-suppressor genes and leads to a poor prognosis in GBM, was detected. Two hallmarks of cancer cells-proliferation and cell death-were positively influenced by riluzole treatment. Finally, we observed that riluzole reduced the tumor growth in in vivo CAM assay, suggesting it could be a possible synergistic drug for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Swetlana Sperling
- The Translational Neurooncology Research Group, Department of Neurosurgery, University Medical Center Göttingen, University Göttingen, Göttingen, Germany
| | - Thiha Aung
- Center of Plastic, Hand and Reconstructive Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Sabine Martin
- Department of Molecular Biology of Neuronal Signals, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Veit Rohde
- The Translational Neurooncology Research Group, Department of Neurosurgery, University Medical Center Göttingen, University Göttingen, Göttingen, Germany
| | - Milena Ninkovic
- The Translational Neurooncology Research Group, Department of Neurosurgery, University Medical Center Göttingen, University Göttingen, Göttingen, Germany
| |
Collapse
|
12
|
Doxycycline directly targets PAR1 to suppress tumor progression. Oncotarget 2017; 8:16829-16842. [PMID: 28187433 PMCID: PMC5370004 DOI: 10.18632/oncotarget.15166] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/24/2017] [Indexed: 01/16/2023] Open
Abstract
Doxycycline have been reported to exert anti-cancer activity and have been assessed as anti-cancer agents in clinical trials. However, the direct targets of doxycycline in cancer cells remain unclear. In this study, we used a chemical proteomics approach to identify the Protease-activated receptor 1 (PAR1) as a specific target of inhibition of doxycycline. Binding assays and single-molecule imaging assays were performed to confirm the inhibition of doxycycline to PAR1. The effect of doxycycline on multi-omics and cell functions were assessed based on a PAR1/thrombin model. Molecular docking and molecular dynamic simulations revealed that doxycycline interacts with key amino acids in PAR1. Mutation of PAR1 further confirmed the computation-based results. Moreover, doxycycline provides highly selective inhibition of PAR1 signaling in tumors in vitro and in vivo. Using pathological clinical samples co-stained for doxycycline and PAR1, it was found that doxycycline fluorescence intensity and PAR1 expression shown a clear positive correlation. Thus, doxycycline may be a useful targeted anti-cancer drug that should be further investigated in clinical trials.
Collapse
|
13
|
Li K, Li X, Tian J, Wang H, Pan J, Li J. Downregulation of DNA-PKcs suppresses P-gp expression via inhibition of the Akt/NF-κB pathway in CD133-positive osteosarcoma MG-63 cells. Oncol Rep 2016; 36:1973-80. [DOI: 10.3892/or.2016.4991] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 04/22/2016] [Indexed: 11/06/2022] Open
|
14
|
Vieira FQ, Costa-Pinheiro P, Almeida-Rios D, Graça I, Monteiro-Reis S, Simões-Sousa S, Carneiro I, Sousa EJ, Godinho MI, Baltazar F, Henrique R, Jerónimo C. SMYD3 contributes to a more aggressive phenotype of prostate cancer and targets Cyclin D2 through H4K20me3. Oncotarget 2016; 6:13644-57. [PMID: 25980436 PMCID: PMC4537039 DOI: 10.18632/oncotarget.3767] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 04/13/2015] [Indexed: 01/10/2023] Open
Abstract
Prostate cancer (PCa) is one of the most incident cancers worldwide but clinical and pathological parameters have limited ability to discriminate between clinically significant and indolent PCa. Altered expression of histone methyltransferases and histone methylation patterns are involved in prostate carcinogenesis. SMYD3 transcript levels have prognostic value and discriminate among PCa with different clinical aggressiveness, so we decided to investigate its putative oncogenic role on PCa. We silenced SMYD3 and assess its impact through in vitro (cell viability, cell cycle, apoptosis, migration, invasion assays) and in vivo (tumor formation, angiogenesis). We evaluated SET domain's impact in PCa cells' phenotype. Histone marks deposition on SMYD3 putative target genes was assessed by ChIP analysis. Knockdown of SMYD3 attenuated malignant phenotype of LNCaP and PC3 cell lines. Deletions affecting the SET domain showed phenotypic impact similar to SMYD3 silencing, suggesting that tumorigenic effect is mediated through its histone methyltransferase activity. Moreover, CCND2 was identified as a putative target gene for SMYD3 transcriptional regulation, through trimethylation of H4K20. Our results support a proto-oncogenic role for SMYD3 in prostate carcinogenesis, mainly due to its methyltransferase enzymatic activity. Thus, SMYD3 overexpression is a potential biomarker for clinically aggressive disease and an attractive therapeutic target in PCa.
