1
|
Neale DA, Morris JC, Verrills NM, Ammit AJ. Understanding the regulatory landscape of protein phosphatase 2A (PP2A): Pharmacological modulators and potential therapeutics. Pharmacol Ther 2025; 269:108834. [PMID: 40023321 DOI: 10.1016/j.pharmthera.2025.108834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/20/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Protein phosphatase 2A (PP2A) is a ubiquitously expressed serine/threonine phosphatase with a diverse and integral role in cellular signalling pathways. Consequently, its dysfunction is frequently observed in disease states such as cancer, inflammation and Alzheimer's disease. A growing understanding of both PP2A and its endogenous regulatory proteins has presented numerous targets for therapeutic intervention. This provides important context for the dynamic control and dysregulation of PP2A function in disease states. Understanding the intricate regulation of PP2A signalling in disease has resulted in the development of novel pharmacological agents aimed at restoring cellular homeostasis. Herein we review the structure and function of PP2A together with pharmacological modulators, both endogenous (proteins) and exogenous (small molecules and peptides), with relevance to targeting PP2A as a future pharmacotherapeutic strategy.
Collapse
Affiliation(s)
- David A Neale
- School of Chemistry, UNSW Sydney, NSW 2052, Australia
| | | | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, NSW 2308, Australia; Precision Medicine Program, Hunter Medical Research Institute, New Lambton, NSW 2305, Australia
| | - Alaina J Ammit
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, Macquarie University, NSW, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia.
| |
Collapse
|
2
|
Wachter F, Nowak RP, Ficarro S, Marto J, Fischer ES. Structural characterization of methylation-independent PP2A assembly guides alphafold2Multimer prediction of family-wide PP2A complexes. J Biol Chem 2024; 300:107268. [PMID: 38582449 PMCID: PMC11087950 DOI: 10.1016/j.jbc.2024.107268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024] Open
Abstract
Dysregulation of phosphorylation-dependent signaling is a hallmark of tumorigenesis. Protein phosphatase 2 (PP2A) is an essential regulator of cell growth. One scaffold subunit (A) binds to a catalytic subunit (C) to form a core AC heterodimer, which together with one of many regulatory (B) subunits forms the active trimeric enzyme. The combinatorial number of distinct PP2A complexes is large, which results in diverse substrate specificity and subcellular localization. The detailed mechanism of PP2A assembly and regulation remains elusive and reports about an important role of methylation of the carboxy terminus of PP2A C are conflicting. A better understanding of the molecular underpinnings of PP2A assembly and regulation is critical to dissecting PP2A function in physiology and disease. Here, we combined biochemical reconstitution, mass spectrometry, X-ray crystallography, and functional assays to characterize the assembly of trimeric PP2A. In vitro studies demonstrated that methylation of the carboxy-terminus of PP2A C was dispensable for PP2A assembly in vitro. To corroborate these findings, we determined the X-ray crystal structure of the unmethylated PP2A Aα-B56ε-Cα trimer complex to 3.1 Å resolution. The experimental structure superimposed well with an Alphafold2Multimer prediction of the PP2A trimer. We then predicted models of all canonical PP2A complexes providing a framework for structural analysis of PP2A. In conclusion, methylation was dispensable for trimeric PP2A assembly and integrative structural biology studies of PP2A offered predictive models for all canonical PP2A complexes.
Collapse
Affiliation(s)
- Franziska Wachter
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Radosław P Nowak
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Scott Ficarro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jarrod Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
3
|
Yang X, Dai J, Wu C, Liu Z. Alzheimer's Disease and Cancer: Common Targets. Mini Rev Med Chem 2024; 24:983-1000. [PMID: 38037912 DOI: 10.2174/0113895575263108231031132404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/13/2023] [Accepted: 10/09/2023] [Indexed: 12/02/2023]
Abstract
There is growing epidemiologic evidence of an inverse association between cancer and AD. In addition, both cell survival and death are regulated by the same signaling pathways, and their abnormal regulation may be implicated in the occurrence and development of cancer and AD. Research shows that there may be a common molecular mechanism between cancer and AD. This review will discuss the role of GSK3, DAPK1, PP2A, P53 and CB2R in the pathogenesis of cancer and AD and describe the current research status of drug development based on these targets.
Collapse
Affiliation(s)
- Xueqing Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Jinlian Dai
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Chenglong Wu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Zongliang Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
4
|
Peris I, Romero-Murillo S, Vicente C, Narla G, Odero MD. Regulation and role of the PP2A-B56 holoenzyme family in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188953. [PMID: 37437699 DOI: 10.1016/j.bbcan.2023.188953] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Protein phosphatase 2A (PP2A) inactivation is common in cancer, leading to sustained activation of pro-survival and growth-promoting pathways. PP2A consists of a scaffolding A-subunit, a catalytic C-subunit, and a regulatory B-subunit. The functional complexity of PP2A holoenzymes arises mainly through the vast repertoire of regulatory B-subunits, which determine both their substrate specificity and their subcellular localization. Therefore, a major challenge for developing more effective therapeutic strategies for cancer is to identify the specific PP2A complexes to be targeted. Of note, the development of small molecules specifically directed at PP2A-B56α has opened new therapeutic avenues in both solid and hematological tumors. Here, we focus on the B56/PR61 family of PP2A regulatory subunits, which have a central role in directing PP2A tumor suppressor activity. We provide an overview of the mechanisms controlling the formation and regulation of these complexes, the pathways they control, and the mechanisms underlying their deregulation in cancer.
Collapse
Affiliation(s)
- Irene Peris
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain; Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| | - Silvia Romero-Murillo
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain; Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain
| | - Carmen Vicente
- Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Maria D Odero
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain; Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
5
|
Rasool RU, O'Connor CM, Das CK, Alhusayan M, Verma BK, Islam S, Frohner IE, Deng Q, Mitchell-Velasquez E, Sangodkar J, Ahmed A, Linauer S, Mudrak I, Rainey J, Zawacki KP, Suhan TK, Callahan CG, Rebernick R, Natesan R, Siddiqui J, Sauter G, Thomas D, Wang S, Taylor DJ, Simon R, Cieslik M, Chinnaiyan AM, Busino L, Ogris E, Narla G, Asangani IA. Loss of LCMT1 and biased protein phosphatase 2A heterotrimerization drive prostate cancer progression and therapy resistance. Nat Commun 2023; 14:5253. [PMID: 37644036 PMCID: PMC10465527 DOI: 10.1038/s41467-023-40760-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
Loss of the tumor suppressive activity of the protein phosphatase 2A (PP2A) is associated with cancer, but the underlying molecular mechanisms are unclear. PP2A holoenzyme comprises a heterodimeric core, a scaffolding A subunit and a catalytic C subunit, and one of over 20 distinct substrate-directing regulatory B subunits. Methylation of the C subunit regulates PP2A heterotrimerization, affecting B subunit binding and substrate specificity. Here, we report that the leucine carboxy methyltransferase (LCMT1), which methylates the L309 residue of the C subunit, acts as a suppressor of androgen receptor (AR) addicted prostate cancer (PCa). Decreased methyl-PP2A-C levels in prostate tumors is associated with biochemical recurrence and metastasis. Silencing LCMT1 increases AR activity and promotes castration-resistant prostate cancer growth. LCMT1-dependent methyl-sensitive AB56αCme heterotrimers target AR and its critical coactivator MED1 for dephosphorylation, resulting in the eviction of the AR-MED1 complex from chromatin and loss of target gene expression. Mechanistically, LCMT1 is regulated by S6K1-mediated phosphorylation-induced degradation requiring the β-TRCP, leading to acquired resistance to anti-androgens. Finally, feedforward stabilization of LCMT1 by small molecule activator of phosphatase (SMAP) results in attenuation of AR-signaling and tumor growth inhibition in anti-androgen refractory PCa. These findings highlight methyl-PP2A-C as a prognostic marker and that the loss of LCMT1 is a major determinant in AR-addicted PCa, suggesting therapeutic potential for AR degraders or PP2A modulators in prostate cancer treatment.
Collapse
Affiliation(s)
- Reyaz Ur Rasool
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Caitlin M O'Connor
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Chandan Kanta Das
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Mohammed Alhusayan
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Brijesh Kumar Verma
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Sehbanul Islam
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Ingrid E Frohner
- Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9/2, Vienna, 1030, Austria
| | - Qu Deng
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Erick Mitchell-Velasquez
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Jaya Sangodkar
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Aqila Ahmed
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sarah Linauer
- Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9/2, Vienna, 1030, Austria
| | - Ingrid Mudrak
- Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9/2, Vienna, 1030, Austria
| | - Jessica Rainey
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Kaitlin P Zawacki
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tahra K Suhan
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Catherine G Callahan
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ryan Rebernick
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Ramakrishnan Natesan
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Javed Siddiqui
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Dafydd Thomas
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Shaomeng Wang
- Departments of Internal Medicine, Pharmacology, and Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Derek J Taylor
- Department of Biochemistry Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Marcin Cieslik
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Arul M Chinnaiyan
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Luca Busino
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA
| | - Egon Ogris
- Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9/2, Vienna, 1030, Austria.
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48105, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Irfan A Asangani
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA, 19104, USA.
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Haanen TJ, O'Connor CM, Narla G. Biased holoenzyme assembly of protein phosphatase 2A (PP2A): From cancer to small molecules. J Biol Chem 2022; 298:102656. [PMID: 36328247 PMCID: PMC9707111 DOI: 10.1016/j.jbc.2022.102656] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a family of serine threonine phosphatases responsible for regulating protein phosphorylation, thus opposing the activity of cellular kinases. PP2A is composed of a catalytic subunit (PP2A Cα/β) and scaffolding subunit (PP2A Aα/β) and various substrate-directing B regulatory subunits. PP2A biogenesis is regulated at multiple levels. For example, the sequestration of the free catalytic subunit during the process of biogenesis avoids promiscuous phosphatase activity. Posttranslational modifications of PP2A C direct PP2A heterotrimeric formation. Additionally, PP2A functions as a haploinsufficient tumor suppressor, where attenuated PP2A enzymatic activity creates a permissive environment for oncogenic transformation. Recent work studying PP2A in cancer showed that its role in tumorigenesis is more nuanced, with some holoenzymes being tumor suppressive, while others are required for oncogenic transformation. In cancer biology, PP2A function is modulated through various mechanisms including the displacement of specific B regulatory subunits by DNA tumor viral antigens, by recurrent mutations, and through loss of carboxymethyl-sensitive heterotrimeric complexes. In aggregate, these alterations bias PP2A activity away from its tumor suppressive functions and toward oncogenic ones. From a therapeutic perspective, molecular glues and disruptors present opportunities for both the selective stabilization of tumor-suppressive holoenzymes and disruption of holoenzymes that are pro-oncogenic. Collectively, these approaches represent an attractive cancer therapy for a wide range of tumor types. This review will discuss the mechanisms by which PP2A holoenzyme formation is dysregulated in cancer and the current therapies that are aimed at biasing heterotrimer formation of PP2A for the treatment of cancer.
Collapse
Affiliation(s)
- Terrance J Haanen
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan, Ann Arbor, Michigan, USA
| | - Caitlin M O'Connor
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan, Ann Arbor, Michigan, USA
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
7
|
LCMT1 indicates poor prognosis and is essential for cell proliferation in hepatocellular carcinoma. Transl Oncol 2022; 27:101572. [PMID: 36401967 PMCID: PMC9673118 DOI: 10.1016/j.tranon.2022.101572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/28/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most malignant type of cancers. Leuci carboxyl methyltransferase 1 (LCMT1) is a protein methyltransferase that plays an improtant regulatory role in both normal and cancer cells. The aim of this study is to evaluate the expression pattern and clinical significance of LCMT1 in HCC. METHODS The expression pattern and clinical relevance of LCMT1 were determined using the Gene Expression Omnibus (GEO) database, the Cancer Genome Atlas (TCGA) program, and our datasets. Gain-of-function and loss-of-function studies were employed to investigate the cellular functions of LCMT1 in vitro and in vivo. Quantitative real-time polymerase chain reaction (RT-PCR) analysis, western blotting, enzymatic assay, and high-performance liquid chromatography were applied to reveal the underlying molecular functions of LCMT1. RESULTS LCMT1 was upregulated in human HCC tissues, which correlated with a "poor" prognosis. The siRNA-mediated knockdown of LCMT1 inhibited glycolysis, promoted mitochondrial dysfunction, and increased intracellular pyruvate levels by upregulating the expression of alani-neglyoxylate and serine-pyruvate aminotransferase (AGXT). The overexpression of LCMT1 showed the opposite results. Silencing LCMT1 inhibited the proliferation of HCC cells in vitro and reduced the growth of tumor xenografts in mice. Mechanistically, the effect of LCMT1 on the proliferation of HCC cells was partially dependent on PP2A. CONCLUSIONS Our data revealed a novel role of LCMT1 in the proliferation of HCC cells. In addition, we provided novel insights into the effects of glycolysis-related pathways on the LCMT1regulated progression of HCC, suggesting LCMT1 as a novel therapeutic target for HCC therapy.
