1
|
Dong Z, Chen Z, Yu K, Zhao D, Jia J, Gao X, Wang D. Roles of plasma proteins in mediating the causal effect of the lipid species on gastric cancer: Insights from proteomic and two-step Mendelian randomization. Medicine (Baltimore) 2025; 104:e42485. [PMID: 40388730 PMCID: PMC12091653 DOI: 10.1097/md.0000000000042485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 05/02/2025] [Indexed: 05/21/2025] Open
Abstract
The change of plasma lipid species has close contacts with gastric cancer (GC). However, the specific mechanism still needs to be explored further. We aim to utilize plasma proteins to decipher the association between lipid species and GC, and seek possible drug targets for GC. We performed a two-step Mendelian randomization (MR) analysis to investigate causal relationships among 179 lipid species, 4907 plasma proteins, and GC. Using summary-data-based MR and colocalization, we first examined protein-GC associations in discovery (N = 35,559) and validation (N = 54,219) cohorts. Subsequent MR analyses assessed lipid-GC and lipid-protein relationships, followed by mediation analysis using error propagation methods. Finally, macromolecular docking of prioritized proteins identified potential therapeutic ligands. Our MR analysis revealed causal relationships between 12 lipid species and GC, as well as 3 plasma proteins and GC. Importantly, mediation analysis demonstrated that CCDC80 protein mediates 2.90% (95% CI: 0.30-5.5%) of the protective effect of diacylglycerol (16:1_18:1) against GC. Based on these findings, we identified valproic acid as a promising therapeutic candidate targeting CCDC80 for GC treatment. Our study demonstrates that reduced CCDC80 expression mediates the tumor-promoting effects of diacylglycerol (16:1_18:1) in GC pathogenesis. Molecular docking confirms valproic acid binds stably to CCDC80, suggesting its therapeutic potential. These findings advance GC etiology understanding and provide a new drug development direction.
Collapse
Affiliation(s)
- Zhenhua Dong
- Gastric and Colorectal Surgery Department, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhiqing Chen
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Kai Yu
- Urology Department, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Dingliang Zhao
- Second Urology Department, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jianling Jia
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xulei Gao
- Second Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Daguang Wang
- Gastric and Colorectal Surgery Department, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Topno NA, Kesarwani V, Kushwaha SK, Azam S, Kadivella M, Gandham RK, Majumdar SS. Non-Synonymous Variants in Fat QTL Genes among High- and Low-Milk-Yielding Indigenous Breeds. Animals (Basel) 2023; 13:ani13050884. [PMID: 36899741 PMCID: PMC10000039 DOI: 10.3390/ani13050884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/17/2022] [Accepted: 12/25/2022] [Indexed: 03/06/2023] Open
Abstract
The effect of breed on milk components-fat, protein, lactose, and water-has been observed to be significant. As fat is one of the major price-determining factors for milk, exploring the variations in fat QTLs across breeds would shed light on the variable fat content in their milk. Here, on whole-genome sequencing, 25 differentially expressed hub or bottleneck fat QTLs were explored for variations across indigenous breeds. Out of these, 20 genes were identified as having nonsynonymous substitutions. A fixed SNP pattern in high-milk-yielding breeds in comparison to low-milk-yielding breeds was identified in the genes GHR, TLR4, LPIN1, CACNA1C, ZBTB16, ITGA1, ANK1, and NTG5E and, vice versa, in the genes MFGE8, FGF2, TLR4, LPIN1, NUP98, PTK2, ZTB16, DDIT3, and NT5E. The identified SNPs were ratified by pyrosequencing to prove that key differences exist in fat QTLs between the high- and low-milk-yielding breeds.
Collapse
Affiliation(s)
- Neelam A. Topno
- DBT—National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, India
- RCB—Regional Centre of Biotechnology, Delhi 121001, India
| | - Veerbhan Kesarwani
- DBT—National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, India
| | | | - Sarwar Azam
- DBT—National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, India
| | - Mohammad Kadivella
- DBT—National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, India
| | - Ravi Kumar Gandham
- ICAR—Indian Veterinary Research Institute, Bareilly 243122, India
- Correspondence: (R.K.G.); (S.S.M.)
| | - Subeer S. Majumdar
- DBT—National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, India
- Correspondence: (R.K.G.); (S.S.M.)
| |
Collapse
|
3
|
Kurokawa GA, Hamamoto Filho PT, Delafiori J, Galvani AF, de Oliveira AN, Dias-Audibert FL, Catharino RR, Pardini MIMC, Zanini MA, Lima EDO, Ferrasi AC. Differential Plasma Metabolites between High- and Low-Grade Meningioma Cases. Int J Mol Sci 2022; 24:ijms24010394. [PMID: 36613836 PMCID: PMC9820229 DOI: 10.3390/ijms24010394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/28/2022] Open
Abstract
Meningiomas (MGMs) are currently classified into grades I, II, and III. High-grade tumors are correlated with decreased survival rates and increased recurrence rates. The current grading classification is based on histological criteria and determined only after surgical tumor sampling. This study aimed to identify plasma metabolic alterations in meningiomas of different grades, which would aid surgeons in predefining the ideal surgical strategy. Plasma samples were collected from 51 patients with meningioma and classified into low-grade (LG) (grade I; n = 43), and high-grade (HG) samples (grade II, n = 5; grade III, n = 3). An untargeted metabolomic approach was used to analyze plasma metabolites. Statistical analyses were performed to select differential biomarkers among HG and LG groups. Metabolites were identified using tandem mass spectrometry along with database verification. Five and four differential biomarkers were identified for HG and LG meningiomas, respectively. To evaluate the potential of HG MGM metabolites to differentiate between HG and LG tumors, a receiving operating characteristic curve was constructed, which revealed an area under the curve of 95.7%. This indicates that the five HG MGM metabolites represent metabolic alterations that can differentiate between LG and HG meningiomas. These metabolites may indicate tumor grade even before the appearance of histological features.