Collapse
Affiliation(s)
- Filipa Quintela Vieira
- Cancer Biology and Epigenetics Group, Research Center, Portuguese Oncology Institute, Porto, Portugal.,School of Allied Health Sciences (ESTSP), Polytechnic of Porto, Porto, Portugal
| | - Pedro Costa-Pinheiro
- Cancer Biology and Epigenetics Group, Research Center, Portuguese Oncology Institute, Porto, Portugal
| | - Diogo Almeida-Rios
- Cancer Biology and Epigenetics Group, Research Center, Portuguese Oncology Institute, Porto, Portugal.,Departments of Pathology, Portuguese Oncology Institute, Porto, Portugal
| | - Inês Graça
- Cancer Biology and Epigenetics Group, Research Center, Portuguese Oncology Institute, Porto, Portugal.,School of Allied Health Sciences (ESTSP), Polytechnic of Porto, Porto, Portugal
| | - Sara Monteiro-Reis
- Cancer Biology and Epigenetics Group, Research Center, Portuguese Oncology Institute, Porto, Portugal.,Departments of Pathology, Portuguese Oncology Institute, Porto, Portugal
| | - Susana Simões-Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Isa Carneiro
- Cancer Biology and Epigenetics Group, Research Center, Portuguese Oncology Institute, Porto, Portugal.,Departments of Pathology, Portuguese Oncology Institute, Porto, Portugal
| | - Elsa Joana Sousa
- Cancer Biology and Epigenetics Group, Research Center, Portuguese Oncology Institute, Porto, Portugal
| | - Maria Inês Godinho
- Departments of Immunology, Portuguese Oncology Institute, Porto, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center, Portuguese Oncology Institute, Porto, Portugal.,Departments of Pathology, Portuguese Oncology Institute, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center, Portuguese Oncology Institute, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
15
|
Goswami R, Wohlfahrt G, Törmäkangas O, Moilanen A, Lakshminarasimhan A, Nagaraj J, Arumugam KN, Mukherjee S, Chacko AR, Krishnamurthy NR, Jaleel M, Palakurthy RK, Samiulla DS, Ramachandra M. Structure-guided discovery of 2-aryl/pyridin-2-yl-1H-indole derivatives as potent and selective hepsin inhibitors. Bioorg Med Chem Lett 2015; 25:5309-14. [DOI: 10.1016/j.bmcl.2015.09.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/15/2015] [Accepted: 09/17/2015] [Indexed: 10/23/2022]
|
16
|
Pelkonen M, Luostari K, Tengström M, Ahonen H, Berdel B, Kataja V, Soini Y, Kosma VM, Mannermaa A. Low expression levels of hepsin and TMPRSS3 are associated with poor breast cancer survival. BMC Cancer 2015; 15:431. [PMID: 26014348 PMCID: PMC4445813 DOI: 10.1186/s12885-015-1440-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 05/15/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Hepsin, (also called TMPRSS1) and TMPRSS3 are type II transmembrane serine proteases (TTSPs) that are involved in cancer progression. TTSPs can remodel extracellular matrix (ECM) and, when dysregulated, promote tumor progression and metastasis by inducing defects in basement membrane and ECM molecules. This study investigated whether the gene and protein expression levels of these TTSPs were associated with breast cancer characteristics or survival. METHODS Immunohistochemical staining was used to evaluate hepsin levels in 372 breast cancer samples and TMPRSS3 levels in 373 samples. TMPRSS1 mRNA expression was determined in 125 invasive and 16 benign breast tumor samples, and TMPRSS3 mRNA expression was determined in 167 invasive and 23 benign breast tumor samples. The gene and protein expression levels were analyzed for associations with breast cancer-specific survival and clinicopathological parameters. RESULTS Low TMPRSS1 and TMPRSS3 mRNA expression levels were independent prognostic factors for poor breast cancer survival during the 20-year follow-up (TMPRSS1, P = 0.023; HR, 2.065; 95 % CI, 1.106-3.856; TMPRSS3, P = 0.013; HR, 2.106; 95 % CI, 1.167-3.800). Low expression of the two genes at the mRNA and protein levels associated with poorer survival compared to high levels (log rank P-values 0.015-0.042). Low TMPRSS1 mRNA expression was also an independent marker of poor breast cancer prognosis in patients treated with radiotherapy (P = 0.034; HR, 2.344; 95 % CI, 1.065-5.160). Grade III tumors, large tumor size, and metastasis were associated with low mRNA and protein expression levels. CONCLUSIONS The results suggest that the TTSPs hepsin and TMPRSS3 may have similar biological functions in the molecular pathology of breast cancer. Low mRNA and protein expression levels of the studied TTSPs were prognostic markers of poor survival in breast cancer.