Collapse
|
8
|
Ripamonti M, Lamarca A, Davey NE, Tonoli D, Surini S, de Curtis I. A functional interaction between liprin-α1 and B56γ regulatory subunit of protein phosphatase 2A supports tumor cell motility. Commun Biol 2022; 5:1025. [PMID: 36171301 PMCID: PMC9519923 DOI: 10.1038/s42003-022-03989-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022] Open
Abstract
Scaffold liprin-α1 is required to assemble dynamic plasma membrane-associated platforms (PMAPs) at the front of migrating breast cancer cells, to promote protrusion and invasion. We show that the N-terminal region of liprin-α1 contains an LxxIxE motif interacting with B56 regulatory subunits of serine/threonine protein phosphatase 2A (PP2A). The specific interaction of B56γ with liprin-α1 requires an intact motif, since two point mutations strongly reduce the interaction. B56γ mediates the interaction of liprin-α1 with the heterotrimeric PP2A holoenzyme. Most B56γ protein is recovered in the cytosolic fraction of invasive MDA-MB-231 breast cancer cells, where B56γ is complexed with liprin-α1. While mutation of the short linear motif (SLiM) does not affect localization of liprin-α1 to PMAPs, localization of B56γ at these sites specifically requires liprin-α1. Silencing of B56γ or liprin-α1 inhibits to similar extent cell spreading on extracellular matrix, invasion, motility and lamellipodia dynamics in migrating MDA-MB-231 cells, suggesting that B56γ/PP2A is a novel component of the PMAPs machinery regulating tumor cell motility. In this direction, inhibition of cell spreading by silencing liprin-α1 is not rescued by expression of B56γ binding-defective liprin-α1 mutant. We propose that liprin-α1-mediated recruitment of PP2A via B56γ regulates cell motility by controlling protrusion in migrating MDA-MB-231 cells.
Collapse
Affiliation(s)
- Marta Ripamonti
- San Raffaele Scientific Institute and Università Vita-Salute San Raffaele, Milano, Italy
| | - Andrea Lamarca
- San Raffaele Scientific Institute and Università Vita-Salute San Raffaele, Milano, Italy
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Diletta Tonoli
- San Raffaele Scientific Institute and Università Vita-Salute San Raffaele, Milano, Italy
| | - Sara Surini
- San Raffaele Scientific Institute and Università Vita-Salute San Raffaele, Milano, Italy
| | - Ivan de Curtis
- San Raffaele Scientific Institute and Università Vita-Salute San Raffaele, Milano, Italy.
| |
Collapse
|
9
|
Pan J, Zhou L, Zhang C, Xu Q, Sun Y. Targeting protein phosphatases for the treatment of inflammation-related diseases: From signaling to therapy. Signal Transduct Target Ther 2022; 7:177. [PMID: 35665742 PMCID: PMC9166240 DOI: 10.1038/s41392-022-01038-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Inflammation is the common pathological basis of autoimmune diseases, metabolic diseases, malignant tumors, and other major chronic diseases. Inflammation plays an important role in tissue homeostasis. On one hand, inflammation can sense changes in the tissue environment, induce imbalance of tissue homeostasis, and cause tissue damage. On the other hand, inflammation can also initiate tissue damage repair and maintain normal tissue function by resolving injury and restoring homeostasis. These opposing functions emphasize the significance of accurate regulation of inflammatory homeostasis to ameliorate inflammation-related diseases. Potential mechanisms involve protein phosphorylation modifications by kinases and phosphatases, which have a crucial role in inflammatory homeostasis. The mechanisms by which many kinases resolve inflammation have been well reviewed, whereas a systematic summary of the functions of protein phosphatases in regulating inflammatory homeostasis is lacking. The molecular knowledge of protein phosphatases, and especially the unique biochemical traits of each family member, will be of critical importance for developing drugs that target phosphatases. Here, we provide a comprehensive summary of the structure, the "double-edged sword" function, and the extensive signaling pathways of all protein phosphatases in inflammation-related diseases, as well as their potential inhibitors or activators that can be used in therapeutic interventions in preclinical or clinical trials. We provide an integrated perspective on the current understanding of all the protein phosphatases associated with inflammation-related diseases, with the aim of facilitating the development of drugs that target protein phosphatases for the treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- Jie Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Lisha Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Chenyang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
10
|
Manoharan GB, Okutachi S, Abankwa D. Potential of phenothiazines to synergistically block calmodulin and reactivate PP2A in cancer cells. PLoS One 2022; 17:e0268635. [PMID: 35617282 PMCID: PMC9135253 DOI: 10.1371/journal.pone.0268635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 05/04/2022] [Indexed: 11/19/2022] Open
Abstract
Phenothiazines (PTZ) were developed as inhibitors of monoamine neurotransmitter receptors, notably dopamine receptors. Because of this activity they have been used for decades as antipsychotic drugs. In addition, they possess significant anti-cancer properties and several attempts for their repurposing were made. However, their incompletely understood polypharmacology is challenging. Here we examined the potential of the PTZ fluphenazine (Flu) and its mustard derivative (Flu-M) to synergistically act on two cancer associated targets, calmodulin (CaM) and the tumor suppressor protein phosphatase 2A (PP2A). Both proteins are known to modulate the Ras- and MAPK-pathway, cell viability and features of cancer cell stemness. Consistently, we show that the combination of a CaM inhibitor and the PP2A activator DT-061 synergistically inhibited the 3D-spheroid formation of MDA-MB-231 (K-Ras-G13D), NCI-H358 (K-Ras-G12C) and A375 (B-raf-V600E) cancer cells, and increased apoptosis in MDA-MB-231. We reasoned that these activities remain combined in PTZ, which were the starting point for PP2A activator development, while several PTZ are known CaM inhibitors. We show that both Flu and Flu-M retained CaM inhibitory activity in vitro and in cells, with a higher potency of the mustard derivative in cells. In line with the CaM dependence of Ras plasma membrane organization, the mustard derivative potently reduced the functional membrane organization of oncogenic Ras, while DT-061 had a negligible effect. Like DT-061, both PTZ potently decreased c-MYC levels, a hallmark of PP2A activation. Benchmarking against the KRAS-G12C specific inhibitor AMG-510 in MIA PaCa-2 cells revealed a higher potency of Flu-M than combinations of DT-061 and a CaM inhibitor on MAPK-output and a strong effect on cell proliferation. While our study is limited, our results suggest that improved PTZ derivatives that retain both, their CaM inhibitory and PP2A activating properties, but have lost their neurological side-effects, may be interesting to pursue further as anti-cancer agents.
Collapse
Affiliation(s)
- Ganesh Babu Manoharan
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Sunday Okutachi
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Daniel Abankwa
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- * E-mail:
| |
Collapse
|
11
|
O’Connor CM, Taylor SE, Miller KM, Hurst L, Haanen TJ, Suhan TK, Zawacki KP, Noto FK, Trako J, Mohan A, Sangodkar J, Zamarin D, DiFeo A, Narla G. Targeting Ribonucleotide Reductase Induces Synthetic Lethality in PP2A-Deficient Uterine Serous Carcinoma. Cancer Res 2022; 82:721-733. [PMID: 34921012 PMCID: PMC8857033 DOI: 10.1158/0008-5472.can-21-1987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/14/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022]
Abstract
Uterine serous carcinoma (USC) is a highly aggressive endometrial cancer subtype with limited therapeutic options and a lack of targeted therapies. While mutations to PPP2R1A, which encodes the predominant protein phosphatase 2A (PP2A) scaffolding protein Aα, occur in 30% to 40% of USC cases, the clinical actionability of these mutations has not been studied. Using a high-throughput screening approach, we showed that mutations in Aα results in synthetic lethality following treatment with inhibitors of ribonucleotide reductase (RNR). In vivo, multiple models of Aα mutant uterine serous tumors were sensitive to clofarabine, an RNR inhibitor (RNRi). Aα-mutant cells displayed impaired checkpoint signaling upon RNRi treatment and subsequently accumulated more DNA damage than wild-type (WT) cells. Consistently, inhibition of PP2A activity using LB-100, a catalytic inhibitor, sensitized WT USC cells to RNRi. Analysis of The Cancer Genome Atlas data indicated that inactivation of PP2A, through loss of PP2A subunit expression, was prevalent in USC, with 88% of patients with USC harboring loss of at least one PP2A gene. In contrast, loss of PP2A subunit expression was rare in uterine endometrioid carcinomas. While RNRi are not routinely used for uterine cancers, a retrospective analysis of patients treated with gemcitabine as a second- or later-line therapy revealed a trend for improved outcomes in patients with USC treated with RNRi gemcitabine compared with patients with endometrioid histology. Overall, our data provide experimental evidence to support the use of ribonucleotide reductase inhibitors for the treatment of USC. SIGNIFICANCE A drug repurposing screen identifies synthetic lethal interactions in PP2A-deficient uterine serous carcinoma, providing potential therapeutic avenues for treating this deadly endometrial cancer.
Collapse
Affiliation(s)
- Caitlin M. O’Connor
- Department of Internal Medicine: Division of Genetic Medicine, The University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, The University of Michigan, Ann Arbor, Michigan
| | - Sarah E. Taylor
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Kathryn M. Miller
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York City, New York
| | - Lauren Hurst
- Department of Internal Medicine: Division of Genetic Medicine, The University of Michigan, Ann Arbor, Michigan
| | - Terrance J. Haanen
- Rogel Cancer Center, The University of Michigan, Ann Arbor, Michigan
- Department of Cancer Biology, The University of Michigan, Ann Arbor, Michigan
| | - Tahra K. Suhan
- Department of Internal Medicine: Division of Genetic Medicine, The University of Michigan, Ann Arbor, Michigan
| | - Kaitlin P. Zawacki
- Department of Internal Medicine: Division of Genetic Medicine, The University of Michigan, Ann Arbor, Michigan
| | | | - Jonida Trako
- Department of Internal Medicine: Division of Genetic Medicine, The University of Michigan, Ann Arbor, Michigan
| | - Arathi Mohan
- Department of Internal Medicine: Division of Genetic Medicine, The University of Michigan, Ann Arbor, Michigan
| | - Jaya Sangodkar
- Department of Internal Medicine: Division of Genetic Medicine, The University of Michigan, Ann Arbor, Michigan
| | - Dmitriy Zamarin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, New York
| | - Analisa DiFeo
- Rogel Cancer Center, The University of Michigan, Ann Arbor, Michigan
- Department of Pathology, The University of Michigan, Ann Arbor, Michigan
- Department of Obstetrics and Gynecology, The University of Michigan, Ann Arbor, Michigan
| | - Goutham Narla
- Department of Internal Medicine: Division of Genetic Medicine, The University of Michigan, Ann Arbor, Michigan
- Rogel Cancer Center, The University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
12
|
Yi YW, You KS, Park JS, Lee SG, Seong YS. Ribosomal Protein S6: A Potential Therapeutic Target against Cancer? Int J Mol Sci 2021; 23:ijms23010048. [PMID: 35008473 PMCID: PMC8744729 DOI: 10.3390/ijms23010048] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Ribosomal protein S6 (RPS6) is a component of the 40S small ribosomal subunit and participates in the control of mRNA translation. Additionally, phospho (p)-RPS6 has been recognized as a surrogate marker for the activated PI3K/AKT/mTORC1 pathway, which occurs in many cancer types. However, downstream mechanisms regulated by RPS6 or p-RPS remains elusive, and the therapeutic implication of RPS6 is underappreciated despite an approximately half a century history of research on this protein. In addition, substantial evidence from RPS6 knockdown experiments suggests the potential role of RPS6 in maintaining cancer cell proliferation. This motivates us to investigate the current knowledge of RPS6 functions in cancer. In this review article, we reviewed the current information about the transcriptional regulation, upstream regulators, and extra-ribosomal roles of RPS6, with a focus on its involvement in cancer. We also discussed the therapeutic potential of RPS6 in cancer.