Collapse
Affiliation(s)
- Gabriel A. Kurokawa
- Laboratory of Molecular Analysis and Neuro-oncology, Department of Internal Medicine, Botucatu Medical School, São Paulo State University, Botucatu 18618-970, Brazil
| | - Pedro T. Hamamoto Filho
- Laboratory of Molecular Analysis and Neuro-oncology, Department of Internal Medicine, Botucatu Medical School, São Paulo State University, Botucatu 18618-970, Brazil
- Department of Neurology, Psychology and Psychiatry, Botucatu Medical School, São Paulo State University, Botucatu 18618-970, Brazil
| | - Jeany Delafiori
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas 13083-877, Brazil
| | - Aline F. Galvani
- Laboratory of Molecular Analysis and Neuro-oncology, Department of Internal Medicine, Botucatu Medical School, São Paulo State University, Botucatu 18618-970, Brazil
| | - Arthur N. de Oliveira
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas 13083-877, Brazil
| | - Flávia L. Dias-Audibert
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas 13083-877, Brazil
| | - Rodrigo R. Catharino
- Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas 13083-877, Brazil
| | - Maria Inês M. C. Pardini
- Laboratory of Molecular Analysis and Neuro-oncology, Department of Internal Medicine, Botucatu Medical School, São Paulo State University, Botucatu 18618-970, Brazil
| | - Marco A. Zanini
- Department of Neurology, Psychology and Psychiatry, Botucatu Medical School, São Paulo State University, Botucatu 18618-970, Brazil
| | - Estela de O. Lima
- Laboratory of Molecular Analysis and Neuro-oncology, Department of Internal Medicine, Botucatu Medical School, São Paulo State University, Botucatu 18618-970, Brazil
- Correspondence: ; Tel.: +55-14-3880-1453
| | - Adriana C. Ferrasi
- Laboratory of Molecular Analysis and Neuro-oncology, Department of Internal Medicine, Botucatu Medical School, São Paulo State University, Botucatu 18618-970, Brazil
| |
Collapse
|
4
|
Wu J, Wang L, Ervin JF, Wang SHJ, Soderblom E, Ko D, Yan D. GABA signaling triggered by TMC-1/Tmc delays neuronal aging by inhibiting the PKC pathway in C. elegans. SCIENCE ADVANCES 2022; 8:eadc9236. [PMID: 36542715 PMCID: PMC9770988 DOI: 10.1126/sciadv.adc9236] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Aging causes functional decline and degeneration of neurons and is a major risk factor of neurodegenerative diseases. To investigate the molecular mechanisms underlying neuronal aging, we developed a new pipeline for neuronal proteomic profiling in young and aged animals. While the overall translational machinery is down-regulated, certain proteins increase expressions upon aging. Among these aging-up-regulated proteins, the conserved channel protein TMC-1/Tmc has an anti-aging function in all neurons tested, and the neuroprotective function of TMC-1 occurs by regulating GABA signaling. Moreover, our results show that metabotropic GABA receptors and G protein GOA-1/Goα are required for the anti-neuronal aging functions of TMC-1 and GABA, and the activation of GABA receptors prevents neuronal aging by inhibiting the PLCβ-PKC pathway. Last, we show that the TMC-1-GABA-PKC signaling axis suppresses neuronal functional decline caused by a pathogenic form of human Tau protein. Together, our findings reveal the neuroprotective function of the TMC-1-GABA-PKC signaling axis in aging and disease conditions.
Collapse
Affiliation(s)
- Jieyu Wu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - John F. Ervin
- Bryan Brain Bank and Biorepository, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - Shih-Hsiu J. Wang
- Department of Pathology & Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - Erik Soderblom
- Proteomics and Metabolomics Shared Resource and Duke Center for Genomic and Computational Biology, Duke University Medical School, Durham, NC 27710, USA
| | - Dennis Ko
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Dong Yan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurobiology, Regeneration Next, and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
5
|
Tan X, Liu R, Zhang Y, Wang X, Wang J, Wang H, Zhao G, Zheng M, Wen J. Integrated analysis of the methylome and transcriptome of chickens with fatty liver hemorrhagic syndrome. BMC Genomics 2021; 22:8. [PMID: 33407101 PMCID: PMC7789526 DOI: 10.1186/s12864-020-07305-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/06/2020] [Indexed: 12/22/2022] Open
Abstract
Background DNA methylation, a biochemical modification of cytosine, has an important role in lipid metabolism. Fatty liver hemorrhagic syndrome (FLHS) is a serious disease and is tightly linked to lipid homeostasis. Herein, we compared the methylome and transcriptome of chickens with and without FLHS. Results We found genome-wide dysregulated DNA methylation pattern in which regions up- and down-stream of gene body were hypo-methylated in chickens with FLHS. A total of 4155 differentially methylated genes and 1389 differentially expressed genes were identified. Genes were focused when a negative relationship between mRNA expression and DNA methylation in promoter and gene body were detected. Based on pathway enrichment analysis, we found expression of genes related to lipogenesis and oxygenolysis (e.g., PPAR signaling pathway, fatty acid biosynthesis, and fatty acid elongation) to be up-regulated with associated down-regulated DNA methylation. In contrast, genes related to cellular junction and communication pathways (e.g., vascular smooth muscle contraction, phosphatidylinositol signaling system, and gap junction) were inhibited and with associated up-regulation of DNA methylation. Conclusions In the current study, we provide a genome-wide scale landscape of DNA methylation and gene expression. The hepatic hypo-methylation feature has been identified with FLHS chickens. By integrated analysis, the results strongly suggest that increased lipid accumulation and hepatocyte rupture are central pathways that are regulated by DNA methylation in chickens with FLHS. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07305-3.
Collapse
Affiliation(s)
- Xiaodong Tan
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ranran Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yonghong Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,College of Animal Science, Jilin University, Changchun, 130062, China
| | - Xicai Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jie Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hailong Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Guiping Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Maiqing Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Jie Wen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
6
|
Beyond Lipid Signaling: Pleiotropic Effects of Diacylglycerol Kinases in Cellular Signaling. Int J Mol Sci 2020; 21:ijms21186861. [PMID: 32962151 PMCID: PMC7554708 DOI: 10.3390/ijms21186861] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
The diacylglycerol kinase family, which can attenuate diacylglycerol signaling and activate phosphatidic acid signaling, regulates various signaling transductions in the mammalian cells. Studies on the regulation of diacylglycerol and phosphatidic acid levels by various enzymes, the identification and characterization of various diacylglycerol and phosphatidic acid-regulated proteins, and the overlap of different diacylglycerol and phosphatidic acid metabolic and signaling processes have revealed the complex and non-redundant roles of diacylglycerol kinases in regulating multiple biochemical and biological networks. In this review article, we summarized recent progress in the complex and non-redundant roles of diacylglycerol kinases, which is expected to aid in restoring dysregulated biochemical and biological networks in various pathological conditions at the bed side.
Collapse
|
7
|
Cellular phosphatidic acid sensor, α-synuclein N-terminal domain, detects endogenous phosphatidic acid in macrophagic phagosomes and neuronal growth cones. Biochem Biophys Rep 2020; 22:100769. [PMID: 32490215 PMCID: PMC7261706 DOI: 10.1016/j.bbrep.2020.100769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/05/2020] [Indexed: 11/22/2022] Open
Abstract
Phosphatidic acid (PA) is the simplest phospholipid and is involved in the regulation of various cellular events. Recently, we developed a new PA sensor, the N-terminal region of α-synuclein (α-Syn-N). However, whether α-Syn-N can sense physiologically produced, endogenous PA remains unclear. We first established an inactive PA sensor (α-Syn-N-KQ) as a negative control by replacing all eleven lysine residues with glutamine residues. Using confocal microscopy, we next verified that α-Syn-N, but not α-Syn-N-KQ, detected PA in macrophagic phagosomes in which PA is known to be enriched, further indicating that α-Syn-N can be used as a reliable PA sensor in cells. Finally, because PA generated during neuronal differentiation is critical for neurite outgrowth, we investigated the subcellular distribution of PA using α-Syn-N. We found that α-Syn-N, but not α-Syn-N-KQ, accumulated at the peripheral regions (close to the plasma membrane) of neuronal growth cones. Experiments using a phospholipase D (PLD) inhibitor strongly suggested that PA in the peripheral regions of the growth cone was primarily produced by PLD. Our findings provide a reliable sensor of endogenous PA and novel insights into the distribution of PA during neuronal differentiation.