Collapse
Affiliation(s)
- Mikko Pelkonen
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Biocenter Kuopio and Cancer Center of Eastern Finland, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Imaging Center, Clinical Pathology, Kuopio University Hospital, P.O. Box 1777, FI-70211, Kuopio, Finland.
| | - Kaisa Luostari
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Biocenter Kuopio and Cancer Center of Eastern Finland, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Imaging Center, Clinical Pathology, Kuopio University Hospital, P.O. Box 1777, FI-70211, Kuopio, Finland.
| | - Maria Tengström
- Institute of Clinical Medicine, Oncology, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Cancer Center, Kuopio University Hospital, P.O. Box 1777, FI-70211, Kuopio, Finland.
| | - Hermanni Ahonen
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Biocenter Kuopio and Cancer Center of Eastern Finland, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Imaging Center, Clinical Pathology, Kuopio University Hospital, P.O. Box 1777, FI-70211, Kuopio, Finland.
| | - Bozena Berdel
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Biocenter Kuopio and Cancer Center of Eastern Finland, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Imaging Center, Clinical Pathology, Kuopio University Hospital, P.O. Box 1777, FI-70211, Kuopio, Finland.
| | - Vesa Kataja
- Institute of Clinical Medicine, Oncology, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Cancer Center, Kuopio University Hospital, P.O. Box 1777, FI-70211, Kuopio, Finland.
| | - Ylermi Soini
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Biocenter Kuopio and Cancer Center of Eastern Finland, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Imaging Center, Clinical Pathology, Kuopio University Hospital, P.O. Box 1777, FI-70211, Kuopio, Finland.
| | - Veli-Matti Kosma
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Biocenter Kuopio and Cancer Center of Eastern Finland, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Imaging Center, Clinical Pathology, Kuopio University Hospital, P.O. Box 1777, FI-70211, Kuopio, Finland.
| | - Arto Mannermaa
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Biocenter Kuopio and Cancer Center of Eastern Finland, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Imaging Center, Clinical Pathology, Kuopio University Hospital, P.O. Box 1777, FI-70211, Kuopio, Finland.
| |
Collapse
|
17
|
Tang X, Mahajan SS, Nguyen LT, Béliveau F, Leduc R, Simon JA, Vasioukhin V. Targeted inhibition of cell-surface serine protease Hepsin blocks prostate cancer bone metastasis. Oncotarget 2015; 5:1352-62. [PMID: 24657880 PMCID: PMC4012739 DOI: 10.18632/oncotarget.1817] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The development of effective therapies inhibiting prostate cancer progression and metastasis may substantially impact prostate cancer mortality and potentially reduce the rates of invasive treatments by enhancing the safety of active surveillance strategies. Hepsin (HPN) is a cell surface serine protease amplified in a subset of human sarcomas (7.2%), as well as in ovarian (10%), lung adeno (5.4%), lung squamous cell (4.5%), adenoid cystic (5%), breast (2.6%), uterine (1.7%) and colon (1.4%) carcinomas. While HPN is not amplified in prostate cancer, it is one of the most prominently overexpressed genes in the majority of human prostate tumors and genetic experiments in mice indicate that Hepsin promotes prostate cancer metastasis, particularly metastasis to the bone marrow. We report here the development, analysis and animal trial of the small-molecule Hepsin inhibitor HepIn-13. Long-term exposure to HepIn-13 inhibited bone, liver and lung metastasis in a murine model of metastatic prostate cancer. These findings indicate that inhibition of Hepsin with small-molecule compounds could provide an effective tool for attenuation of prostate cancer progression and metastasis.