Collapse
Affiliation(s)
- Yong Weon Yi
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| | - Kyu Sic You
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| | - Jeong-Soo Park
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
| | - Seok-Geun Lee
- Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (S.-G.L.); (Y.-S.S.); Tel.: +82-2-961-2355 (S.-G.L.); +82-41-550-3875 (Y.-S.S.); Fax: +82-2-961-9623 (S.-G.L.)
| | - Yeon-Sun Seong
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
- Correspondence: (S.-G.L.); (Y.-S.S.); Tel.: +82-2-961-2355 (S.-G.L.); +82-41-550-3875 (Y.-S.S.); Fax: +82-2-961-9623 (S.-G.L.)
| |
Collapse
|
13
|
Yen YT, Chien M, Wu PY, Ho CC, Ho CT, Huang KCY, Chiang SF, Chao KSC, Chen WTL, Hung SC. Protein phosphatase 2A inactivation induces microsatellite instability, neoantigen production and immune response. Nat Commun 2021; 12:7297. [PMID: 34911954 PMCID: PMC8674339 DOI: 10.1038/s41467-021-27620-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 12/02/2021] [Indexed: 12/21/2022] Open
Abstract
Microsatellite-instable (MSI), a predictive biomarker for immune checkpoint blockade (ICB) response, is caused by mismatch repair deficiency (MMRd) that occurs through genetic or epigenetic silencing of MMR genes. Here, we report a mechanism of MMRd and demonstrate that protein phosphatase 2A (PP2A) deletion or inactivation converts cold microsatellite-stable (MSS) into MSI tumours through two orthogonal pathways: (i) by increasing retinoblastoma protein phosphorylation that leads to E2F and DNMT3A/3B expression with subsequent DNA methylation, and (ii) by increasing histone deacetylase (HDAC)2 phosphorylation that subsequently decreases H3K9ac levels and histone acetylation, which induces epigenetic silencing of MLH1. In mouse models of MSS and MSI colorectal cancers, triple-negative breast cancer and pancreatic cancer, PP2A inhibition triggers neoantigen production, cytotoxic T cell infiltration and ICB sensitization. Human cancer cell lines and tissue array effectively confirm these signaling pathways. These data indicate the dual involvement of PP2A inactivation in silencing MLH1 and inducing MSI.
Collapse
Affiliation(s)
- Yu-Ting Yen
- grid.254145.30000 0001 0083 6092Drug Development Center, Institute of New Drug Development, China Medical University, Taichung, 40402 Taiwan ,grid.411508.90000 0004 0572 9415Integrative Stem Cell Center, China Medical University Hospital, Taichung, 40402 Taiwan
| | - May Chien
- grid.254145.30000 0001 0083 6092Drug Development Center, Institute of New Drug Development, China Medical University, Taichung, 40402 Taiwan ,grid.411508.90000 0004 0572 9415Integrative Stem Cell Center, China Medical University Hospital, Taichung, 40402 Taiwan
| | - Pei-Yi Wu
- grid.254145.30000 0001 0083 6092Drug Development Center, Institute of New Drug Development, China Medical University, Taichung, 40402 Taiwan ,grid.411508.90000 0004 0572 9415Integrative Stem Cell Center, China Medical University Hospital, Taichung, 40402 Taiwan
| | - Chi-Chang Ho
- grid.254145.30000 0001 0083 6092Drug Development Center, Institute of New Drug Development, China Medical University, Taichung, 40402 Taiwan ,grid.411508.90000 0004 0572 9415Integrative Stem Cell Center, China Medical University Hospital, Taichung, 40402 Taiwan
| | - Chun-Te Ho
- grid.254145.30000 0001 0083 6092Drug Development Center, Institute of New Drug Development, China Medical University, Taichung, 40402 Taiwan ,grid.411508.90000 0004 0572 9415Integrative Stem Cell Center, China Medical University Hospital, Taichung, 40402 Taiwan
| | - Kevin Chih-Yang Huang
- grid.254145.30000 0001 0083 6092Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 40402 Taiwan ,grid.254145.30000 0001 0083 6092Translation Research Core, China Medical University Hospital, China Medical University, Taichung, 40402 Taiwan
| | - Shu-Fen Chiang
- grid.254145.30000 0001 0083 6092Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, Taiwan 40402 ROC ,grid.454740.6Lab of Precision Medicine, Feng-Yuan Hospital, Ministry of Health and Welfare, Taichung, 42055 Taiwan
| | - K. S. Clifford Chao
- grid.254145.30000 0001 0083 6092Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, Taiwan 40402 ROC
| | - William Tzu-Liang Chen
- grid.254145.30000 0001 0083 6092Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, 40402 Taiwan ,grid.254145.30000 0001 0083 6092Department of Colorectal Surgery, China Medical University HsinChu Hospital, China Medical University, HsinChu, 302 Taiwan
| | - Shih-Chieh Hung
- Drug Development Center, Institute of New Drug Development, China Medical University, Taichung, 40402, Taiwan. .,Integrative Stem Cell Center, China Medical University Hospital, Taichung, 40402, Taiwan. .,Department of Orthopaedics, China Medical University Hospital, Taichung, 40402, Taiwan.
| |
Collapse
|
14
|
Lyons SP, Greiner EC, Cressey LE, Adamo ME, Kettenbach AN. Regulation of PP2A, PP4, and PP6 holoenzyme assembly by carboxyl-terminal methylation. Sci Rep 2021; 11:23031. [PMID: 34845248 PMCID: PMC8630191 DOI: 10.1038/s41598-021-02456-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022] Open
Abstract
The family of Phosphoprotein Phosphatases (PPPs) is responsible for most cellular serine and threonine dephosphorylation. PPPs achieve substrate specificity and selectivity by forming multimeric holoenzymes. PPP holoenzyme assembly is tightly controlled, and changes in the cellular repertoire of PPPs are linked to human disease, including cancer and neurodegeneration. For PP2A, PP4, and PP6, holoenzyme formation is in part regulated by carboxyl (C)-terminal methyl-esterification (often referred to as "methylation"). Here, we use mass spectrometry-based proteomics, methylation-ablating mutations, and genome editing to elucidate the role of C-terminal methylation on PP2A, PP4, and PP6 holoenzyme assembly. We find that the catalytic subunits of PP2A, PP4, and PP6 are frequently methylated in cancer cells and that deletion of the C-terminal leucine faithfully recapitulates loss of methylation. We observe that loss of PP2A methylation consistently reduced B55, B56, and B72 regulatory subunit binding in cancer and non-transformed cell lines. However, Striatin subunit binding is only affected in non-transformed cells. For PP4, we find that PP4R1 and PP4R3β bind in a methylation-dependent manner. Intriguingly, loss of methylation does not affect PP6 holoenzymes. Our analyses demonstrate in an unbiased, comprehensive, and isoform-specific manner the crucial regulatory function of endogenous PPP methylation in transformed and non-transformed cell lines.
Collapse
Affiliation(s)
- Scott P Lyons
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | | | | | | | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
- Norris Cotton Cancer Center, Lebanon, NH, USA.
| |
Collapse
|
15
|
Frohner IE, Mudrak I, Schüchner S, Anrather D, Hartl M, Sontag JM, Sontag E, Wadzinski BE, Preglej T, Ellmeier W, Ogris E. PP2A C Phospho-Tyr 307 Antibodies Are Not Specific for this Modification but Are Sensitive to Other PP2A C Modifications Including Leu 309 Methylation. Cell Rep 2021; 30:3171-3182.e6. [PMID: 32130916 DOI: 10.1016/j.celrep.2020.02.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/03/2019] [Accepted: 02/07/2020] [Indexed: 02/06/2023] Open
Abstract
Protein phosphatase 2A (PP2A) is an important regulator of signal transduction pathways and a tumor suppressor. Phosphorylation of the PP2A catalytic subunit (PP2AC) at tyrosine 307 has been claimed to inactivate PP2A and was examined in more than 180 studies using commercial antibodies, but this modification was never identified using mass spectrometry. Here we show that the most cited pTyr307 monoclonal antibodies, E155 and F-8, are not specific for phosphorylated Tyr307 but instead are hampered by PP2AC methylation at leucine 309 or phosphorylation at threonine 304. Other pTyr307 antibodies are sensitive to PP2AC methylation as well, and some cross-react with pTyr residues in general, including phosphorylated hemagglutinin tags. We identify pTyr307 using targeted mass spectrometry after transient overexpression of PP2AC and Src kinase. Yet under such conditions, none of the tested antibodies show exclusive pTyr307 specificity. Thus, data generated using these antibodies need to be revisited, and the mechanism of PP2A inactivation needs to be redefined.
Collapse
Affiliation(s)
- Ingrid E Frohner
- Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Ingrid Mudrak
- Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Stefan Schüchner
- Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Dorothea Anrather
- Mass Spectrometry Facility, Max Perutz Labs, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Markus Hartl
- Mass Spectrometry Facility, Max Perutz Labs, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Jean-Marie Sontag
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Estelle Sontag
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Brian E Wadzinski
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Teresa Preglej
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Egon Ogris
- Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria.
| |
Collapse
|
16
|
Nasa I, Kettenbach AN. Effects of carboxyl-terminal methylation on holoenzyme function of the PP2A subfamily. Biochem Soc Trans 2020; 48:2015-2027. [PMID: 33125487 PMCID: PMC8380034 DOI: 10.1042/bst20200177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 01/07/2023]
Abstract
Phosphoprotein Phosphatases (PPPs) are enzymes highly conserved from yeast and human and catalyze the majority of the serine and threonine dephosphorylation in cells. To achieve substrate specificity and selectivity, PPPs form multimeric holoenzymes consisting of catalytic, structural/scaffolding, and regulatory subunits. For the Protein Phosphatase 2A (PP2A)-subfamily of PPPs, holoenzyme assembly is at least in part regulated by an unusual carboxyl-terminal methyl-esterification, commonly referred to as 'methylation'. Carboxyl-terminal methylation is catalyzed by Leucine carboxyl methyltransferase-1 (LCMT1) that utilizes S-adenosyl-methionine (SAM) as the methyl donor and removed by protein phosphatase methylesterase 1 (PME1). For PP2A, methylation dictates regulatory subunit selection and thereby downstream phosphorylation signaling. Intriguingly, there are four families of PP2A regulatory subunits, each exhibiting different levels of methylation sensitivity. Thus, changes in PP2A methylation stoichiometry alters the complement of PP2A holoenzymes in cells and creates distinct modes of kinase opposition. Importantly, selective inactivation of PP2A signaling through the deregulation of methylation is observed in several diseases, most prominently Alzheimer's disease (AD). In this review, we focus on how carboxyl-terminal methylation of the PP2A subfamily (PP2A, PP4, and PP6) regulates holoenzyme function and thereby phosphorylation signaling, with an emphasis on AD.
Collapse
Affiliation(s)
- Isha Nasa
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, U.S.A
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center at Dartmouth, Lebanon, NH, U.S.A
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, U.S.A
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center at Dartmouth, Lebanon, NH, U.S.A
| |
Collapse
|
17
|
Leonard D, Huang W, Izadmehr S, O'Connor CM, Wiredja DD, Wang Z, Zaware N, Chen Y, Schlatzer DM, Kiselar J, Vasireddi N, Schüchner S, Perl AL, Galsky MD, Xu W, Brautigan DL, Ogris E, Taylor DJ, Narla G. Selective PP2A Enhancement through Biased Heterotrimer Stabilization. Cell 2020; 181:688-701.e16. [PMID: 32315618 DOI: 10.1016/j.cell.2020.03.038] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/04/2019] [Accepted: 03/17/2020] [Indexed: 12/15/2022]
Abstract
Impairment of protein phosphatases, including the family of serine/threonine phosphatases designated PP2A, is essential for the pathogenesis of many diseases, including cancer. The ability of PP2A to dephosphorylate hundreds of proteins is regulated by over 40 specificity-determining regulatory "B" subunits that compete for assembly and activation of heterogeneous PP2A heterotrimers. Here, we reveal how a small molecule, DT-061, specifically stabilizes the B56α-PP2A holoenzyme in a fully assembled, active state to dephosphorylate selective substrates, such as its well-known oncogenic target, c-Myc. Our 3.6 Å structure identifies molecular interactions between DT-061 and all three PP2A subunits that prevent dissociation of the active enzyme and highlight inherent mechanisms of PP2A complex assembly. Thus, our findings provide fundamental insights into PP2A complex assembly and regulation, identify a unique interfacial stabilizing mode of action for therapeutic targeting, and aid in the development of phosphatase-based therapeutics tailored against disease specific phospho-protein targets.