Collapse
Key Words
- DGK, diacylglycerol kinase
- DMEM, Dulbecco's modified Eagle's medium
- Diacylglycerol kinase
- F-actin, filamentous actin
- FIPI, 5-fluoro-2-indolyl deschlorohalopemide
- Growth cone
- LPA, lysophosphatidic acid
- LPAAT, LPA acyltransferase
- Lipid sensor
- Myr, myristoylated
- PA, phosphatidic acid
- PABD, phosphatidic acid-binding domain
- PC, phosphatidylcholine
- PLD, phospholipase D
- Phagosome
- Phosphatidic acid
- Phospholipase D
- α-Syn, α-synuclein
- α-Syn-N, N-terminal region of α-Syn
- α-Synuclein
Collapse
|
8
|
Yamada H, Mizuno S, Honda S, Takahashi D, Sakane F. Characterization of α-synuclein N-terminal domain as a novel cellular phosphatidic acid sensor. FEBS J 2019; 287:2212-2234. [PMID: 31722116 DOI: 10.1111/febs.15137] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/11/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022]
Abstract
Tracking the localization and dynamics of the intracellular bioactive lipid phosphatidic acid (PA) is important for understanding diverse biological phenomena. Although several PA sensors have been developed, better ones are still needed for comprehensive PA detection in cells. We recently found that α-synuclein (α-Syn) selectively and strongly bound to PA in vitro. Here, we revealed that the N-terminal region of α-Syn (α-Syn-N) specifically bound to PA, with a dissociation constant of 6.6 μm. α-Syn-N colocalized with PA-producing enzymes, diacylglycerol kinase (DGK) β at the plasma membrane (PM), myristoylated DGKζ at the Golgi apparatus, phorbol ester-stimulated DGKγ at the PM, and phospholipase D2 at the PM and Golgi but not with the phosphatidylinositol-4,5-bisphosphate-producing enzyme in COS-7 cells. However, α-Syn-N failed to colocalize with them in the presence of their inhibitors and/or their inactive mutants. These results indicate that α-Syn-N specifically binds to cellular PA and can be applied as an excellent PA sensor.
Collapse
Affiliation(s)
- Haruka Yamada
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
| | - Satoru Mizuno
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
| | - Shotaro Honda
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
| | - Daisuke Takahashi
- Department of Pharmaceutical Health Care and Sciences, Kyushu University, Fukuoka, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
| |
Collapse
|
9
|
Gupta RS, Epand RM. Phylogenetic analysis of the diacylglycerol kinase family of proteins and identification of multiple highly-specific conserved inserts and deletions within the catalytic domain that are distinctive characteristics of different classes of DGK homologs. PLoS One 2017; 12:e0182758. [PMID: 28829789 PMCID: PMC5567653 DOI: 10.1371/journal.pone.0182758] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/24/2017] [Indexed: 01/01/2023] Open
Abstract
Diacylglycerol kinase (DGK) family of proteins, which phosphorylates diacylglycerol into phosphatidic acid, play important role in controlling diverse cellular processes in eukaryotic organisms. Most vertebrate species contain 10 different DGK isozymes, which are grouped into 5 different classes based on the presence or absence of specific functional domains. However, the relationships among different DGK isozymes or how they have evolved from a common ancestor is unclear. The catalytic domain constitutes the single largest sequence element within the DGK proteins that is commonly and uniquely shared by all family members, but there is limited understanding of the overall function of this domain. In this work, we have used the catalytic domain sequences to construct a phylogenetic tree for the DGK family members from representatives of the main vertebrate classes and have also examined the distributions of various DGK isozymes in eukaryotic phyla. In a tree based on catalytic domain sequences, the DGK homologs belonging to different classes formed strongly supported clusters which were separated by long branches, and the different isozymes within each class also generally formed monophyletic groupings. Further, our analysis of the sequence alignments of catalytic domains has identified >10 novel sequence signatures consisting of conserved signature indels (inserts or deletions, CSIs) that are distinctive characteristics of either particular classes of DGK isozymes, or are commonly shared by members of two or more classes of DGK isozymes. The conserved indels in protein sequences are known to play important functional roles in the proteins/organisms where they are found. Thus, our identification of multiple highly specific CSIs that are distinguishing characteristics of different classes of DGK homologs points to the existence of important differences in the catalytic domain function among the DGK isozymes. The identified CSIs in conjunction with the results of blast searches on species distribution of DGK isozymes also provide useful insights into the evolutionary relationships among the DGK family of proteins.
Collapse
Affiliation(s)
- Radhey S. Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| | - Richard M. Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
10
|
Diacylglycerol kinase ε localizes to subsurface cisterns of cerebellar Purkinje cells. Cell Tissue Res 2017; 368:441-458. [PMID: 28191598 DOI: 10.1007/s00441-017-2579-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/16/2017] [Indexed: 10/20/2022]
Abstract
Following activation of Gq protein-coupled receptors, phospholipase C yields a pair of second messengers: diacylglycerol (DG) and inositol 1,4,5-trisphosphate. Diacylglycerol kinase (DGK) phosphorylates DG to produce phosphatidic acid, another second messenger. Of the DGK family, DGKε is the only DGK isoform that exhibits substrate specificity for DG with an arachidonoyl acyl chain at the sn-2 position. Recently, we demonstrated that hydrophobic residues in the N-terminus of DGKε play an important role in targeting the endoplasmic reticulum in transfected cells. However, its cellular expression and subcellular localization in the brain remain elusive. In the present study, we investigate this issue using specific DGKε antibody. DGKε was richly expressed in principal neurons of higher brain regions, including pyramidal cells in the hippocampus and neocortex, medium spiny neurons in the striatum and Purkinje cells in the cerebellum. In Purkinje cells, DGKε was localized to the subsurface cisterns and colocalized with inositol 1,4,5-trisphosphate receptor-1 in dendrites and axons. In dendrites of Purkinje cells, DGKε was also distributed in close apposition to DG lipase-α, which catalyzes arachidonoyl-DG to produce 2-arachidonoyl glycerol, a major endocannabinoid in the brain. Behaviorally, DGKε-knockout mice exhibited hyper-locomotive activities and impaired motor coordination and learning. These findings suggest that DGKε plays an important role in neuronal and brain functions through its distinct neuronal expression and subcellular localization and also through coordinated arrangement with other molecules involving the phosphoinositide signaling pathway.