Collapse
Affiliation(s)
- Xi Tang
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Cancer subclonal genetic architecture as a key to personalized medicine. Neoplasia 2014; 15:1410-20. [PMID: 24403863 DOI: 10.1593/neo.131972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 12/03/2013] [Accepted: 12/03/2013] [Indexed: 02/08/2023] Open
Abstract
The future of personalized oncological therapy will likely rely on evidence-based medicine to integrate all of the available evidence to delineate the most efficacious treatment option for the patient. To undertake evidence-based medicine through use of targeted therapy regimens, identification of the specific underlying causative mutation(s) driving growth and progression of a patient's tumor is imperative. Although molecular subtyping is important for planning and treatment, intraclonal genetic diversity has been recently highlighted as having significant implications for biopsy-based prognosis. Overall, delineation of the clonal architecture of a patient's cancer and how this will impact on the selection of the most efficacious therapy remain a topic of intense interest.
Collapse
|
19
|
Wittig R, Rosenholm JM, von Haartman E, Hemming J, Genze F, Bergman L, Simmet T, Lindén M, Sahlgren C. Active targeting of mesoporous silica drug carriers enhances γ-secretase inhibitor efficacy in an in vivo model for breast cancer. Nanomedicine (Lond) 2014; 9:971-87. [DOI: 10.2217/nnm.13.62] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Aim: In this article, we use an alternative cancer model for the evaluation of nanotherapy, and assess the impact of surface functionalization and active targeting of mesoporous silica nanoparticles (MSNPs) on therapeutic efficacy in vivo. Materials & methods: We used the chorioallantoic membrane xenograft assay to investigate the biodistribution and therapeutic efficacy of folate versus polyethyleneimine-functionalized γ-secretase inhibitor-loaded MSNPs in breast and prostate tumor models. Results: γ-secretase inhibitor-loaded MSNPs inhibited tumor growth in breast and prostate cancer xenografts. Folate conjugation improved the therapeutic outcome in folic acid receptor-positive breast cancer, but not in prostate cancer lacking the receptor. Conclusion: The results demonstrate that therapeutic efficacy is linked to cellular uptake of MSNPs as opposed to tumor accumulation, and show that MSNP-based delivery of γ-secretase inhibitors is therapeutically effective in both breast and prostate cancer. In this article, we present a model system for a medium-to-high throughput, cost-effective, quantitative evaluation of nanoparticulate drug carriers. Original submitted 12 November 2012; Revised submitted 8 February 2013
Collapse
Affiliation(s)
- Rainer Wittig
- Institute for Laser Technologies in Medicine & Metrology at Ulm University, Helmholtzstrasse 12, D-89081 Ulm, Germany
| | - Jessica M Rosenholm
- Center for Functional Materials, Laboratory for Physical Chemistry, Department of Natural Sciences, Åbo Akademi University, FI-20500 Turku, Finland
| | - Eva von Haartman
- Center for Functional Materials, Laboratory for Physical Chemistry, Department of Natural Sciences, Åbo Akademi University, FI-20500 Turku, Finland
| | - Jarl Hemming
- Wood & Paper Chemistry, Department of Chemical Engineering, Åbo Akademi University, FI-20500 Turku, Finland
| | - Felicitas Genze
- Institute of Pharmacology of Natural Products & Clinical Pharmacology, Ulm University, Helmholtzstrasse 20, D-89081 Ulm, Germany
| | - Lotta Bergman
- Inorganic Chemistry II, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Thomas Simmet
- Institute of Pharmacology of Natural Products & Clinical Pharmacology, Ulm University, Helmholtzstrasse 20, D-89081 Ulm, Germany
| | - Mika Lindén
- Inorganic Chemistry II, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Cecilia Sahlgren
- Department of Biomedical Engineering, Technical University of Eindhoven, 2612 Eindhoven, The Netherlands
| |
Collapse
|
20
|
Yuan YJ, Xu K, Wu W, Luo Q, Yu JL. Application of the chick embryo chorioallantoic membrane in neurosurgery disease. Int J Med Sci 2014; 11:1275-81. [PMID: 25419173 PMCID: PMC4239148 DOI: 10.7150/ijms.10443] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 10/13/2014] [Indexed: 11/26/2022] Open
Abstract
The chick embryo chorioallantoic membrane (CAM) is a highly vascularized extraembryonic membrane. Because of its ease of accessibility, extensive vascularization and immunodeficient environment, the CAM has been broadly used in the oncology, biology, pharmacy, and tissue regeneration research. The present review summarizes the application of the CAM in neurosurgery disease research. We focused on the use of the CAM as an assay for the research of glioma, vascular anomalies, Moyamoya Disease, and the blood-brain barrier.