Collapse
Affiliation(s)
- Daniel Leonard
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Wei Huang
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Sudeh Izadmehr
- Division of Hematology and Medical Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Caitlin M O'Connor
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48105, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Danica D Wiredja
- Department of Nutrition, Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Zhizhi Wang
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Nilesh Zaware
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yinghua Chen
- PEPCC Facility, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - Daniela M Schlatzer
- Department of Nutrition, Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Janna Kiselar
- Department of Nutrition, Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nikhil Vasireddi
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Stefan Schüchner
- Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9/2, Vienna 1030, Austria
| | - Abbey L Perl
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Matthew D Galsky
- Division of Hematology and Medical Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Wenqing Xu
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - David L Brautigan
- Department of Microbiology, Immunology, and Cancer Biology, Center for Cell Signaling, University of Virginia, Charlottesville, VA 22903, USA
| | - Egon Ogris
- Center for Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9/2, Vienna 1030, Austria
| | - Derek J Taylor
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48105, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
18
|
Kauko O, Imanishi SY, Kulesskiy E, Yetukuri L, Laajala TD, Sharma M, Pavic K, Aakula A, Rupp C, Jumppanen M, Haapaniemi P, Ruan L, Yadav B, Suni V, Varila T, Corthals GL, Reimand J, Wennerberg K, Aittokallio T, Westermarck J. Phosphoproteome and drug-response effects mediated by the three protein phosphatase 2A inhibitor proteins CIP2A, SET, and PME-1. J Biol Chem 2020; 295:4194-4211. [PMID: 32071079 PMCID: PMC7105317 DOI: 10.1074/jbc.ra119.011265] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/03/2020] [Indexed: 12/15/2022] Open
Abstract
Protein phosphatase 2A (PP2A) critically regulates cell signaling and is a human tumor suppressor. PP2A complexes are modulated by proteins such as cancerous inhibitor of protein phosphatase 2A (CIP2A), protein phosphatase methylesterase 1 (PME-1), and SET nuclear proto-oncogene (SET) that often are deregulated in cancers. However, how they impact cellular phosphorylation and how redundant they are in cellular regulation is poorly understood. Here, we conducted a systematic phosphoproteomics screen for phosphotargets modulated by siRNA-mediated depletion of CIP2A, PME-1, and SET (to reactivate PP2A) or the scaffolding A-subunit of PP2A (PPP2R1A) (to inhibit PP2A) in HeLa cells. We identified PP2A-modulated targets in diverse cellular pathways, including kinase signaling, cytoskeleton, RNA splicing, DNA repair, and nuclear lamina. The results indicate nonredundancy among CIP2A, PME-1, and SET in phosphotarget regulation. Notably, PP2A inhibition or reactivation affected largely distinct phosphopeptides, introducing a concept of nonoverlapping phosphatase inhibition- and activation-responsive sites (PIRS and PARS, respectively). This phenomenon is explained by the PPP2R1A inhibition impacting primarily dephosphorylated threonines, whereas PP2A reactivation results in dephosphorylation of clustered and acidophilic sites. Using comprehensive drug-sensitivity screening in PP2A-modulated cells to evaluate the functional impact of PP2A across diverse cellular pathways targeted by these drugs, we found that consistent with global phosphoproteome effects, PP2A modulations broadly affect responses to more than 200 drugs inhibiting a broad spectrum of cancer-relevant targets. These findings advance our understanding of the phosphoproteins, pharmacological responses, and cellular processes regulated by PP2A modulation and may enable the development of combination therapies.
Collapse
Affiliation(s)
- Otto Kauko
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20500 Turku, Finland; Institute of Biomedicine, University of Turku, 20500 Turku, Finland; TuBS and TuDMM Doctoral Programmes, University of Turku, 20500 Turku, Finland
| | - Susumu Y Imanishi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20500 Turku, Finland
| | - Evgeny Kulesskiy
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Tukholmankatu 8, Helsinki, Finland
| | - Laxman Yetukuri
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20500 Turku, Finland
| | - Teemu Daniel Laajala
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Tukholmankatu 8, Helsinki, Finland; Department of Mathematics and Statistics, University of Turku, 20500 Turku, Finland
| | - Mukund Sharma
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20500 Turku, Finland; Institute of Biomedicine, University of Turku, 20500 Turku, Finland; TuBS and TuDMM Doctoral Programmes, University of Turku, 20500 Turku, Finland
| | - Karolina Pavic
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20500 Turku, Finland
| | - Anna Aakula
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20500 Turku, Finland
| | - Christian Rupp
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20500 Turku, Finland
| | - Mikael Jumppanen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20500 Turku, Finland
| | - Pekka Haapaniemi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20500 Turku, Finland
| | - Luyao Ruan
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Bhagwan Yadav
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Tukholmankatu 8, Helsinki, Finland
| | - Veronika Suni
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20500 Turku, Finland
| | - Taru Varila
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20500 Turku, Finland
| | - Garry L Corthals
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20500 Turku, Finland
| | - Jüri Reimand
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Tukholmankatu 8, Helsinki, Finland
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Tukholmankatu 8, Helsinki, Finland; Department of Mathematics and Statistics, University of Turku, 20500 Turku, Finland
| | - Jukka Westermarck
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20500 Turku, Finland; Institute of Biomedicine, University of Turku, 20500 Turku, Finland.
| |
Collapse
|
19
|
Wei H, Zhang HL, Xie JZ, Meng DL, Wang XC, Ke D, Zeng J, Liu R. Protein Phosphatase 2A as a Drug Target in the Treatment of Cancer and Alzheimer's Disease. Curr Med Sci 2020; 40:1-8. [PMID: 32166659 DOI: 10.1007/s11596-020-2140-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/10/2019] [Indexed: 01/22/2023]
Abstract
Protein phosphatase 2A (PP2A) is a major serine/threonine phosphatase which participates in the regulation of multiple cellular processes. As a confirmed tumor suppressor, PP2A activity is downregulated in tumors and its re-activation can induce apoptosis of cancer cells. In the brains of Alzheimer's disease (AD) patients, decreased PP2A activity also plays a key role in promoting tau hyperphosphorylation and Aβ generation. In this review, we discussed compounds aiming at modulating PP2A activity in the treatment of cancer or AD. The upstream factors that inactivate PP2A in diseases have not been fully elucidated and further studies are needed. It will help for the refinement and development of novel and clinically tractable PP2A-targeted compounds or therapies for the treatment of tumor and AD.
Collapse
Affiliation(s)
- Hui Wei
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui-Liang Zhang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia-Zhao Xie
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dong-Li Meng
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Chuan Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan Ke
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Ji Zeng
- Department of Clinic Laboratory, Wuhan Fourth Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Rong Liu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
20
|
Frohner IE, Mudrak I, Kronlachner S, Schüchner S, Ogris E. Antibodies recognizing the C terminus of PP2A catalytic subunit are unsuitable for evaluating PP2A activity and holoenzyme composition. Sci Signal 2020; 13:13/616/eaax6490. [PMID: 31992581 DOI: 10.1126/scisignal.aax6490] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The methyl-esterification of the C-terminal leucine of the protein phosphatase 2A (PP2A) catalytic (C) subunit is essential for the assembly of specific trimeric PP2A holoenzymes, and this region of the C subunit also contains two threonine and tyrosine phosphorylation sites. Most commercial antibodies-including the monoclonal antibody 1D6 that is part of a frequently used, commercial phosphatase assay kit-are directed toward the C terminus of the C subunit, raising questions as to their ability to recognize methylated and phosphorylated forms of the enzyme. Here, we tested several PP2A C antibodies, including monoclonal antibodies 1D6, 7A6, G-4, and 52F8 and the polyclonal antibody 2038 for their ability to specifically detect PP2A in its various modified forms, as well as to coprecipitate regulatory subunits. The tested antibodies preferentially recognized the nonmethylated form of the enzyme, and they did not coimmunoprecipitate trimeric holoenzymes containing the regulatory subunits B or B', an issue that precludes their use to monitor PP2A holoenzyme activity. Furthermore, some of the antibodies also recognized the phosphatase PP4, demonstrating a lack of specificity for PP2A. Together, these findings suggest that reinterpretation of the data generated by using these reagents is required.
Collapse
Affiliation(s)
- Ingrid E Frohner
- Center for Medical Biochemistry, Max Perutz Labs, Vienna BioCenter, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Ingrid Mudrak
- Center for Medical Biochemistry, Max Perutz Labs, Vienna BioCenter, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Stephanie Kronlachner
- Center for Medical Biochemistry, Max Perutz Labs, Vienna BioCenter, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Stefan Schüchner
- Center for Medical Biochemistry, Max Perutz Labs, Vienna BioCenter, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Egon Ogris
- Center for Medical Biochemistry, Max Perutz Labs, Vienna BioCenter, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria.
| |
Collapse
|
21
|
Svarcbahs R, Jäntti M, Kilpeläinen T, Julku UH, Urvas L, Kivioja S, Norrbacka S, Myöhänen TT. Prolyl oligopeptidase inhibition activates autophagy via protein phosphatase 2A. Pharmacol Res 2019; 151:104558. [PMID: 31759088 DOI: 10.1016/j.phrs.2019.104558] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/02/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023]
Abstract
Prolyl oligopeptidase (PREP) is a serine protease that has been studied particularly in the context of neurodegenerative diseases for decades but its physiological function has remained unclear. We have previously found that PREP negatively regulates beclin1-mediated macroautophagy (autophagy), and that PREP inhibition by a small-molecule inhibitor induces clearance of protein aggregates in Parkinson's disease models. Since autophagy induction has been suggested as a potential therapy for several diseases, we wanted to further characterize how PREP regulates autophagy. We measured the levels of various kinases and proteins regulating beclin1-autophagy in HEK-293 and SH-SY5Y cell cultures after PREP inhibition, PREP deletion, and PREP overexpression and restoration, and verified the results in vivo by using PREP knock-out and wild-type mouse tissue where PREP was restored or overexpressed, respectively. We found that PREP regulates autophagy by interacting with protein phosphatase 2A (PP2A) and its endogenous inhibitor, protein phosphatase methylesterase 1 (PME1), and activator (protein phosphatase 2 phosphatase activator, PTPA), thus adjusting its activity and the levels of PP2A in the intracellular pool. PREP inhibition and deletion increased PP2A activity, leading to activation of death-associated protein kinase 1 (DAPK1), beclin1 phosphorylation and induced autophagy while PREP overexpression reduced this. Lowered activity of PP2A is connected to several neurodegenerative disorders and cancers, and PP2A activators would have enormous potential as drug therapy but development of such compounds has been a challenge. The concept of PREP inhibition has been proved safe, and therefore, our study supports the further development of PREP inhibitors as PP2A activators.
Collapse
Affiliation(s)
- Reinis Svarcbahs
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Maria Jäntti
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Tommi Kilpeläinen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Ulrika H Julku
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Lauri Urvas
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Saara Kivioja
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Susanna Norrbacka
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland
| | - Timo T Myöhänen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Finland.