Collapse
|
11
|
Shimomura T, Nakano T, Goto K, Wakabayashi I. R59949, a diacylglycerol kinase inhibitor, inhibits inducible nitric oxide production through decreasing transplasmalemmal L-arginine uptake in vascular smooth muscle cells. Naunyn Schmiedebergs Arch Pharmacol 2016; 390:207-214. [PMID: 27909743 DOI: 10.1007/s00210-016-1316-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/14/2016] [Indexed: 01/26/2023]
Abstract
Although diacylglycerol kinase (DGK) is known to be expressed in vascular smooth muscle cell, its functional significance remains to be clarified. We hypothesized that DGK is involved in the pathway of cytokine-induced nitric oxide (NO) production in vascular smooth muscle cells. The purpose of this study was to investigate the effects of R59949, a diacylglycerol kinase inhibitor, on inducible nitric oxide production in vascular smooth muscle cell. Cultured rat aortic smooth muscle cells (RASMCs) were used to elucidate the effects of R59949 on basal and interleukin-1β (IL-1β)-induced NO production. The effects of R59949 on protein and mRNA expression of induced nitric oxide synthase (iNOS) and on transplasmalemmal L-arginine uptake were also evaluated using RASMCs. Treatment of RASMCs with R59949 (10 μM) inhibited IL-1β (10 ng/ml)-induced NO production but not basal NO production. Neither protein nor mRNA expression level of iNOS after stimulation with IL-1β was significantly affected by R59949. Estimated enzymatic activities of iNOS in RASMCs were comparable in the absence and presence of R59949. Stimulation of RASMCs with IL-1β caused a marked increase in transplasmalemmal L-arginine uptake into RASMCs. L-Arginine uptake in the presence of IL-1β was markedly inhibited by R59949, while basal L-arginine uptake was not significantly affected by R59949. Both IL-1β-induced NO production and L-arginine uptake were abolished in the presence of cycloheximide (1 μM). The results indicate that R59949 inhibits inducible NO production through decreasing transplasmalemmal L-arginine uptake. DGK is suggested to be involved in cytokine-stimulated L-arginine transport and regulate its intracellular concentration in vascular smooth muscle cell.
Collapse
Affiliation(s)
- Tomoko Shimomura
- Department of Environmental and Preventive Medicine, Hyogo College of Medicine, Mukogawa-cho 1-1, Nishinomiya, Hyogo, 663-8501, Japan
| | - Tomoyuki Nakano
- Department of Anatomy and Cell Biology, Yamagata University Faculty of Medicine, Iida-nishi 2-2-2, Yamagata, 990-9585, Japan
| | - Kaoru Goto
- Department of Anatomy and Cell Biology, Yamagata University Faculty of Medicine, Iida-nishi 2-2-2, Yamagata, 990-9585, Japan
| | - Ichiro Wakabayashi
- Department of Environmental and Preventive Medicine, Hyogo College of Medicine, Mukogawa-cho 1-1, Nishinomiya, Hyogo, 663-8501, Japan.
| |
Collapse
|
12
|
Mizuno S, Kado S, Goto K, Takahashi D, Sakane F. Diacylglycerol kinase ζ generates dipalmitoyl-phosphatidic acid species during neuroblastoma cell differentiation. Biochem Biophys Rep 2016; 8:352-359. [PMID: 28955976 PMCID: PMC5614480 DOI: 10.1016/j.bbrep.2016.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 12/29/2022] Open
Abstract
Phosphatidic acid (PA) is one of the phospholipids composing the plasma membrane and acts as a second messenger to regulate a wide variety of important cellular events, including mitogenesis, migration and differentiation. PA consists of various molecular species with different acyl chains at the sn-1 and sn-2 positions. However, it has been poorly understood what PA molecular species are produced during such cellular events. Here we identified the PA molecular species generated during retinoic acid (RA)-induced neuroblastoma cell differentiation using a newly established liquid chromatography/mass spectrometry (LC/MS) method. Intriguingly, the amount of 32:0-PA species was dramatically and transiently increased in Neuro-2a neuroblastoma cells 24-48 h after RA-treatment. In addition, 30:0- and 34:0-PA species were also moderately increased. Moreover, similar results were obtained when Neuro-2a cells were differentiated for 24 h by serum starvation. MS/MS analysis revealed that 32:0-PA species contains two palmitic acids (16:0 s). RT-PCR analysis showed that diacylglycerol kinase (DGK) δ and DGKζ were highly expressed in Neuro-2a cells. The silencing of DGKζ expression significantly decreased the production of 32:0-PA species, whereas DGKδ-siRNA did not. Moreover, neurite outgrowth was also markedly attenuated by the deficiency of DGKζ. Taken together, these results indicate that DGKζ exclusively generates very restricted PA species, 16:0/16:0-PA, and up-regulates neurite outgrowth during the initial/early stage of neuroblastoma cell differentiation.
Collapse
Key Words
- DG, diacylglycerol
- DGK, diacylglycerol kinase
- Diacylglycerol kinase
- FBS, fetal bovine serum
- FIPI, 5-fluoro-2-indolyl deschlorohalopemide
- I.S., internal standard
- LC, liquid chromatography
- MS, mass spectrometry
- Mass spectrometry
- Neurite outgrowth
- PA, phosphatidic acid
- PC, phosphatidylcholine
- PLD, phospholipase D
- Phosphatidic acid
- RA, retinoic acid
- Retinoic acid
- Serum starvation
Collapse
Affiliation(s)
- Satoru Mizuno
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Sayaka Kado
- Center for Analytical Instrumentation, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Kaoru Goto
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | - Daisuke Takahashi
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
13
|
Eichmann TO, Lass A. DAG tales: the multiple faces of diacylglycerol--stereochemistry, metabolism, and signaling. Cell Mol Life Sci 2015; 72:3931-52. [PMID: 26153463 PMCID: PMC4575688 DOI: 10.1007/s00018-015-1982-3] [Citation(s) in RCA: 208] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/17/2015] [Accepted: 06/29/2015] [Indexed: 12/31/2022]
Abstract
The neutral lipids diacylglycerols (DAGs) are involved in a plethora of metabolic pathways. They function as components of cellular membranes, as building blocks for glycero(phospho)lipids, and as lipid second messengers. Considering their central role in multiple metabolic processes and signaling pathways, cellular DAG levels require a tight regulation to ensure a constant and controlled availability. Interestingly, DAG species are versatile in their chemical structure. Besides the different fatty acid species esterified to the glycerol backbone, DAGs can occur in three different stereo/regioisoforms, each with unique biological properties. Recent scientific advances have revealed that DAG metabolizing enzymes generate and distinguish different DAG isoforms, and that only one DAG isoform holds signaling properties. Herein, we review the current knowledge of DAG stereochemistry and their impact on cellular metabolism and signaling. Further, we describe intracellular DAG turnover and its stereochemistry in a 3-pool model to illustrate the spatial and stereochemical separation and hereby the diversity of cellular DAG metabolism.