Collapse
Affiliation(s)
- Yong-Jie Yuan
- Department of Neurosurgery, Jilin University First Hospital, Changchun 130021, China
| | - Kan Xu
- Department of Neurosurgery, Jilin University First Hospital, Changchun 130021, China
| | - Wei Wu
- Department of Neurosurgery, Jilin University First Hospital, Changchun 130021, China
| | - Qi Luo
- Department of Neurosurgery, Jilin University First Hospital, Changchun 130021, China
| | - Jin-Lu Yu
- Department of Neurosurgery, Jilin University First Hospital, Changchun 130021, China
| |
Collapse
|
21
|
Guo J, Li G, Tang J, Cao XB, Zhou QY, Fan ZJ, Zhu B, Pan XH. HLA-A2-restricted cytotoxic T lymphocyte epitopes from human hepsin as novel targets for prostate cancer immunotherapy. Scand J Immunol 2013; 78:248-57. [PMID: 23721092 DOI: 10.1111/sji.12083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 05/27/2013] [Indexed: 01/01/2023]
Abstract
Hepsin is a type II transmembrane serine protease that is overexpressed in prostate cancer, and it is associated with prostate cancer cellular migration and invasion. Therefore, HPN is a biomarker for prostate cancer. CD8(+) T cells play an important role in tumour immunity. This study predicted and identified HLA-A2-restricted cytotoxic T lymphocyte (CTL) epitopes in human hepsin protein. HLA-A2-restricted CTL epitopes were identified using the following four-step procedure: (1) a computer program generated predicted epitopes from the amino acid sequence of human hepsin; (2) an HLA-A2-binding assay detected the affinity of the predicted epitopes to the HLA-A2 molecule; (3) the primary T cell response against the predicted epitopes was stimulated in vitro; and (4) the induced CTLs towards different types of hepsin- or HLA-A2-expressing prostate cancer cells were detected. Five candidate peptides were identified. The effectors that were induced by human hepsin epitopes containing residues 229 to 237 (Hpn229; GLQLGVQAV), 268 to 276 (Hpn268; PLTEYIQPV) and 191 to 199 (Hpn199; SLLSGDWVL) effectively lysed LNCaP prostate cancer cells that were hepsin-positive and HLA-A2 matched. These peptide-specific CTLs did not lyse normal liver cells with low hepsin levels. Hpn229, Hpn268 and Hpn199 increased the frequency of IFN-γ-producing T cells compared with the negative peptide. These results suggest that the Hpn229, Hpn268 and Hpn199 epitopes are novel HLA-A2-restricted CTL epitopes that are capable of inducing hepsin-specific CTLs in vitro. Hpn229, Hpn268 and Hpn199 peptide-based vaccines may be useful for immunotherapy in patients with prostate cancer.
Collapse
Affiliation(s)
- J Guo
- The Research Center of Stem Cell, Tissue and Organ Engineering, Kunming General Hospital of PLA, Kunming, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Overcoming intratumor heterogeneity of polygenic cancer drug resistance with improved biomarker integration. Neoplasia 2013; 14:1278-89. [PMID: 23308059 DOI: 10.1593/neo.122096] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 12/11/2012] [Accepted: 12/11/2012] [Indexed: 12/14/2022] Open
Abstract
Improvements in technology and resources are helping to advance our understanding of cancer-initiating events as well as factors involved with tumor progression, adaptation, and evasion of therapy. Tumors are well known to contain diverse cell populations and intratumor heterogeneity affords neoplasms with a diverse set of biologic characteristics that can be used to evolve and adapt. Intratumor heterogeneity has emerged as a major hindrance to improving cancer patient care. Polygenic cancer drug resistance necessitates reconsidering drug designs to include polypharmacology in pursuit of novel combinatorial agents having multitarget activity to overcome the diverse and compensatory signaling pathways in which cancer cells use to survive and evade therapy. Advances will require integration of different biomarkers such as genomics and imaging to provide for more adequate elucidation of the spatially varying location, type, and extent of diverse intratumor signaling molecules to provide for a rationale-based personalized cancer medicine strategy.