| |
Collapse
|
22
|
Umesalma S, Kaemmer CA, Kohlmeyer JL, Letney B, Schab AM, Reilly JA, Sheehy RM, Hagen J, Tiwari N, Zhan F, Leidinger MR, O'Dorisio TM, Dillon J, Merrill RA, Meyerholz DK, Perl AL, Brown BJ, Braun TA, Scott AT, Ginader T, Taghiyev AF, Zamba GK, Howe JR, Strack S, Bellizzi AM, Narla G, Darbro BW, Quelle FW, Quelle DE. RABL6A inhibits tumor-suppressive PP2A/AKT signaling to drive pancreatic neuroendocrine tumor growth. J Clin Invest 2019; 129:1641-1653. [PMID: 30721156 DOI: 10.1172/jci123049] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 01/24/2019] [Indexed: 12/15/2022] Open
Abstract
Hyperactivated AKT/mTOR signaling is a hallmark of pancreatic neuroendocrine tumors (PNETs). Drugs targeting this pathway are used clinically, but tumor resistance invariably develops. A better understanding of factors regulating AKT/mTOR signaling and PNET pathogenesis is needed to improve current therapies. We discovered that RABL6A, a new oncogenic driver of PNET proliferation, is required for AKT activity. Silencing RABL6A caused PNET cell-cycle arrest that coincided with selective loss of AKT-S473 (not T308) phosphorylation and AKT/mTOR inactivation. Restoration of AKT phosphorylation rescued the G1 phase block triggered by RABL6A silencing. Mechanistically, loss of AKT-S473 phosphorylation in RABL6A-depleted cells was the result of increased protein phosphatase 2A (PP2A) activity. Inhibition of PP2A restored phosphorylation of AKT-S473 in RABL6A-depleted cells, whereas PP2A reactivation using a specific small-molecule activator of PP2A (SMAP) abolished that phosphorylation. Moreover, SMAP treatment effectively killed PNET cells in a RABL6A-dependent manner and suppressed PNET growth in vivo. The present work identifies RABL6A as a new inhibitor of the PP2A tumor suppressor and an essential activator of AKT in PNET cells. Our findings offer what we believe is a novel strategy of PP2A reactivation for treatment of PNETs as well as other human cancers driven by RABL6A overexpression and PP2A inactivation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ryan M Sheehy
- Department of Pharmacology.,Free Radical & Radiation Biology Training Program
| | | | | | | | - Mariah R Leidinger
- Department of Pathology, in the College of Medicine, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA
| | | | | | | | - David K Meyerholz
- Department of Pathology, in the College of Medicine, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA
| | - Abbey L Perl
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | | - Agshin F Taghiyev
- Pediatrics, Colleges of Medicine, Engineering, or Public Health, University of Iowa, Iowa City, Iowa, USA
| | | | | | | | - Andrew M Bellizzi
- Department of Pathology, in the College of Medicine, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA
| | - Goutham Narla
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Benjamin W Darbro
- Pediatrics, Colleges of Medicine, Engineering, or Public Health, University of Iowa, Iowa City, Iowa, USA
| | | | - Dawn E Quelle
- Department of Pharmacology.,Molecular Medicine Graduate Program.,Free Radical & Radiation Biology Training Program.,Department of Pathology, in the College of Medicine, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
23
|
Tang S, Lu C, Mo L, Wang X, Liang Z, Qin F, Liu Y, Liu Y, Huang H, Huang Y, Cai H, Xiao D, Guo S, Ouyang Y, Sun B, Li X. Hydrogen peroxide redistributes the localization of protein phosphatase methylesterase 1. Life Sci 2018; 213:166-173. [DOI: 10.1016/j.lfs.2018.10.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/04/2018] [Accepted: 10/15/2018] [Indexed: 10/28/2022]
|
24
|
Shin JH, Park CW, Yoon G, Hong SM, Choi KY. NNMT depletion contributes to liver cancer cell survival by enhancing autophagy under nutrient starvation. Oncogenesis 2018; 7:58. [PMID: 30093610 PMCID: PMC6085294 DOI: 10.1038/s41389-018-0064-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/27/2018] [Accepted: 06/21/2018] [Indexed: 12/19/2022] Open
Abstract
Nicotinamide N-methyl transferase (NNMT) transfers a methyl group from S-adenosyl-L-methionine (SAM) to nicotinamide (NAM), producing 1-methylnicotinamide (1MNA). NNMT has been implicated in several cancer types and recently in metabolism, but its role in autophagy regulation has not yet been investigated. In this study, we determined that NNMT negatively regulated autophagy at the stage of ULK1 activation through protein phosphatase 2A (PP2A) activity. Specifically, NNMT knockdown increased PP2A methylation and subsequently enhanced phosphatase activity. Consequent p-ULK1 (S638) dephosphorylation derepressed ULK1 activity, resulting in autophagy induction. Accordingly, NNMT downregulation rescued tumor cells under nutrient deficiency in vivo, which was alleviated by ULK1 inhibitor treatment. In summary, our results suggest a novel mechanism by which tumor cells protect themselves against nutrient deprivation through NNMT suppression to accelerate autophagy.
Collapse
Affiliation(s)
- Ji Hye Shin
- Department of Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Korea
| | - Chang Wook Park
- Biokogen Inc. Korea National Food Cluster #255, 110 Dongchonje-gil, Wanggung-myeon, Iksan, Jeonbuk, 54576, Korea
| | - Gyesoon Yoon
- Department of Biochemistry, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon, Gyeonggi, 16499, Korea
- Department of Biomedical Science, Graduate School, Ajou University, 164 World cup-ro, Yeongtong-gu, Suwon, Gyeonggi, 16499, Korea
| | - Sun Mi Hong
- Department of Biochemistry, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon, Gyeonggi, 16499, Korea.
| | - Kwan Yong Choi
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Korea.
| |
Collapse
|
25
|
Lee JA, Wang Z, Sambo D, Bunting KD, Pallas DC. Global loss of leucine carboxyl methyltransferase-1 causes severe defects in fetal liver hematopoiesis. J Biol Chem 2018; 293:9636-9650. [PMID: 29735529 PMCID: PMC6016458 DOI: 10.1074/jbc.ra118.002012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/12/2018] [Indexed: 11/06/2022] Open
Abstract
Leucine carboxyl methyltransferase-1 (LCMT-1) methylates the C-terminal leucine α-carboxyl group of the catalytic subunits of the protein phosphatase 2A (PP2A) subfamily of protein phosphatases, PP2Ac, PP4c, and PP6c. LCMT-1 differentially regulates the formation and function of a subset of the heterotrimeric complexes that PP2A and PP4 form with their regulatory subunits. Global LCMT-1 knockout causes embryonic lethality in mice, but LCMT-1 function in development is unknown. In this study, we analyzed the effects of global LCMT-1 loss on embryonic development. LCMT-1 knockout causes loss of PP2Ac methylation, indicating that LCMT-1 is the sole PP2Ac methyltransferase. PP2A heterotrimers containing the Bα and Bδ B-type subunits are dramatically reduced in whole embryos, and the steady-state levels of PP2Ac and the PP2A structural A subunit are also down ∼30%. Strikingly, global loss of LCMT-1 causes severe defects in fetal hematopoiesis and usually death by embryonic day 16.5. Fetal livers of homozygous lcmt-1 knockout embryos display hypocellularity, elevated apoptosis, and greatly reduced numbers of hematopoietic stem and progenitor cell-enriched Kit+Lin-Sca1+ cells. The percent cycling cells and mitotic indices of WT and lcmt-1 knockout fetal liver cells are similar, suggesting that hypocellularity may be due to a combination of apoptosis and/or defects in specification, self-renewal, or survival of stem cells. Indicative of a possible intrinsic defect in stem cells, noncompetitive and competitive transplantation experiments reveal that lcmt-1 loss causes a severe multilineage hematopoietic repopulating defect. Therefore, this study reveals a novel role for LCMT-1 as a key player in fetal liver hematopoiesis.
Collapse
Affiliation(s)
- Jocelyn A Lee
- From the Department of Biochemistry, Winship Cancer Institute, the Biochemistry, Cell, and Developmental Graduate Program, and
| | - Zhengqi Wang
- the Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Department of Pediatrics, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Danielle Sambo
- From the Department of Biochemistry, Winship Cancer Institute, the Biochemistry, Cell, and Developmental Graduate Program, and
| | - Kevin D Bunting
- the Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Department of Pediatrics, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322
| | - David C Pallas
- From the Department of Biochemistry, Winship Cancer Institute, the Biochemistry, Cell, and Developmental Graduate Program, and
| |
Collapse
|
26
|
Lu S, Yao Y, Xu G, Zhou C, Zhang Y, Sun J, Jiang R, Shao Q, Chen Y. CD24 regulates sorafenib resistance via activating autophagy in hepatocellular carcinoma. Cell Death Dis 2018; 9:646. [PMID: 29844385 PMCID: PMC5974417 DOI: 10.1038/s41419-018-0681-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/02/2018] [Accepted: 05/07/2018] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma is one of most common solid cancers worldwide. Sorafenib is indicated as a treatment for advanced hepatocellular carcinoma (HCC). However, the clinical efficacy of sorafenib has been severely compromised by the development of drug resistance, and the precise mechanisms of drug resistance remain largely unknown. Here we found that a cell surface molecule, CD24, is overexpressed in tumor tissues and sorafenib-resistant hepatocellular carcinoma cell lines. Moreover, there is a positive correlation between CD24 expression levels and sorafenib resistance. In sorafenib-resistant HCC cell lines, depletion of CD24 caused a notable increase of sorafenib sensitivity. In addition, we found that CD24-related sorafenib resistance was accompanied by the activation of autophagy and can be blocked by the inhibition of autophagy using either pharmacological inhibitors or essential autophagy gene knockdown. In further research, we found that CD24 overexpression also leads to an increase in PP2A protein production and induces the deactivation of the mTOR/AKT pathway, which enhances the level of autophagy. These results demonstrate that CD24 regulates sorafenib resistance via activating autophagy in HCC. This is the first report to describe the relationships among CD24, autophagy, and sorafenib resistance. In conclusion, the combination of autophagy modulation and CD24 targeted therapy is a promising therapeutic strategy in the treatment of HCC.
Collapse
Affiliation(s)
- Shuai Lu
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.,Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, 211166, China
| | - Yao Yao
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, China.,Department of Head and Neck Surgery, Cancer biotherapy Center, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210018, China
| | - Guolong Xu
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.,Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, 211166, China
| | - Chao Zhou
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.,Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, 211166, China
| | - Yuan Zhang
- Department of Head and Neck Surgery, Cancer biotherapy Center, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210018, China
| | - Jie Sun
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Runqiu Jiang
- Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Qing Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Yun Chen
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China. .,Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Diabetes Center, Nanjing Medical University, Nanjing, 211166, China. .,Department of Head and Neck Surgery, Cancer biotherapy Center, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210018, China.
| |
Collapse
|
27
|
Kauko O, Westermarck J. Non-genomic mechanisms of protein phosphatase 2A (PP2A) regulation in cancer. Int J Biochem Cell Biol 2018; 96:157-164. [DOI: 10.1016/j.biocel.2018.01.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 12/03/2017] [Accepted: 01/09/2018] [Indexed: 02/08/2023]
|
28
|
Therapeutic targeting of PP2A. Int J Biochem Cell Biol 2017; 96:182-193. [PMID: 29107183 DOI: 10.1016/j.biocel.2017.10.008] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 12/19/2022]
Abstract
Protein phosphatase 2A (PP2A) is a major serine/threonine phosphatase that regulates many cellular processes. Given the central role of PP2A in regulating diverse biological functions and its dysregulation in many diseases, including cancer, PP2A directed therapeutics have become of great interest. The main approaches leveraged thus far can be categorized as follows: 1) inhibiting endogenous inhibitors of PP2A, 2) targeted disruption of post translational modifications on PP2A subunits, or 3) direct targeting of PP2A. Additional insight into the structural, molecular, and biological framework driving the efficacy of these therapeutic strategies will provide a foundation for the refinement and development of novel and clinically tractable PP2A targeted therapies.
Collapse
|
29
|
Sents W, Meeusen B, Kalev P, Radaelli E, Sagaert X, Miermans E, Haesen D, Lambrecht C, Dewerchin M, Carmeliet P, Westermarck J, Sablina A, Janssens V. PP2A Inactivation Mediated by PPP2R4 Haploinsufficiency Promotes Cancer Development. Cancer Res 2017; 77:6825-6837. [DOI: 10.1158/0008-5472.can-16-2911] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 08/19/2017] [Accepted: 10/13/2017] [Indexed: 11/16/2022]
|
30
|
Lambrecht C, Libbrecht L, Sagaert X, Pauwels P, Hoorne Y, Crowther J, Louis JV, Sents W, Sablina A, Janssens V. Loss of protein phosphatase 2A regulatory subunit B56δ promotes spontaneous tumorigenesis in vivo. Oncogene 2017; 37:544-552. [DOI: 10.1038/onc.2017.350] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 06/08/2017] [Accepted: 07/03/2017] [Indexed: 12/19/2022]
|
31
|
Regulation of protein phosphatase 2A (PP2A) tumor suppressor function by PME-1. Biochem Soc Trans 2016; 44:1683-1693. [DOI: 10.1042/bst20160161] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/06/2016] [Accepted: 09/09/2016] [Indexed: 02/06/2023]
Abstract
Protein phosphatase 2A (PP2A) plays a major role in maintaining cellular signaling homeostasis by dephosphorylation of a variety of signaling proteins and acts as a tumor suppressor. Protein phosphatase methylesterase-1 (PME-1) negatively regulates PP2A activity by highly complex mechanisms that are reviewed here. Importantly, recent studies have shown that PME-1 promotes oncogenic MAPK/ERK and AKT pathway activities in various cancer types. In human glioma, high PME-1 expression correlates with tumor progression and kinase inhibitor resistance. We discuss the emerging cancer-associated function of PME-1 and its potential clinical relevance.