Collapse
Affiliation(s)
- Thomas Oliver Eichmann
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010, Graz, Austria.
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31/2, 8010, Graz, Austria.
| |
Collapse
|
14
|
Hipkaeo W, Chomphoo S, Pakkarato S, Sakaew W, Sawatpanich T, Hozumi Y, Polsan Y, Hipkaeo D, Goto K, Kondo H. Selective localization of diacylglycerol kinase (DGK)ζ in the terminal tubule cells in the submandibular glands of early postnatal mice. Histochem Cell Biol 2015; 144:185-93. [PMID: 25952157 DOI: 10.1007/s00418-015-1328-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2015] [Indexed: 12/16/2022]
Abstract
The present immunohistochemical study was attempted to localize in the submandibular glands of mice at various postnatal stages a diacylglycerol kinase (DGK) isoform termed DGKζ which is characterized by a nuclear localization signal and a nuclear export signal. This attempt was based on following facts: the continuous postnatal differentiation of glandular cells in the rodent submandibular gland, the regulatory role of DGK in the activity of protein kinase C (PKC) through attenuation of diacylglycerol (DAG), and the possible involvement of PKC in various cellular activities including the saliva secretion as well as the cell differentiation. As a result, a selective localization of immunoreactivity for DGKζ was detected in terminal tubule (TT) cells which comprise a majority of the newborn acinar structure and differentiate into the intercalated duct cells and/or the acinar cells. The immunoreactivity was deposited in portions of the cytoplasm lateral and basal to the nucleus, but not in the nuclei themselves. Although the immunoreactive TT cells remained until later stages in female specimen than in male, they eventually disappeared in both sexes by young adult stages. The present finding suggests that the regulatory involvement of DGKζ in PKC functions via control of DAG is exerted in the differentiation of the TT cells. In addition, another possible involvement of DGKζ in the regulation of secretion of the TT cells as well as its functional significance of its nuclear localization in the submandibular ganglion cells was also discussed.
Collapse
Affiliation(s)
- Wiphawi Hipkaeo
- Nanomorphology-Based Apply Research Group and Electron Microscopy Unit, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhang C, Hwarng G, Cooper DE, Grevengoed TJ, Eaton JM, Natarajan V, Harris TE, Coleman RA. Inhibited insulin signaling in mouse hepatocytes is associated with increased phosphatidic acid but not diacylglycerol. J Biol Chem 2014; 290:3519-28. [PMID: 25512376 DOI: 10.1074/jbc.m114.602789] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although an elevated triacylglycerol content in non-adipose tissues is often associated with insulin resistance, the mechanistic relationship remains unclear. The data support roles for intermediates in the glycerol-3-phosphate pathway of triacylglycerol synthesis: diacylglycerol (DAG), which may cause insulin resistance in liver by activating PKCϵ, and phosphatidic acid (PA), which inhibits insulin action in hepatocytes by disrupting the assembly of mTOR and rictor. To determine whether increases in DAG and PA impair insulin signaling when produced by pathways other than that of de novo synthesis, we examined primary mouse hepatocytes after enzymatically manipulating the cellular content of DAG or PA. Overexpressing phospholipase D1 or phospholipase D2 inhibited insulin signaling and was accompanied by an elevated cellular content of total PA, without a change in total DAG. Overexpression of diacylglycerol kinase-θ inhibited insulin signaling and was accompanied by an elevated cellular content of total PA and a decreased cellular content of total DAG. Overexpressing glycerol-3-phosphate acyltransferase-1 or -4 inhibited insulin signaling and increased the cellular content of both PA and DAG. Insulin signaling impairment caused by overexpression of phospholipase D1/D2 or diacylglycerol kinase-θ was always accompanied by disassociation of mTOR/rictor and reduction of mTORC2 kinase activity. However, although the protein ratio of membrane to cytosolic PKCϵ increased, PKC activity itself was unaltered. These data suggest that PA, but not DAG, is associated with impaired insulin action in mouse hepatocytes.
Collapse
Affiliation(s)
- Chongben Zhang
- From the Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Gwen Hwarng
- From the Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Daniel E Cooper
- From the Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Trisha J Grevengoed
- From the Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599
| | - James M Eaton
- the Department of Pharmacology, University of Virginia Health System, Charlottesville, Virginia 22908, and
| | - Viswanathan Natarajan
- the Departments of Pharmacology & Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Thurl E Harris
- the Department of Pharmacology, University of Virginia Health System, Charlottesville, Virginia 22908, and
| | - Rosalind A Coleman
- From the Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina 27599,
| |
Collapse
|
16
|
Müller C, Kanawati B, Rock TM, Forcisi S, Moritz F, Schmitt-Kopplin P. Dimer ion formation and intermolecular fragmentation of 1,2-diacylglycerols revealed by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry for more comprehensive lipid analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:1735-1744. [PMID: 24975254 DOI: 10.1002/rcm.6956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 05/27/2014] [Accepted: 06/01/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE The ionization of neutral diacylglycerols (DAGs) by electrospray ionization mass spectrometry (ESI-MS) is challenging compared with other lipid classes which possess ionic head group conjugations. Although ESI-MS is the method of choice in lipidomic analysis, it is questionable whether all lipid classes can be efficiently ionized by this method. Actually, various lipids were not efficiently detected (due to poor ionization) in many studies which claimed to comprehensively describe lipid profiles. Since neutral lipids are precursors for the biosynthesis of most other lipid classes, the necessity for improved or alternative ionization and identification schemes becomes obvious. METHODS We identified the 1,2-diacylglycerol (DAG) dimer ion formation in the gas phase by ultra-high-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) in negative electrospray ionization ((-)ESI) mode. The geometry of the dimer ion was investigated by accurate density functional theory (DFT) calculations at the B3LYP/6-311+G(d)//B3LYP/LANL2DZ level of theory. Fragmentation of the dimer ions of many investigated DAGs has been achieved via collision-induced dissociation (CID) experiments with several elevated collision energies (0-12 eV). RESULTS We revealed the possibility to ionize neutral DAGs as dimer ions in the negative ESI mode. Quantum mechanical calculations revealed a polar head-to-head intermolecular interaction between one charged DAG and one DAG neutral. This represents an energy minimum structure for the DAG dimer ions. We could furthermore detect CID fragmentation product ions that can only result from intermolecular reactions in this head-to-head conformation (SN2 nucleophilic substitution reactions inside the dimer DAG ion). CONCLUSIONS Here, we present for the first time the opportunity to ionize and identify DAGs as dimer ions. This new finding provides a new alternative for investigations of important diacylglycerol lipids and provides the opportunity to obtain complementary and more comprehensive results in future lipidomic studies.