Collapse
|
23
|
ERG induces epigenetic activation of Tudor domain-containing protein 1 (TDRD1) in ERG rearrangement-positive prostate cancer. PLoS One 2013; 8:e59976. [PMID: 23555854 PMCID: PMC3612037 DOI: 10.1371/journal.pone.0059976] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 02/19/2013] [Indexed: 11/19/2022] Open
Abstract
Background Overexpression of ERG transcription factor due to genomic ERG-rearrangements defines a separate molecular subtype of prostate tumors. One of the consequences of ERG accumulation is modulation of the cell’s gene expression profile. Tudor domain-containing protein 1 gene (TDRD1) was reported to be differentially expressed between TMPRSS2:ERG-negative and TMPRSS2:ERG-positive prostate cancer. The aim of our study was to provide a mechanistic explanation for the transcriptional activation of TDRD1 in ERG rearrangement-positive prostate tumors. Methodology/Principal Findings Gene expression measurements by real-time quantitative PCR revealed a remarkable co-expression of TDRD1 and ERG (r2 = 0.77) but not ETV1 (r2<0.01) in human prostate cancer in vivo. DNA methylation analysis by MeDIP-Seq and bisulfite sequencing showed that TDRD1 expression is inversely correlated with DNA methylation at the TDRD1 promoter in vitro and in vivo (ρ = −0.57). Accordingly, demethylation of the TDRD1 promoter in TMPRSS2:ERG-negative prostate cancer cells by DNA methyltransferase inhibitors resulted in TDRD1 induction. By manipulation of ERG dosage through gene silencing and forced expression we show that ERG governs loss of DNA methylation at the TDRD1 promoter-associated CpG island, leading to TDRD1 overexpression. Conclusions/Significance We demonstrate that ERG is capable of disrupting a tissue-specific DNA methylation pattern at the TDRD1 promoter. As a result, TDRD1 becomes transcriptionally activated in TMPRSS2:ERG-positive prostate cancer. Given the prevalence of ERG fusions, TDRD1 overexpression is a common alteration in human prostate cancer which may be exploited for diagnostic or therapeutic procedures.
Collapse
|
24
|
Targeted antivascular therapy with the apolipoprotein(a) kringle V, rhLK8, inhibits the growth and metastasis of human prostate cancer in an orthotopic nude mouse model. Neoplasia 2012; 14:335-43. [PMID: 22577348 DOI: 10.1593/neo.12380] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 03/12/2012] [Accepted: 03/13/2012] [Indexed: 11/18/2022] Open
Abstract
Antivascular therapy has emerged as a rational strategy to improve the treatment of androgen-independent prostate cancer owing to the necessity of establishing a vascular network for the growth and progression of the primary and metastatic tumor. We determined whether recombinant human apolipoprotein(a) kringle V, rhLK8, produces therapeutic efficacy in an orthotopic human prostate cancer animal model. Fifty thousand androgen-independent human prostate cancer cells (PC-3MM2) were injected into the prostate of nude mice. After 3 days, these mice were randomized to receive the vehicle solution (intraperitoneally [i.p.], daily), paclitaxel (8 mg/kg i.p., weekly), rhLK8 (50 mg/kg i.p., daily), or a combination of paclitaxel and rhLK8 for 4 weeks. Treatment with paclitaxel or rhLK8 alone did not show significant therapeutic effects on tumor incidence or on tumor size compared with the control group. The combination of rhLK8 and paclitaxel significantly reduced tumor size and incidence of lymph node metastasis. Significant reduction in microvessel density and cellular proliferation and induction of apoptosis of tumor cells, and tumor-associated endothelial cells, were also achieved. Similarly, PC-3MM2 tumors growing in the tibia showed significant suppression of tumor growth and lymph node metastasis by the combination treatment with rhLK8 and paclitaxel. The integrity of the bone was significantly preserved, and apoptosis of tumor cells and tumor-associated endothelial cells was increased. In conclusion, these results suggest that targeting the tumor microenvironment with the antivascular effect of rhLK8 combined with conventional cytotoxic chemotherapy could be a new and effective approach in the treatment of androgen-independent prostate cancer and their metastases.