Collapse
|
32
|
Hwang J, Lee JA, Pallas DC. Leucine Carboxyl Methyltransferase 1 (LCMT-1) Methylates Protein Phosphatase 4 (PP4) and Protein Phosphatase 6 (PP6) and Differentially Regulates the Stable Formation of Different PP4 Holoenzymes. J Biol Chem 2016; 291:21008-21019. [PMID: 27507813 DOI: 10.1074/jbc.m116.739920] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Indexed: 11/06/2022] Open
Abstract
The protein phosphatase 2A (PP2A) subfamily of phosphatases, PP2A, PP4, and PP6, are multifunctional serine/threonine protein phosphatases involved in many cellular processes. Carboxyl methylation of the PP2A catalytic subunit (PP2Ac) C-terminal leucine is regulated by the opposing activities of leucine carboxyl methyltransferase 1 (LCMT-1) and protein phosphatase methylesterase 1 (PME-1) and regulates PP2A holoenzyme formation. The site of methylation on PP2Ac is conserved in the catalytic subunits of PP4 and PP6, and PP4 is also methylated on that site, but the identities of the methyltransferase enzyme for PP4 are not known. Whether PP6 is methylated is also not known. Here we use antibodies specific for the unmethylated phosphatases to show that PP6 is carboxyl-methylated and that LCMT-1 is the major methyltransferase for PP2A, PP4, and PP6 in mouse embryonic fibroblasts (MEFs). Analysis of PP2A and PP4 complexes by blue native polyacrylamide gel electrophoresis (BN-PAGE) indicates that PP4 holoenzyme complexes, like those of PP2A, are differentially regulated by LCMT-1, with the PP4 regulatory subunit 1 (PP4R1)-containing PP4 complex being the most dramatically affected by the LCMT-1 loss. MEFs derived from LCMT-1 knock-out mouse embryos have reduced levels of PP2A B regulatory subunit and PP4R1 relative to control MEFs, indicating that LCMT-1 is important for maintaining normal levels of these subunits. Finally, LCMT-1 homozygous knock-out MEFs exhibited hyperphosphorylation of HDAC3, a reported target of the methylation-dependent PP4R1-PP4c complex. Collectively, our data suggest that LCMT-1 coordinately regulates the carboxyl methylation of PP2A-related phosphatases and, consequently, their holoenzyme assembly and function.
Collapse
Affiliation(s)
- Juyeon Hwang
- From the Department of Biochemistry, Winship Cancer Center, and the Biochemistry, Cell, and Developmental Graduate Program, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Jocelyn A Lee
- From the Department of Biochemistry, Winship Cancer Center, and the Biochemistry, Cell, and Developmental Graduate Program, Emory University School of Medicine, Atlanta, Georgia 30322
| | - David C Pallas
- From the Department of Biochemistry, Winship Cancer Center, and the Biochemistry, Cell, and Developmental Graduate Program, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
33
|
Grech G, Baldacchino S, Saliba C, Grixti MP, Gauci R, Petroni V, Fenech AG, Scerri C. Deregulation of the protein phosphatase 2A, PP2A in cancer: complexity and therapeutic options. Tumour Biol 2016; 37:11691-11700. [PMID: 27444275 DOI: 10.1007/s13277-016-5145-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/11/2016] [Indexed: 01/26/2023] Open
Abstract
The complexity of the phosphatase, PP2A, is being unravelled and current research is increasingly providing information on the association of deregulated PP2A function with cancer initiation and progression. It has been reported that decreased activity of PP2A is a recurrent observation in many types of cancer, including colorectal and breast cancer (Baldacchino et al. EPMA J. 5:3, 2014; Cristobal et al. Mol Cancer Ther. 13:938-947, 2014). Since deregulation of PP2A and its regulatory subunits is a common event in cancer, PP2A is a potential target for therapy (Baldacchino et al. EPMA J. 5:3, 2014). In this review, the structural components of the PP2A complex are described, giving an in depth overview of the diversity of regulatory subunits. Regulation of the active PP2A trimeric complex, through phosphorylation and methylation, can be targeted using known compounds, to reactivate the complex. The endogenous inhibitors of the PP2A complex are highly deregulated in cancer, representing cases that are eligible to PP2A-activating drugs. Pharmacological opportunities to target low PP2A activity are available and preclinical data support the efficacy of these drugs, but clinical trials are lacking. We highlight the importance of PP2A deregulation in cancer and the current trends in targeting the phosphatase.
Collapse
Affiliation(s)
- Godfrey Grech
- Department of Pathology, Faculty of Medicine & Surgery, Medical School, University of Malta, Msida, MSD2090, Malta.
| | - Shawn Baldacchino
- Department of Pathology, Faculty of Medicine & Surgery, Medical School, University of Malta, Msida, MSD2090, Malta
| | - Christian Saliba
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Maria Pia Grixti
- Department of Pathology, Faculty of Medicine & Surgery, Medical School, University of Malta, Msida, MSD2090, Malta
| | - Robert Gauci
- Department of Pathology, Faculty of Medicine & Surgery, Medical School, University of Malta, Msida, MSD2090, Malta
| | - Vanessa Petroni
- Department of Anatomy, Faculty of Medicine & Surgery, University of Malta, Msida, Malta
| | - Anthony G Fenech
- Department of Clinical Pharmacology & Therapeutics, Faculty of Medicine & Surgery, University of Malta, Msida, Malta
| | - Christian Scerri
- Department of Physiology and Biochemistry, Faculty of Medicine & Surgery, University of Malta, Msida, Malta.,Molecular Genetics Clinic, Mater Dei Hospital, Msida, Malta
| |
Collapse
|
34
|
Zhou X, He L, Wan D, Yang H, Yao K, Wu G, Wu X, Yin Y. Methionine restriction on lipid metabolism and its possible mechanisms. Amino Acids 2016; 48:1533-40. [DOI: 10.1007/s00726-016-2247-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/29/2016] [Indexed: 12/26/2022]
|
35
|
Pusey M, Bail S, Xu Y, Buiakova O, Nestor M, Yang JJ, Rice LM. Inhibition of protein methylesterase 1 decreased cancerous phenotypes in endometrial adenocarcinoma cell lines and xenograft tumor models. Tumour Biol 2016; 37:11835-11842. [PMID: 27048286 DOI: 10.1007/s13277-016-5036-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/28/2016] [Indexed: 12/15/2022] Open
Abstract
Protein methylesterase 1 (PME-1) promotes cancerous phenotypes through the demethylation and inactivation of protein phosphatase 2A. We previously demonstrated that PME-1 overexpression promotes Akt, ERK, and may promote Wnt signaling and increases tumor burden in a xenograft model of endometrial cancer. Here, we show that covalent PME-1 inhibitors decrease cell proliferation and invasive growth in vitro but have no effect in vivo at the concentrations tested; however, depletion of PME-1 with shRNA in an endometrial cancer xenograft model significantly reduced tumor growth. Thus, discovery of more potent PME-1 inhibitors may be beneficial for the treatment of endometrial cancer.
Collapse
Affiliation(s)
- Michelle Pusey
- Oncoveda, Cancer Signaling and Cell Cycle Team, Medical Diagnostic Laboratories, LLC, 1000 Waterview Drive, Room 345, Hamilton, NJ, 08691, USA
| | - Sophie Bail
- Oncoveda, Cancer Signaling and Cell Cycle Team, Medical Diagnostic Laboratories, LLC, 1000 Waterview Drive, Room 345, Hamilton, NJ, 08691, USA
| | - Yan Xu
- Invivotek, LLC, 16 Black Forest Road, Hamilton, NJ, 08691, USA
| | - Olesia Buiakova
- Invivotek, LLC, 16 Black Forest Road, Hamilton, NJ, 08691, USA
| | - Mariya Nestor
- Pathology Department, Members of Genesis Biotechnology Group, LLC, Medical Diagnostic Laboratories LLC, 2439 Kuser Road, Hamilton, NJ, 08690, USA
| | - Jing-Jing Yang
- Pathology Department, Members of Genesis Biotechnology Group, LLC, Medical Diagnostic Laboratories LLC, 2439 Kuser Road, Hamilton, NJ, 08690, USA
| | - Lyndi M Rice
- Oncoveda, Cancer Signaling and Cell Cycle Team, Medical Diagnostic Laboratories, LLC, 1000 Waterview Drive, Room 345, Hamilton, NJ, 08691, USA.
| |
Collapse
|
36
|
Abstract
Protein phosphatase 2A (PP2A) plays a critical multi-faceted role in the regulation of the cell cycle. It is known to dephosphorylate over 300 substrates involved in the cell cycle, regulating almost all major pathways and cell cycle checkpoints. PP2A is involved in such diverse processes by the formation of structurally distinct families of holoenzymes, which are regulated spatially and temporally by specific regulators. Here, we review the involvement of PP2A in the regulation of three cell signaling pathways: wnt, mTOR and MAP kinase, as well as the G1→S transition, DNA synthesis and mitotic initiation. These processes are all crucial for proper cell survival and proliferation and are often deregulated in cancer and other diseases.
Collapse
Affiliation(s)
- Nathan Wlodarchak
- a McArdle Laboratory for Cancer Research, University of Wisconsin-Madison , Madison , WI , USA
| | - Yongna Xing
- a McArdle Laboratory for Cancer Research, University of Wisconsin-Madison , Madison , WI , USA
| |
Collapse
|
37
|
Zubiete-Franco I, García-Rodríguez JL, Martínez-Uña M, Martínez-Lopez N, Woodhoo A, Juan VGD, Beraza N, Lage-Medina S, Andrade F, Fernandez ML, Aldámiz-Echevarría L, Fernández-Ramos D, Falcon-Perez JM, Lopitz-Otsoa F, Fernandez-Tussy P, Barbier-Torres L, Luka Z, Wagner C, García-Monzón C, Lu SC, Aspichueta P, Mato JM, Martínez-Chantar ML, Varela-Rey M. Methionine and S-adenosylmethionine levels are critical regulators of PP2A activity modulating lipophagy during steatosis. J Hepatol 2016; 64:409-418. [PMID: 26394163 PMCID: PMC4718902 DOI: 10.1016/j.jhep.2015.08.037] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 08/11/2015] [Accepted: 08/31/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Glycine N-methyltransferase (GNMT) expression is decreased in some patients with severe non-alcoholic fatty liver disease. Gnmt deficiency in mice (Gnmt-KO) results in abnormally elevated serum levels of methionine and its metabolite S-adenosylmethionine (SAMe), and this leads to rapid liver steatosis development. Autophagy plays a critical role in lipid catabolism (lipophagy), and defects in autophagy have been related to liver steatosis development. Since methionine and its metabolite SAMe are well known inactivators of autophagy, we aimed to examine whether high levels of both metabolites could block autophagy-mediated lipid catabolism. METHODS We examined methionine levels in a cohort of 358 serum samples from steatotic patients. We used hepatocytes cultured with methionine and SAMe, and hepatocytes and livers from Gnmt-KO mice. RESULTS We detected a significant increase in serum methionine levels in steatotic patients. We observed that autophagy and lipophagy were impaired in hepatocytes cultured with high methionine and SAMe, and that Gnmt-KO livers were characterized by an impairment in autophagy functionality, likely caused by defects at the lysosomal level. Elevated levels of methionine and SAMe activated PP2A by methylation, while blocking PP2A activity restored autophagy flux in Gnmt-KO hepatocytes, and in hepatocytes treated with SAMe and methionine. Finally, normalization of methionine and SAMe levels in Gnmt-KO mice using a methionine deficient diet normalized the methylation capacity, PP2A methylation, autophagy, and ameliorated liver steatosis. CONCLUSIONS These data suggest that elevated levels of methionine and SAMe can inhibit autophagic catabolism of lipids contributing to liver steatosis.