Collapse
Affiliation(s)
- Constanze Müller
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Zhang C, Klett EL, Coleman RA. Lipid signals and insulin resistance. CLINICAL LIPIDOLOGY 2013; 8:659-667. [PMID: 24533033 PMCID: PMC3921899 DOI: 10.2217/clp.13.67] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The metabolic syndrome, a cluster of metabolic derangements that include obesity, glucose intolerance, dyslipidemia and hypertension, is a major risk factor for cardiovascular disease. Insulin resistance has been proposed to be the common feature that links obesity to the metabolic syndrome, but the mechanism remains obscure. Although the excess content of triacylglycerol in muscle and liver is highly associated with insulin resistance in these tissues, triacylglycerol itself is not causal but merely a marker. Thus, attention has turned to the accumulation of cellular lipids known to have signaling roles. This review will discuss recent progress in understanding how glycerolipids and related lipid intermediates may impair insulin signaling.
Collapse
Affiliation(s)
- Chongben Zhang
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Eric L Klett
- Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rosalind A Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
18
|
Abstract
Phosphatidic acid (PA) is recognized as an important class of lipid messengers. The cellular PA levels are dynamic; PA is produced and metabolized by several enzymatic reactions, including different phospholipases, lipid kinases, and phosphatases. PA interacts with various proteins and the interactions may modulate enzyme catalytic activities and/or tether proteins to membranes. The PA-protein interactions are impacted by changes in cellular pH and other effectors, such as cations. PA is involved in a wide range of cellular processes, including vesicular trafficking, cytoskeletal organization, secretion, cell proliferation, and survival. Manipulations of different PA production reactions alter cellular and organismal response to a wide range of abiotic and biotic stresses. Further investigations of PA's function and mechanisms of action will advance not only the understanding of cell signaling networks but also may lead to biotechnological and pharmacological applications.
Collapse
|
19
|
Pokotylo I, Pejchar P, Potocký M, Kocourková D, Krčková Z, Ruelland E, Kravets V, Martinec J. The plant non-specific phospholipase C gene family. Novel competitors in lipid signalling. Prog Lipid Res 2012; 52:62-79. [PMID: 23089468 DOI: 10.1016/j.plipres.2012.09.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 09/25/2012] [Accepted: 09/25/2012] [Indexed: 11/16/2022]
Abstract
Non-specific phospholipases C (NPCs) were discovered as a novel type of plant phospholipid-cleaving enzyme homologous to bacterial phosphatidylcholine-specific phospholipases C and responsible for lipid conversion during phosphate-limiting conditions. The six-gene family was established in Arabidopsis, and growing evidence suggests the involvement of two articles NPCs in biotic and abiotic stress responses as well as phytohormone actions. In addition, the diacylglycerol produced via NPCs is postulated to participate in membrane remodelling, general lipid metabolism and cross-talk with other phospholipid signalling systems in plants. This review summarises information concerning this new plant protein family and focusses on its sequence analysis, biochemical properties, cellular and tissue distribution and physiological functions. Possible modes of action are also discussed.
Collapse
Affiliation(s)
- Igor Pokotylo
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Biosynthesis of alkyl lysophosphatidic acid by diacylglycerol kinases. Biochem Biophys Res Commun 2012; 422:758-63. [PMID: 22627129 DOI: 10.1016/j.bbrc.2012.05.077] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 05/12/2012] [Indexed: 02/02/2023]
Abstract
Lysophosphatidic acid (LPA) designates a family of bioactive phosphoglycerides that differ in the length and degree of saturation of their radyl chain. Additional diversity is provided by the linkage of the radyl chain to glycerol: acyl, alkyl, or alk-1-enyl. Acyl-LPAs are the predominate species in tissues and biological fluids. Alkyl-LPAs exhibit distinct pharmacodynamics at LPA receptors, potently drive platelet aggregation, and contribute to ovarian cancer aggressiveness. Multiple biosynthetic pathways exist for alkyl-LPA production. Herein we report that diacylglycerol kinases (DGKs) contribute to cell-associated alkyl-LPA production involving phosphorylation of 1-alkyl-2-acetyl glycerol and document the biosynthesis of alkyl-LPA by DGKs in SKOV-3 ovarian cancer cells, specifically identifying the contribution of DGKα. Concurrently, we discovered that treating SKOV-3 ovarian cancer cell with a sphingosine analog stimulates conversion of exogenous 1-alkyl-2-acetyl glycerol to alkyl-LPA, indicating that DGKα contributes significantly to the production of alkyl-LPA in SKOV-3 cells and identifying cross-talk between the sphingolipid and glycerol lipid pathways.
Collapse
|
21
|
Han S, Bahmanyar S, Zhang P, Grishin N, Oegema K, Crooke R, Graham M, Reue K, Dixon JE, Goodman JM. Nuclear envelope phosphatase 1-regulatory subunit 1 (formerly TMEM188) is the metazoan Spo7p ortholog and functions in the lipin activation pathway. J Biol Chem 2012; 287:3123-37. [PMID: 22134922 PMCID: PMC3283218 DOI: 10.1074/jbc.m111.324350] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Indexed: 11/06/2022] Open
Abstract
Lipin-1 catalyzes the formation of diacylglycerol from phosphatidic acid. Lipin-1 mutations cause lipodystrophy in mice and acute myopathy in humans. It is heavily phosphorylated, and the yeast ortholog Pah1p becomes membrane-associated and active upon dephosphorylation by the Nem1p-Spo7p membrane complex. A mammalian ortholog of Nem1p is the C-terminal domain nuclear envelope phosphatase 1 (CTDNEP1, formerly "dullard"), but its Spo7p-like partner is unknown, and the need for its existence is debated. Here, we identify the metazoan ortholog of Spo7p, TMEM188, renamed nuclear envelope phosphatase 1-regulatory subunit 1 (NEP1-R1). CTDNEP1 and NEP1-R1 together complement a nem1Δspo7Δ strain to block endoplasmic reticulum proliferation and restore triacylglycerol levels and lipid droplet number. The two human orthologs are in a complex in cells, and the amount of CTDNEP1 is increased in the presence of NEP1-R1. In the Caenorhabditis elegans embryo, expression of nematode CTDNEP1 and NEP1-R1, as well as lipin-1, is required for normal nuclear membrane breakdown after zygote formation. The expression pattern of NEP1-R1 and CTDNEP1 in human and mouse tissues closely mirrors that of lipin-1. CTDNEP1 can dephosphorylate lipins-1a, -1b, and -2 in human cells only in the presence of NEP1-R1. The nuclear fraction of lipin-1b is increased when CTDNEP1 and NEP1-R1 are co-expressed. Therefore, NEP1-R1 is functionally conserved from yeast to humans and functions in the lipin activation pathway.