Collapse
|
25
|
Chick chorioallantoic membrane (CAM) assay as an in vivo model to study the effect of newly identified molecules on ovarian cancer invasion and metastasis. Int J Mol Sci 2012; 13:9959-9970. [PMID: 22949841 PMCID: PMC3431839 DOI: 10.3390/ijms13089959] [Citation(s) in RCA: 261] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/27/2012] [Accepted: 08/02/2012] [Indexed: 01/08/2023] Open
Abstract
The majority of ovarian cancer patients present with advanced disease and despite aggressive treatment, prognosis remains poor. Significant improvement in ovarian cancer survival will require the development of more effective molecularly targeted therapeutics. Commonly, mouse models are used for the in vivo assessment of potential new therapeutic targets in ovarian cancer. However, animal models are costly and time consuming. Other models, such as the chick embryo chorioallantoic membrane (CAM) assay, are therefore an attractive alternative. CAM assays have been widely used to study angiogenesis and tumor invasion of colorectal, prostate and brain cancers. However, there have been limited studies that have used CAM assays to assess ovarian cancer invasion and metastasis. We have therefore developed a CAM assay protocol to monitor the metastatic properties of ovarian cancer cells (OVCAR-3, SKOV-3 and OV-90) and to study the effect of potential therapeutic molecules in vivo. The results from the CAM assay are consistent with cancer cell motility and invasion observed in in vitro assays. Our results demonstrate that the CAM assay is a robust and cost effective model to study ovarian cancer cell metastasis. It is therefore a very useful in vivo model for screening of potential novel therapeutics.
Collapse
|
26
|
DNA-PK mediates AKT activation and apoptosis inhibition in clinically acquired platinum resistance. Neoplasia 2012; 13:1069-80. [PMID: 22131882 DOI: 10.1593/neo.111032] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/20/2011] [Accepted: 09/23/2011] [Indexed: 01/04/2023] Open
Abstract
Clinical resistance to chemotherapy is a frequent event in cancer treatment and is closely linked to poor outcome. High-grade serous (HGS) ovarian cancer is characterized by p53 mutation and high levels of genomic instability. Treatment includes platinum-based chemotherapy and initial response rates are high; however, resistance is frequently acquired, at which point treatment options are largely palliative. Recent data indicate that platinum-resistant clones exist within the sensitive primary tumor at presentation, implying resistant cell selection after treatment with platinum chemotherapy. The AKT pathway is central to cell survival and has been implicated in platinum resistance. Here, we show that platinum exposure induces an AKT-dependent, prosurvival, DNA damage response in clinically platinum-resistant but not platinum-sensitive cells. AKT relocates to the nucleus of resistant cells where it is phosphorylated specifically on S473 by DNA-dependent protein kinase (DNA-PK), and this activation inhibits cisplatin-mediated apoptosis. Inhibition of DNA-PK or AKT, but not mTORC2, restores platinum sensitivity in a panel of clinically resistant HGS ovarian cancer cell lines: we also demonstrate these effects in other tumor types. Resensitization is associated with prevention of AKT-mediated BAD phosphorylation. Strikingly, in patient-matched sensitive cells, we do not see enhanced apoptosis on combining cisplatin with AKT or DNA-PK inhibition. Insulin-mediated activation of AKT is unaffected by DNA-PK inhibitor treatment, suggesting that this effect is restricted to DNA damage-mediated activation of AKT and that, clinically, DNA-PK inhibition might prevent platinum-induced AKT activation without interfering with normal glucose homeostasis, an unwanted toxicity of direct AKT inhibitors.
Collapse
|
27
|
The interconnectedness of cancer cell signaling. Neoplasia 2012; 13:1183-93. [PMID: 22241964 DOI: 10.1593/neo.111746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 12/14/2011] [Accepted: 12/14/2011] [Indexed: 11/18/2022] Open
Abstract
The elegance of fundamental and applied research activities have begun to reveal a myriad of spatial and temporal alterations in downstream signaling networks affected by cell surface receptor stimulation including G protein-coupled receptors and receptor tyrosine kinases. Interconnected biochemical pathways serve to integrate and distribute the signaling information throughout the cell by orchestration of complex biochemical circuits consisting of protein interactions and covalent modification processes. It is clear that scientific literature summarizing results from both fundamental and applied scientific research activities has served to provide a broad foundational biologic database that has been instrumental in advancing our continued understanding of underlying cancer biology. This article reflects on historical advances and the role of innovation in the competitive world of grant-sponsored research.