Collapse
Affiliation(s)
- Imanol Zubiete-Franco
- Metabolomic Unit, CIC bioGUNE, CIBERehd, Parque Tecnológico de Bizkaia, Derio 48160, Spain
| | | | - Maite Martínez-Uña
- Department of Physiology, University of the Basque Country UPV/EHU, Medical School, Biocruces Research Institute, Bilbao 48008, Spain
| | - Nuria Martínez-Lopez
- Metabolomic Unit, CIC bioGUNE, CIBERehd, Parque Tecnológico de Bizkaia, Derio 48160, Spain
| | - Ashwin Woodhoo
- Metabolomic Unit, CIC bioGUNE, CIBERehd, Parque Tecnológico de Bizkaia, Derio 48160, Spain; IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | | | - Naiara Beraza
- Metabolomic Unit, CIC bioGUNE, CIBERehd, Parque Tecnológico de Bizkaia, Derio 48160, Spain; IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - Sergio Lage-Medina
- Metabolism Department, Cruces University Hospital, Barakaldo 48903, Spain
| | - Fernando Andrade
- Metabolism Department, Cruces University Hospital, Barakaldo 48903, Spain
| | | | | | - David Fernández-Ramos
- Metabolomic Unit, CIC bioGUNE, CIBERehd, Parque Tecnológico de Bizkaia, Derio 48160, Spain
| | - Juan Manuel Falcon-Perez
- Metabolomic Unit, CIC bioGUNE, CIBERehd, Parque Tecnológico de Bizkaia, Derio 48160, Spain; IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - Fernando Lopitz-Otsoa
- Metabolomic Unit, CIC bioGUNE, CIBERehd, Parque Tecnológico de Bizkaia, Derio 48160, Spain
| | - Pablo Fernandez-Tussy
- Metabolomic Unit, CIC bioGUNE, CIBERehd, Parque Tecnológico de Bizkaia, Derio 48160, Spain
| | - Lucía Barbier-Torres
- Metabolomic Unit, CIC bioGUNE, CIBERehd, Parque Tecnológico de Bizkaia, Derio 48160, Spain
| | - Zigmund Luka
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, USA
| | - Conrad Wagner
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, USA
| | - Carmelo García-Monzón
- Liver Research Unit, Instituto de Investigación Sanitaria Princesa, University Hospital Santa Cristina, CIBERehd, Madrid 28009, Spain
| | - Shelly C Lu
- Division of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; USC Research Center for Liver Diseases, Keck School of Medicine, Los Angeles, CA, USA
| | - Patricia Aspichueta
- Department of Physiology, University of the Basque Country UPV/EHU, Medical School, Biocruces Research Institute, Bilbao 48008, Spain
| | - José María Mato
- Metabolomic Unit, CIC bioGUNE, CIBERehd, Parque Tecnológico de Bizkaia, Derio 48160, Spain
| | - María Luz Martínez-Chantar
- Metabolomic Unit, CIC bioGUNE, CIBERehd, Parque Tecnológico de Bizkaia, Derio 48160, Spain; Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), P. O. BOX 644, E-48080 Bilbao, Spain.
| | - Marta Varela-Rey
- Metabolomic Unit, CIC bioGUNE, CIBERehd, Parque Tecnológico de Bizkaia, Derio 48160, Spain.
| |
Collapse
|
38
|
Liu J, Wang H, Wang B, Chen T, Wang X, Huang P, Xu L, Guo Z. Microcystin-LR promotes proliferation by activating Akt/S6K1 pathway and disordering apoptosis and cell cycle associated proteins phosphorylation in HL7702 cells. Toxicol Lett 2016; 240:214-25. [DOI: 10.1016/j.toxlet.2015.10.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/30/2015] [Accepted: 10/17/2015] [Indexed: 12/14/2022]
|
39
|
Dudiki T, Kadunganattil S, Ferrara JK, Kline DW, Vijayaraghavan S. Changes in Carboxy Methylation and Tyrosine Phosphorylation of Protein Phosphatase PP2A Are Associated with Epididymal Sperm Maturation and Motility. PLoS One 2015; 10:e0141961. [PMID: 26569399 PMCID: PMC4646675 DOI: 10.1371/journal.pone.0141961] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/15/2015] [Indexed: 01/21/2023] Open
Abstract
Mammalian sperm contain the serine/threonine phosphatases PP1γ2 and PP2A. The role of sperm PP1γ2 is relatively well studied. Here we confirm the presence of PP2A in sperm and show that it undergoes marked changes in methylation (leucine 309), tyrosine phosphorylation (tyrosine 307) and catalytic activity during epididymal sperm maturation. Spermatozoa isolated from proximal caput, distal caput and caudal regions of the epididymis contain equal immuno-reactive amounts of PP2A. Using demethyl sensitive antibodies we show that PP2A is methylated at its carboxy terminus in sperm from the distal caput and caudal regions but not in sperm from the proximal caput region of the epididymis. The methylation status of PP2A was confirmed by isolation of PP2A with microcystin agarose followed by alkali treatment, which causes hydrolysis of protein carboxy methyl esters. Tyrosine phosphorylation of sperm PP2A varied inversely with methylation. That is, PP2A was tyrosine phosphorylated when it was demethylated but not when methylated. PP2A demethylation and its reciprocal tyrosine phosphorylation were also affected by treatment of sperm with L-homocysteine and adenosine, which are known to elevate intracellular S-adenosylhomocysteine, a feedback inhibitor of methyltransferases. Catalytic activity of PP2A declined during epididymal sperm maturation. Inhibition of PP2A by okadaic acid or by incubation of caudal epididymal spermatozoa with L-homocysteine and adenosine resulted in increase of sperm motility parameters including percent motility, velocity, and lateral head amplitude. Demethylation or pharmacological inhibition of PP2A also leads to an increase in phosphorylation of glycogen synthase kinase-3 (GSK3). Our results show for the first time that changes in PP2A activity due to methylation and tyrosine phosphorylation occur in sperm and that these changes may play an important role in the regulation of sperm function.
Collapse
Affiliation(s)
- Tejasvi Dudiki
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
| | - Suraj Kadunganattil
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
| | - John K. Ferrara
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
| | - Douglas W. Kline
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
| | | |
Collapse
|
40
|
Pokharel YR, Saarela J, Szwajda A, Rupp C, Rokka A, Lal Kumar Karna S, Teittinen K, Corthals G, Kallioniemi O, Wennerberg K, Aittokallio T, Westermarck J. Relevance Rank Platform (RRP) for Functional Filtering of High Content Protein-Protein Interaction Data. Mol Cell Proteomics 2015; 14:3274-83. [PMID: 26499835 DOI: 10.1074/mcp.m115.050773] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Indexed: 11/06/2022] Open
Abstract
High content protein interaction screens have revolutionized our understanding of protein complex assembly. However, one of the major challenges in translation of high content protein interaction data is identification of those interactions that are functionally relevant for a particular biological question. To address this challenge, we developed a relevance ranking platform (RRP), which consist of modular functional and bioinformatic filters to provide relevance rank among the interactome proteins. We demonstrate the versatility of RRP to enable a systematic prioritization of the most relevant interaction partners from high content data, highlighted by the analysis of cancer relevant protein interactions for oncoproteins Pin1 and PME-1. We validated the importance of selected interactions by demonstration of PTOV1 and CSKN2B as novel regulators of Pin1 target c-Jun phosphorylation and reveal previously unknown interacting proteins that may mediate PME-1 effects via PP2A-inhibition. The RRP framework is modular and can be modified to answer versatile research problems depending on the nature of the biological question under study. Based on comparison of RRP to other existing filtering tools, the presented data indicate that RRP offers added value especially for the analysis of interacting proteins for which there is no sufficient prior knowledge available. Finally, we encourage the use of RRP in combination with either SAINT or CRAPome computational tools for selecting the candidate interactors that fulfill the both important requirements, functional relevance, and high confidence interaction detection.
Collapse
Affiliation(s)
- Yuba Raj Pokharel
- From the ‡Institute for Molecular Medicine Finland FIMM, University of Helsinki, PO Box 20, FIN-00014 Helsinki, Finland; §Centre for Biotechnology, ‖Faculty of Life Science and Biotechnology, South Asian University, New Delhi 110021, India
| | - Jani Saarela
- From the ‡Institute for Molecular Medicine Finland FIMM, University of Helsinki, PO Box 20, FIN-00014 Helsinki, Finland
| | - Agnieszka Szwajda
- From the ‡Institute for Molecular Medicine Finland FIMM, University of Helsinki, PO Box 20, FIN-00014 Helsinki, Finland
| | | | | | | | - Kaisa Teittinen
- **Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere and Tampere University Hospital, FIN-33014, Tampere, Finland
| | | | - Olli Kallioniemi
- From the ‡Institute for Molecular Medicine Finland FIMM, University of Helsinki, PO Box 20, FIN-00014 Helsinki, Finland
| | - Krister Wennerberg
- From the ‡Institute for Molecular Medicine Finland FIMM, University of Helsinki, PO Box 20, FIN-00014 Helsinki, Finland
| | - Tero Aittokallio
- From the ‡Institute for Molecular Medicine Finland FIMM, University of Helsinki, PO Box 20, FIN-00014 Helsinki, Finland
| | - Jukka Westermarck
- From the ‡Institute for Molecular Medicine Finland FIMM, University of Helsinki, PO Box 20, FIN-00014 Helsinki, Finland; §Centre for Biotechnology, ¶Department of Pathology,University of Turku and Åbo Akademi, Turku, Finland, PO Box 123, FIN-20521 Turku, Finland.;
| |
Collapse
|
41
|
Routila J, Mäkelä JA, Luukkaa H, Leivo I, Irjala H, Westermarck J, Mäkitie A, Ventelä S. Potential role for inhibition of protein phosphatase 2A tumor suppressor in salivary gland malignancies. Genes Chromosomes Cancer 2015; 55:69-81. [DOI: 10.1002/gcc.22312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 09/06/2015] [Accepted: 09/07/2015] [Indexed: 12/14/2022] Open
Affiliation(s)
- Johannes Routila
- The Centre for Biotechnology; University of Turku and Åbo Akademi University; Tykistökatu BioCity Turku FI-20521 Finland
| | - Juho-Antti Mäkelä
- Department of Physiology; University of Turku; Kiinamyllynkatu 10 Turku FI-20520 Finland
| | - Heikki Luukkaa
- Department of Otorhinolaryngology-Head and Neck Surgery; Turku University Hospital; Kiinamyllynkatu 4-8 Turku FI-20521 Finland
| | - Ilmo Leivo
- Department of Pathology; University of Turku; Kiinamyllynkatu 10 Turku FI-20520 Finland
| | - Heikki Irjala
- Department of Otorhinolaryngology-Head and Neck Surgery; Turku University Hospital; Kiinamyllynkatu 4-8 Turku FI-20521 Finland
| | - Jukka Westermarck
- The Centre for Biotechnology; University of Turku and Åbo Akademi University; Tykistökatu BioCity Turku FI-20521 Finland
- Department of Pathology; University of Turku; Kiinamyllynkatu 10 Turku FI-20520 Finland
| | - Antti Mäkitie
- Department of Otorhinolaryngology-Head and Neck Surgery; Helsinki University Central Hospital and University of Helsinki; HUCH Helsinki FI-00029 Finland
| | - Sami Ventelä
- The Centre for Biotechnology; University of Turku and Åbo Akademi University; Tykistökatu BioCity Turku FI-20521 Finland
- Department of Otorhinolaryngology-Head and Neck Surgery; Turku University Hospital; Kiinamyllynkatu 4-8 Turku FI-20521 Finland
| |
Collapse
|
42
|
Leucine-rich repeat-containing protein 59 mediates nuclear import of cancerous inhibitor of PP2A in prostate cancer cells. Tumour Biol 2015; 36:6383-90. [PMID: 25833693 DOI: 10.1007/s13277-015-3326-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/12/2015] [Indexed: 10/23/2022] Open
Abstract
Using yeast two-hybrid analysis, we identified several novel protein interactions for the oncoprotein Cancerous Inhibitor of PP2A (CIP2A) and confirmed a subset of these interactions in human cancer cell lines. Analysis of the interaction in prostate carcinoma cells between CIP2A and leucine-rich repeat-containing protein 59 (LRRC59) suggests that CIP2A is translocated into the nucleus at G2/M through its association with LRRC59. Recent work by others has demonstrated that nuclear CIP2A disrupts mitotic checkpoints, which promotes deregulation of the cell cycle and increases cancerous phenotypes. Thus, we provide a novel therapeutic mechanism for inhibiting CIP2A function in cancerous cells via targeting the CIP2A-LRRC59 interaction.