Collapse
Affiliation(s)
| | - Shirin Bahmanyar
- the Ludwig Institute for Cancer Research, Department of Cell and Molecular Medicine, and
| | - Peixiang Zhang
- the Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, and
| | - Nick Grishin
- Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Karen Oegema
- the Ludwig Institute for Cancer Research, Department of Cell and Molecular Medicine, and
| | | | - Mark Graham
- ISIS Pharmaceuticals, Inc., Carlsbad, California 92008
| | - Karen Reue
- the Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, and
| | - Jack E. Dixon
- Department of Pharmacology, School of Medicine, University of California at San Diego, La Jolla, California 92093
| | | |
Collapse
|
22
|
Abstract
Interest in the glycerophosphoinositols has been increasing recently, on the basis of their biological activities. The cellular metabolism of these water-soluble bioactive phosphoinositide metabolites has been clarified, with the identification of the specific enzyme involved in their synthesis, PLA2IVα (phospholipase A2 IVα), and the definition of their phosphodiesterase-based catabolism, and thus inactivation. The functional roles and mechanisms of action of these compounds have been investigated in different cellular contexts. This has led to their definition in the control of various cell functions, such as cell proliferation in the thyroid and actin cytoskeleton organization in fibroblasts and lymphocytes. Roles for the glycerophosphoinositols in immune and inflammatory responses are also being defined. In addition to these physiological functions, the glycerophosphoinositols have potential anti-metastatic activities that should lead to their pharmacological exploitation.
Collapse
|
23
|
Rincón E, Gharbi SI, Santos-Mendoza T, Mérida I. Diacylglycerol kinase ζ: At the crossroads of lipid signaling and protein complex organization. Prog Lipid Res 2012; 51:1-10. [DOI: 10.1016/j.plipres.2011.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
24
|
Shulga YV, Topham MK, Epand RM. Regulation and functions of diacylglycerol kinases. Chem Rev 2011; 111:6186-208. [PMID: 21800853 DOI: 10.1021/cr1004106] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yulia V Shulga
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | | | | |
Collapse
|
25
|
Teuber K, Riemer T, Schiller J. Thin-layer chromatography combined with MALDI-TOF-MS and 31P-NMR to study possible selective bindings of phospholipids to silica gel. Anal Bioanal Chem 2010; 398:2833-42. [PMID: 20694807 DOI: 10.1007/s00216-010-4064-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 07/12/2010] [Accepted: 07/23/2010] [Indexed: 11/25/2022]
Abstract
High-performance thin-layer chromatography (HPTLC) is a highly established separation method in the field of lipid and (particularly) phospholipid (PL) research. HPTLC is not only used to identify certain lipids in a mixture but also to isolate lipids (preparative TLC). To do this, the lipids are separated and subsequently re-eluted from the silica gel. Unfortunately, it is not yet known whether all PLs are eluted to the same extent or whether some lipids bind selectively to the silica gel. It is also not known whether differences in the fatty acyl compositions affect the affinities to the stationary phase. We have tried to clarify these questions by using a readily available extract from hen egg yolk as a selected example of a lipid mixture. After separation, the complete lanes or selected spots were eluted from the silica gel and investigated by a combination of MALDI-TOF MS and (31)P NMR spectroscopy. The data obtained were compared with the composition of the total extract (without HPTLC). Although there were significant, solvent-dependent losses in the amount of each lipid, the relative composition of the mixture remained constant; there were also only very slight changes in the fatty acyl compositions of the individual PL classes. Therefore, lipid isolation by TLC may be used without any risk of major sample alterations.
Collapse
Affiliation(s)
- Kristin Teuber
- LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, 04103 Leipzig, Germany.
| | | | | |
Collapse
|
26
|
Corda D, Zizza P, Varone A, Filippi BM, Mariggiò S. The glycerophosphoinositols: cellular metabolism and biological functions. Cell Mol Life Sci 2009; 66:3449-67. [PMID: 19669618 PMCID: PMC11115907 DOI: 10.1007/s00018-009-0113-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/26/2009] [Accepted: 07/16/2009] [Indexed: 12/25/2022]
Abstract
The glycerophosphoinositols are cellular products of phospholipase A(2) and lysolipase activities on the membrane phosphoinositides. Their intracellular concentrations can vary upon oncogenic transformation, cell differentiation and hormonal stimulation. Specific glycerophosphodiester phosphodiesterases are involved in their catabolism, which, as with their formation, is under hormonal regulation. With their mechanisms of action including modulation of adenylyl cyclase, intracellular calcium levels, and Rho-GTPases, the glycerophosphoinositols have diverse effects in multiple cell types: induction of cell proliferation in thyroid cells; modulation of actin cytoskeleton organisation in fibroblasts; and reduction of the invasive potential of tumour cell lines. More recent investigations include their effects in inflammatory and immune responses. Indeed, the glycerophosphoinositols enhance cytokine-dependent chemotaxis in T-lymphocytes induced by SDF-1alpha-receptor activation, indicating roles for these compounds as modulators of T-cell signalling and T-cell responses.
Collapse
Affiliation(s)
- Daniela Corda
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Via Nazionale 8/A, 66030 Santa Maria Imbaro, Chieti Italy
| | - Pasquale Zizza
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Via Nazionale 8/A, 66030 Santa Maria Imbaro, Chieti Italy
| | - Alessia Varone
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Via Nazionale 8/A, 66030 Santa Maria Imbaro, Chieti Italy
| | - Beatrice Maria Filippi
- Present Address: MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Stefania Mariggiò
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Via Nazionale 8/A, 66030 Santa Maria Imbaro, Chieti Italy
| |
Collapse
|
27
|
Choi H, Allahdadi KJ, Tostes RCA, Webb RC. Diacylglycerol Kinase Inhibition and Vascular Function. ACTA ACUST UNITED AC 2009; 5:148-152. [PMID: 21547002 DOI: 10.2174/157340809789071137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diacylglycerol kinases (DGKs), a family of lipid kinases, convert diacylglycerol (DG) to phosphatidic acid (PA). Acting as a second messenger, DG activates protein kinase C (PKC). PA, a signaling lipid, regulates diverse functions involved in physiological responses. Since DGK modulates two lipid second messengers, DG and PA, regulation of DGK could induce related cellular responses. Currently, there are 10 mammalian isoforms of DGK that are categorized into five groups based on their structural features. These diverse isoforms of DGK are considered to activate distinct cellular functions according to extracellular stimuli. Each DGK isoform is thought to play various roles inside the cell, depending on its subcellular localization (nuclear, ER, Golgi complex or cytoplasm). In vascular smooth muscle, vasoconstrictors such as angiotensin II, endothelin-1 and norepinephrine stimulate contraction by increasing inositol trisphosphate (IP(3)), calcium, DG and PKC activity. Inhibition of DGK could increase DG availability and decrease PA levels, as well as alter intracellular responses, including calcium-mediated and PKC-mediated vascular contraction. The purpose of this review is to demonstrate a role of DGK in vascular function. Selective inhibition of DGK isoforms may represent a novel therapeutic approach in vascular dysfunction.