Collapse
|
28
|
DNA-PK mediates AKT activation and apoptosis inhibition in clinically acquired platinum resistance. Neoplasia 2011. [PMID: 22131882 DOI: 10.1593/neo.111032] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Clinical resistance to chemotherapy is a frequent event in cancer treatment and is closely linked to poor outcome. High-grade serous (HGS) ovarian cancer is characterized by p53 mutation and high levels of genomic instability. Treatment includes platinum-based chemotherapy and initial response rates are high; however, resistance is frequently acquired, at which point treatment options are largely palliative. Recent data indicate that platinum-resistant clones exist within the sensitive primary tumor at presentation, implying resistant cell selection after treatment with platinum chemotherapy. The AKT pathway is central to cell survival and has been implicated in platinum resistance. Here, we show that platinum exposure induces an AKT-dependent, prosurvival, DNA damage response in clinically platinum-resistant but not platinum-sensitive cells. AKT relocates to the nucleus of resistant cells where it is phosphorylated specifically on S473 by DNA-dependent protein kinase (DNA-PK), and this activation inhibits cisplatin-mediated apoptosis. Inhibition of DNA-PK or AKT, but not mTORC2, restores platinum sensitivity in a panel of clinically resistant HGS ovarian cancer cell lines: we also demonstrate these effects in other tumor types. Resensitization is associated with prevention of AKT-mediated BAD phosphorylation. Strikingly, in patient-matched sensitive cells, we do not see enhanced apoptosis on combining cisplatin with AKT or DNA-PK inhibition. Insulin-mediated activation of AKT is unaffected by DNA-PK inhibitor treatment, suggesting that this effect is restricted to DNA damage-mediated activation of AKT and that, clinically, DNA-PK inhibition might prevent platinum-induced AKT activation without interfering with normal glucose homeostasis, an unwanted toxicity of direct AKT inhibitors.
Collapse
|
29
|
Verma M, Patel P, Verma M. Biomarkers in prostate cancer epidemiology. Cancers (Basel) 2011; 3:3773-98. [PMID: 24213111 PMCID: PMC3763396 DOI: 10.3390/cancers3043773] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/26/2011] [Accepted: 09/26/2011] [Indexed: 01/09/2023] Open
Abstract
Understanding the etiology of a disease such as prostate cancer may help in identifying populations at high risk, timely intervention of the disease, and proper treatment. Biomarkers, along with exposure history and clinical data, are useful tools to achieve these goals. Individual risk and population incidence of prostate cancer result from the intervention of genetic susceptibility and exposure. Biochemical, epigenetic, genetic, and imaging biomarkers are used to identify people at high risk for developing prostate cancer. In cancer epidemiology, epigenetic biomarkers offer advantages over other types of biomarkers because they are expressed against a person's genetic background and environmental exposure, and because abnormal events occur early in cancer development, which includes several epigenetic alterations in cancer cells. This article describes different biomarkers that have potential use in studying the epidemiology of prostate cancer. We also discuss the characteristics of an ideal biomarker for prostate cancer, and technologies utilized for biomarker assays. Among epigenetic biomarkers, most reports indicate GSTP1 hypermethylation as the diagnostic marker for prostate cancer; however, NKX2-5, CLSTN1, SPOCK2, SLC16A12, DPYS, and NSE1 also have been reported to be regulated by methylation mechanisms in prostate cancer. Current challenges in utilization of biomarkers in prostate cancer diagnosis and epidemiologic studies and potential solutions also are discussed.
Collapse
Affiliation(s)
- Mukesh Verma
- Epidemiology and Genetics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institues of Health (NIH), 6130 Executive Blvd., Rockville, MD 20852, USA; E-Mail:
| | - Payal Patel
- Epidemiology and Genetics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institues of Health (NIH), 6130 Executive Blvd., Rockville, MD 20852, USA; E-Mail:
| | - Mudit Verma
- Laboratory of Cancer Biology and Genetics, Clinical Research Center, National Cancer Institute, National Institues of Health (NIH), 9000 Rockville Pike, Bethesda, MD 20892, USA; E-Mail:
| |
Collapse
|