Collapse
|
43
|
Umberger NL, Caspary T. Ciliary transport regulates PDGF-AA/αα signaling via elevated mammalian target of rapamycin signaling and diminished PP2A activity. Mol Biol Cell 2014; 26:350-8. [PMID: 25392303 PMCID: PMC4294681 DOI: 10.1091/mbc.e14-05-0952] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Primary cilia are built and maintained by intraflagellar transport (IFT), whereby the two IFT complexes, IFTA and IFTB, carry cargo via kinesin and dynein motors for anterograde and retrograde transport, respectively. Many signaling pathways, including platelet- derived growth factor (PDGF)-AA/αα, are linked to primary cilia. Active PDGF-AA/αα signaling results in phosphorylation of Akt at two residues: P-Akt(T308) and P-Akt(S473), and previous work showed decreased P-Akt(S473) in response to PDGF-AA upon anterograde transport disruption. In this study, we investigated PDGF-AA/αα signaling via P-Akt(T308) and P-Akt(S473) in distinct ciliary transport mutants. We found increased Akt phosphorylation in the absence of PDGF-AA stimulation, which we show is due to impaired dephosphorylation resulting from diminished PP2A activity toward P-Akt(T308). Anterograde transport mutants display low platelet-derived growth factor receptor (PDGFR)α levels, whereas retrograde mutants exhibit normal PDGFRα levels. Despite this, neither shows an increase in P-Akt(S473) or P-Akt(T308) upon PDGF-AA stimulation. Because mammalian target of rapamycin complex 1 (mTORC1) signaling is increased in ciliary transport mutant cells and mTOR signaling inhibits PDGFRα levels, we demonstrate that inhibition of mTORC1 rescues PDGFRα levels as well as PDGF-AA-dependent phosphorylation of Akt(S473) and Akt(T308) in ciliary transport mutant MEFs. Taken together, our data indicate that the regulation of mTORC1 signaling and PP2A activity by ciliary transport plays key roles in PDGF-AA/αα signaling.
Collapse
Affiliation(s)
- Nicole L Umberger
- Genetics and Molecular Biology Graduate Programs, Emory University School of Medicine, Atlanta, GA 30322 Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
44
|
Cancer subclonal genetic architecture as a key to personalized medicine. Neoplasia 2014; 15:1410-20. [PMID: 24403863 DOI: 10.1593/neo.131972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 12/03/2013] [Accepted: 12/03/2013] [Indexed: 02/08/2023] Open
Abstract
The future of personalized oncological therapy will likely rely on evidence-based medicine to integrate all of the available evidence to delineate the most efficacious treatment option for the patient. To undertake evidence-based medicine through use of targeted therapy regimens, identification of the specific underlying causative mutation(s) driving growth and progression of a patient's tumor is imperative. Although molecular subtyping is important for planning and treatment, intraclonal genetic diversity has been recently highlighted as having significant implications for biopsy-based prognosis. Overall, delineation of the clonal architecture of a patient's cancer and how this will impact on the selection of the most efficacious therapy remain a topic of intense interest.
Collapse
|
45
|
Wandzioch E, Pusey M, Werda A, Bail S, Bhaskar A, Nestor M, Yang JJ, Rice LM. PME-1 Modulates Protein Phosphatase 2A Activity to Promote the Malignant Phenotype of Endometrial Cancer Cells. Cancer Res 2014; 74:4295-305. [DOI: 10.1158/0008-5472.can-13-3130] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Li J, Han S, Qian Z, Su X, Fan S, Fu J, Liu Y, Yin X, Gao Z, Zhang J, Yu DH, Ji Q. Genetic amplification of PPME1 in gastric and lung cancer and its potential as a novel therapeutic target. Cancer Biol Ther 2014; 15:128-34. [PMID: 24253382 PMCID: PMC3938515 DOI: 10.4161/cbt.27146] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 10/22/2013] [Accepted: 11/10/2013] [Indexed: 02/06/2023] Open
Abstract
Protein phosphatase methylesterase 1 (PPME1) is a protein phosphatase 2A (PP2A)-specific methyl esterase that negatively regulates PP2A through demethylation at its carboxy terminal leucine 309 residue. Emerging evidence shows that the upregulation of PPME1 is associated with poor prognosis in glioblastoma patients. By performing an array comparative genomic hybridization analysis to detect copy number changes, we have been the first to identify PPME1 gene amplification in 3.8% (5/131) of Chinese gastric cancer (GC) samples and 3.1% (4/124) of Chinese lung cancer (LC) samples. This PPME1 gene amplification was confirmed by fluorescence in situ hybridization analysis and is correlated with elevated protein expression, as determined by immunohistochemistry analysis. To further investigate the role of PPME1 amplification in tumor growth, short-hairpin RNA-mediated gene silencing was employed. A knockdown of PPME1 expression resulted in a significant inhibition of cell proliferation and induction of cell apoptosis in PPME1-amplified human cancer cell lines SNU668 (GC) and Oka-C1 (LC), but not in nonamplified MKN1 (GC) and HCC95 (LC) cells. The PPME1 gene knockdown also led to a consistent decrease in PP2A demethylation at leucine 309, which was correlated with the downregulation of cellular Erk and AKT phosphorylation. Our data indicate that PPME1 could be an attractive therapeutic target for a subset of GCs and LCs.
Collapse
Affiliation(s)
- Jing Li
- Innovation Center China; Asia & Emerging Market iMed; AstraZeneca Innovation Medicines and Early Development; Shanghai, PR China
| | - Sufang Han
- Innovation Center China; Asia & Emerging Market iMed; AstraZeneca Innovation Medicines and Early Development; Shanghai, PR China
| | - Ziliang Qian
- Innovation Center China; Asia & Emerging Market iMed; AstraZeneca Innovation Medicines and Early Development; Shanghai, PR China
| | - Xinying Su
- Innovation Center China; Asia & Emerging Market iMed; AstraZeneca Innovation Medicines and Early Development; Shanghai, PR China
| | - Shuqiong Fan
- Innovation Center China; Asia & Emerging Market iMed; AstraZeneca Innovation Medicines and Early Development; Shanghai, PR China
| | - Jiangang Fu
- Innovation Center China; Asia & Emerging Market iMed; AstraZeneca Innovation Medicines and Early Development; Shanghai, PR China
| | - Yuanjie Liu
- Innovation Center China; Asia & Emerging Market iMed; AstraZeneca Innovation Medicines and Early Development; Shanghai, PR China
| | - Xiaolu Yin
- Innovation Center China; Asia & Emerging Market iMed; AstraZeneca Innovation Medicines and Early Development; Shanghai, PR China
| | - Zeren Gao
- Innovation Center China; Asia & Emerging Market iMed; AstraZeneca Innovation Medicines and Early Development; Shanghai, PR China
| | - Jingchuan Zhang
- Innovation Center China; Asia & Emerging Market iMed; AstraZeneca Innovation Medicines and Early Development; Shanghai, PR China
| | - De-Hua Yu
- Innovation Center China; Asia & Emerging Market iMed; AstraZeneca Innovation Medicines and Early Development; Shanghai, PR China
| | - Qunsheng Ji
- Innovation Center China; Asia & Emerging Market iMed; AstraZeneca Innovation Medicines and Early Development; Shanghai, PR China
| |
Collapse
|
47
|
Hales EC, Taub JW, Matherly LH. New insights into Notch1 regulation of the PI3K–AKT–mTOR1 signaling axis: Targeted therapy of γ-secretase inhibitor resistant T-cell acute lymphoblastic leukemia. Cell Signal 2014; 26:149-61. [DOI: 10.1016/j.cellsig.2013.09.021] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 09/30/2013] [Indexed: 02/01/2023]
|
48
|
Hales EC, Orr SM, Larson Gedman A, Taub JW, Matherly LH. Notch1 receptor regulates AKT protein activation loop (Thr308) dephosphorylation through modulation of the PP2A phosphatase in phosphatase and tensin homolog (PTEN)-null T-cell acute lymphoblastic leukemia cells. J Biol Chem 2013; 288:22836-48. [PMID: 23788636 PMCID: PMC3829367 DOI: 10.1074/jbc.m113.451625] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 06/18/2013] [Indexed: 01/22/2023] Open
Abstract
Notch1 activating mutations occur in more than 50% of T-cell acute lymphoblastic leukemia (T-ALL) cases and increase expression of Notch1 target genes, some of which activate AKT. HES1 transcriptionally silences phosphatase and tensin homolog (PTEN), resulting in AKT activation, which is reversed by Notch1 inhibition with γ-secretase inhibitors (GSIs). Mutational loss of PTEN is frequent in T-ALL and promotes resistance to GSIs due to AKT activation. GSI treatments increased AKT-Thr(308) phosphorylation and signaling in PTEN-deficient, GSI-resistant T-ALL cell lines (Jurkat, CCRF-CEM, and MOLT3), suggesting that Notch1 represses AKT independent of its PTEN transcriptional effects. AKT-Thr(308) phosphorylation and downstream signaling were also increased by knocking down Notch1 in Jurkat (N1KD) cells. This was blocked by treatment with the AKT inhibitor perifosine. The PI3K inhibitor wortmannin and the protein phosphatase type 2A (PP2A) inhibitor okadaic acid both impacted AKT-Thr(308) phosphorylation to a greater extent in nontargeted control than N1KD cells, suggesting decreased dephosphorylation of AKT-Thr(308) by PP2A in the latter. Phosphorylations of AMP-activated protein kinaseα (AMPKα)-Thr(172) and p70S6K-Thr(389), both PP2A substrates, were also increased in both N1KD and GSI-treated cells and responded to okadaic acid treatment. A transcriptional regulatory mechanism was implied because ectopic expression of dominant-negative mastermind-like protein 1 increased and wild-type HES1 decreased phosphorylation of these PP2A targets. This was independent of changes in PP2A subunit levels or in vitro PP2A activity, but was accompanied by decreased association of PP2A with AKT in N1KD cells. These results suggest that Notch1 can regulate PP2A dephosphorylation of critical cellular regulators including AKT, AMPKα, and p70S6K.
Collapse
Affiliation(s)
| | | | | | - Jeffrey W. Taub
- Pediatrics, Wayne State University School of Medicine, Detroit, Michigan 48201
- the Children's Hospital of Michigan, Detroit, Michigan 48201
| | - Larry H. Matherly
- From the Departments of Oncology
- Pharmacology, and
- the Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, and
| |
Collapse
|
49
|
Overcoming intratumor heterogeneity of polygenic cancer drug resistance with improved biomarker integration. Neoplasia 2013; 14:1278-89. [PMID: 23308059 DOI: 10.1593/neo.122096] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 12/11/2012] [Accepted: 12/11/2012] [Indexed: 12/14/2022] Open
Abstract
Improvements in technology and resources are helping to advance our understanding of cancer-initiating events as well as factors involved with tumor progression, adaptation, and evasion of therapy. Tumors are well known to contain diverse cell populations and intratumor heterogeneity affords neoplasms with a diverse set of biologic characteristics that can be used to evolve and adapt. Intratumor heterogeneity has emerged as a major hindrance to improving cancer patient care. Polygenic cancer drug resistance necessitates reconsidering drug designs to include polypharmacology in pursuit of novel combinatorial agents having multitarget activity to overcome the diverse and compensatory signaling pathways in which cancer cells use to survive and evade therapy. Advances will require integration of different biomarkers such as genomics and imaging to provide for more adequate elucidation of the spatially varying location, type, and extent of diverse intratumor signaling molecules to provide for a rationale-based personalized cancer medicine strategy.
Collapse
|
50
|
MacKay KB, Tu Y, Young SG, Clarke SG. Circumventing embryonic lethality with Lcmt1 deficiency: generation of hypomorphic Lcmt1 mice with reduced protein phosphatase 2A methyltransferase expression and defects in insulin signaling. PLoS One 2013; 8:e65967. [PMID: 23840384 PMCID: PMC3688711 DOI: 10.1371/journal.pone.0065967] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 05/03/2013] [Indexed: 11/18/2022] Open
Abstract
Protein phosphatase 2A (PP2A), the major serine/threonine phosphatase in eukaryotic cells, is a heterotrimeric protein composed of structural, catalytic, and targeting subunits. PP2A assembly is governed by a variety of mechanisms, one of which is carboxyl-terminal methylation of the catalytic subunit by the leucine carboxyl methyltransferase LCMT1. PP2A is nearly stoichiometrically methylated in the cytosol, and although some PP2A targeting subunits bind independently of methylation, this modification is required for the binding of others. To examine the role of this methylation reaction in mammalian tissues, we generated a mouse harboring a gene-trap cassette within intron 1 of Lcmt1. Due to splicing around the insertion, Lcmt1 transcript and LCMT1 protein levels were reduced but not eliminated. LCMT1 activity and methylation of PP2A were reduced in a coordinate fashion, suggesting that LCMT1 is the only PP2A methyltransferase. These mice exhibited an insulin-resistance phenotype, indicating a role for this methyltransferase in signaling in insulin-sensitive tissues. Tissues from these animals will be vital for the in vivo identification of methylation-sensitive substrates of PP2A and how they respond to differing physiological conditions.
Collapse
Affiliation(s)
- Kennen B. MacKay
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Yiping Tu
- Department of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Stephen G. Young
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Human Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Steven G. Clarke
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|