Collapse
Affiliation(s)
- Hyehun Choi
- Department of Physiology, Medical College of Georgia, Augusta, GA 30912-3000, USA
| | | | | | | |
Collapse
|
28
|
Lung M, Shulga YV, Ivanova PT, Myers DS, Milne SB, Brown HA, Topham MK, Epand RM. Diacylglycerol kinase epsilon is selective for both acyl chains of phosphatidic acid or diacylglycerol. J Biol Chem 2009; 284:31062-73. [PMID: 19744926 DOI: 10.1074/jbc.m109.050617] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The phosphatidylinositol (PI) cycle mediates many cellular events by controlling the metabolism of many lipid second messengers. Diacylglycerol kinase epsilon (DGK epsilon) has an important role in this cycle. DGK epsilon is the only DGK isoform to show inhibition by its product phosphatidic acid (PA) as well as substrate specificity for sn-2 arachidonoyl-diacylglycerol (DAG). Here, we show that this inhibition and substrate specificity are both determined by selectivity for a combination of the sn-1 and sn-2 acyl chains of PA or DAG, respectively, preferring the most prevalent acyl chain composition of lipids involved specifically in the PI cycle, 1-stearoyl-2-arachidonoyl. Although the difference in rate for closely related lipid species is small, there is a significant enrichment of 1-stearoyl-2-arachidonoyl PI because of the cyclical nature of PI turnover. We also show that the inhibition of DGK epsilon by PA is competitive and that the deletion of the hydrophobic segment and cationic cluster of DGK epsilon does not affect its selectivity for the acyl chains of PA or DAG. Thus, this active site not only recognizes the lipid headgroup but also a combination of the two acyl chains in PA or DAG. We propose a mechanism of DGK epsilon regulation where its dual acyl chain selectivity is used to negatively regulate its enzymatic activity in a manner that ensures DGK epsilon remains committed to the PI turnover cycle. This novel mechanism of enzyme regulation within a signaling pathway could serve as a template for the regulation of enzymes in other pathways in the cell.
Collapse
Affiliation(s)
- Michael Lung
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | | | | | | | | | | | | | |
Collapse
|
29
|
TIS21/BTG2/PC3 and cyclin D1 are key determinants of nuclear diacylglycerol kinase-ζ-dependent cell cycle arrest. Cell Signal 2009; 21:801-9. [DOI: 10.1016/j.cellsig.2009.01.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Zulian SE, de Boschero MGI, Giusto NM. Insulin action on polyunsaturated phosphatidic acid formation in rat brain: an "in vitro" model with synaptic endings from cerebral cortex and hippocampus. Neurochem Res 2009; 34:1236-48. [PMID: 19130221 DOI: 10.1007/s11064-008-9901-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2008] [Indexed: 11/28/2022]
Abstract
The highly efficient formation of phosphatidic acid from exogenous 1-stearoyl-2-arachidonoyl-sn-glycerol (SAG) in rat brain synaptic nerve endings (synaptosomes) from cerebral cortex and hippocampus is reported. Phosphatidic acid synthesized from SAG or 1,2-dipalmitoyl-sn-glycerol (DPG) was 17.5 or 2.5 times higher, respectively, than from endogenous synaptosomal diacylglycerides. Insulin increased diacylglycerol kinase (DAGK) action on endogenous substrate in synaptic terminals from hippocampus and cerebral cortex by 199 and 97%, respectively. Insulin preferentially increased SAG phosphorylation from hippocampal membranes. In CC synaptosomes insulin increased phosphatidic acid (PA) synthesis from SAG by 100% with respect to controls. Genistein (a tyrosine kinase inhibitor) inhibited this stimulatory insulin effect. Okadaic acid or cyclosporine, used as Ser/Threo protein phosphatase inhibitors, failed to increase insulin effect on PA formation. GTP gamma S and particularly NaF were potent stimulators of PA formation from polyunsaturated diacylglycerol but failed to increase this phosphorylation when added after 5 min of insulin exposure. GTP gamma S and NaF increased phosphatidylinositol 4,5 bisphosphate (PIP2) labeling with respect to controls when SAG was present. On the contrary, they decreased polyphosphoinositide labeling with respect to controls in the presence of DPG. Our results indicate that a DAGK type 3 (DAGKepsilon) which preferentially, but not selectively, utilizes 1-acyl-2-arachidonoyl-sn-glycerol and which could be associated with polyphosphoinositide resynthesis, participates in synaptic insulin signaling. GTP gamma S and NaF appear to be G protein activators related to insulin and the insulin receptor, both affecting the signaling mechanism that augments phosphatidic acid formation.
Collapse
Affiliation(s)
- Sandra E Zulian
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur and CONICET, C.C. 857, B8000FWB, Bahía Blanca, Argentina.
| | | | | |
Collapse
|
31
|
Perez-Mansilla B, Nurrish S. A network of G-protein signaling pathways control neuronal activity in C. elegans. ADVANCES IN GENETICS 2009; 65:145-192. [PMID: 19615533 DOI: 10.1016/s0065-2660(09)65004-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Caenorhabditis elegans neuromuscular junction (NMJ) is one of the best studied synapses in any organism. A variety of genetic screens have identified genes required both for the essential steps of neurotransmitter release from motorneurons as well as the signaling pathways that regulate rates of neurotransmitter release. A number of these regulatory genes encode proteins that converge to regulate neurotransmitter release. In other cases genes are known to regulate signaling at the NMJ but how they act remains unknown. Many of the proteins that regulate activity at the NMJ participate in a network of heterotrimeric G-protein signaling pathways controlling the release of synaptic vesicles and/or dense-core vesicles (DCVs). At least four heterotrimeric G-proteins (Galphaq, Galpha12, Galphao, and Galphas) act within the motorneurons to control the activity of the NMJ. The Galphaq, Galpha12, and Galphao pathways converge to control production and destruction of the lipid-bound second messenger diacylglycerol (DAG) at sites of neurotransmitter release. DAG acts via at least two effectors, MUNC13 and PKC, to control the release of both neurotransmitters and neuropeptides from motorneurons. The Galphas pathway converges with the other three heterotrimeric G-protein pathways downstream of DAG to regulate neuropeptide release. Released neurotransmitters and neuropeptides then act to control contraction of the body-wall muscles to control locomotion. The lipids and proteins involved in these networks are conserved between C. elegans and mammals. Thus, the C. elegans NMJ acts as a model synapse to understand how neuronal activity in the human brain is regulated.
Collapse
Affiliation(s)
- Borja Perez-Mansilla
- MRC Cell Biology Unit, MRC Laboratory for Molecular Cell Biology and Department of Neurobiology, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Stephen Nurrish
- MRC Cell Biology Unit, MRC Laboratory for Molecular Cell Biology and Department of Neurobiology, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|