1
|
Ortiz-Ramírez A, Hernández-Jiménez MC, Guardiola-Avila IB, De Luna-Santillana EDJ, Oliva-Hernández AA, Altamirano-García ML, Juárez-Rendón KJ. HR Gene Variants Identified in Mexican Patients with Alopecia Areata. Curr Issues Mol Biol 2023; 45:2965-2971. [PMID: 37185718 PMCID: PMC10136600 DOI: 10.3390/cimb45040194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
Alopecia Areata (AA) is a multifactorial, dermatological disease characterized by non-scarring hair loss. Alterations in candidate genes, such as HR (Hairless), could represent a risk factor for its development. The aim of this study was to search for and analyze variants in exons 3, 15 and 17 of the HR gene in Mexican patients with AA. A total of 30 samples from both AA patients and healthy donors were analyzed in this study. Exons were amplified and sequenced using the Sanger method. Descriptive statistics and χ2 tests were used in the analysis of clinical-demographic characteristics and the comparison of allelic/genotypical frequencies between groups, respectively. The effect on protein function for the non-synonymous variants was determined with three bioinformatics servers. Three gene variants were identified in the HR gene of the evaluated patients. The benign polymorphism c.1010G > A p.(Gly337Asp) (rs12675375) had been previously reported, whereas the variants c.750G > A p.(Gln250Gln) and c.3215T > A (Val1072AGlu) have not been described in other world populations. Both non-synonymous variants proved to be significant (p ≤ 0.05). The variant c.3215T > A p.(Val1072Glu) is of particular interest due to its deleterious effect on the structure and function of the protein; therefore, it could be considered a risk factor for the development of AA.
Collapse
Affiliation(s)
- Andrés Ortiz-Ramírez
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Blvd. del Maestro s/n. Esq. Elías Piña, Col. Narciso Mendoza, Reynosa 88710, Mexico
- Unidad Académica Multidisciplinaria Reynosa Aztlán, Universidad Autónoma de Tamaulipas, Calle 16 s/n y Lago de Chapala, Col. Aztlán, Reynosa 88740, Mexico
| | - María Cristina Hernández-Jiménez
- Unidad Académica Multidisciplinaria Reynosa Aztlán, Universidad Autónoma de Tamaulipas, Calle 16 s/n y Lago de Chapala, Col. Aztlán, Reynosa 88740, Mexico
| | - Iliana Berenice Guardiola-Avila
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley (UTRGV), 5300 L. St., McAllen, TX 78504, USA
| | - Erick de Jesús De Luna-Santillana
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Blvd. del Maestro s/n. Esq. Elías Piña, Col. Narciso Mendoza, Reynosa 88710, Mexico
| | - Amanda Alejandra Oliva-Hernández
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Blvd. del Maestro s/n. Esq. Elías Piña, Col. Narciso Mendoza, Reynosa 88710, Mexico
| | | | - Karina Janett Juárez-Rendón
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Blvd. del Maestro s/n. Esq. Elías Piña, Col. Narciso Mendoza, Reynosa 88710, Mexico
| |
Collapse
|
2
|
Shen Y, Singh J, Sah B, Chen Z, Ha W, Henzler C, Su T, Xie L, Deng Y, Li G, Guo H, Hibshoosh H, Liu L. The Histone Demethylase HR Suppresses Breast Cancer Development through Enhanced CELF2 Tumor Suppressor Activity. Cancers (Basel) 2022; 14:4648. [PMID: 36230572 PMCID: PMC9564370 DOI: 10.3390/cancers14194648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
The hairless (HR) gene encodes a transcription factor with histone demethylase activity that is essential for development and tissue homeostasis. Previous studies suggest that mutational inactivation of HR promotes tumorigenesis. To investigate HR mutations in breast cancer, we performed targeted next-generation sequencing using DNA isolated from primary breast cancer tissues. We identified HR somatic mutations in approximately 15% of the patient cohort (n = 85), compared with 23% for BRCA2, 13% for GATA3, 7% for BRCA1, and 3% for PTEN in the same patient cohort. We also found an average 23% HR copy number loss in breast cancers. In support of HR's antitumor functions, HR reconstitution in HR-deficient human breast cancer cells significantly suppressed tumor growth in orthotopic xenograft mouse models. We further demonstrated that HR's antitumor activity was at least partly mediated by transcriptional activation of CELF2, a tumor suppressor with RNA-binding activity. Consistent with HR's histone demethylase activity, pharmacologic inhibition of histone methylation suppressed HR-deficient breast cancer cell proliferation, migration and tumor growth. Taken together, we identified HR as a novel tumor suppressor that is frequently mutated in breast cancer. We also showed that pharmacologic inhibition of histone methylation is effective in suppressing HR-deficient breast tumor growth and progression.
Collapse
Affiliation(s)
- Yao Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jasvinder Singh
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Bindeshwar Sah
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Zhongming Chen
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Wootae Ha
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Christine Henzler
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tao Su
- Department of Pathology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lillian Xie
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Yibin Deng
- Department of Urology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gen Li
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hua Guo
- Department of Pathology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hanina Hibshoosh
- Department of Pathology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Liang Liu
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
3
|
Hairless regulates heterochromatin maintenance and muscle stem cell function as a histone demethylase antagonist. Proc Natl Acad Sci U S A 2021; 118:2025281118. [PMID: 34493660 DOI: 10.1073/pnas.2025281118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 07/26/2021] [Indexed: 11/18/2022] Open
Abstract
Skeletal muscle possesses remarkable regenerative ability because of the resident muscle stem cells (MuSCs). A prominent feature of quiescent MuSCs is a high content of heterochromatin. However, little is known about the mechanisms by which heterochromatin is maintained in MuSCs. By comparing gene-expression profiles from quiescent and activated MuSCs, we found that the mammalian Hairless (Hr) gene is expressed in quiescent MuSCs and rapidly down-regulated upon MuSC activation. Using a mouse model in which Hr can be specifically ablated in MuSCs, we demonstrate that Hr expression is critical for MuSC function and muscle regeneration. In MuSCs, loss of Hr results in reduced trimethylated Histone 3 Lysine 9 (H3K9me3) levels, reduced heterochromatin, increased susceptibility to genotoxic stress, and the accumulation of DNA damage. Deletion of Hr leads to an acceleration of the age-related decline in MuSC numbers. We have also demonstrated that despite the fact that Hr is homologous to a family of histone demethylases and binds to di- and trimethylated H3K9, the expression of Hr does not lead to H3K9 demethylation. In contrast, we show that the expression of Hr leads to the inhibition of the H3K9 demethylase Jmjd1a and an increase in H3K9 methylation. Taking these data together, our study has established that Hr is a H3K9 demethylase antagonist specifically expressed in quiescent MuSCs.
Collapse
|
4
|
Trager MH, Sah B, Chen Z, Liu L. Control of Breast Cancer Pathogenesis by Histone Methylation and the Hairless Histone Demethylase. Endocrinology 2021; 162:6259332. [PMID: 33928351 PMCID: PMC8237996 DOI: 10.1210/endocr/bqab088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 12/19/2022]
Abstract
Breast cancer is a highly heterogeneous disease, encompassing many subtypes that have distinct origins, behaviors, and prognoses. Although traditionally seen as a genetic disease, breast cancer is now also known to involve epigenetic abnormalities. Epigenetic regulators, such as DNA methyltransferases and histone-modifying enzymes, play essential roles in gene regulation and cancer development. Dysregulation of epigenetic regulator activity has been causally linked with breast cancer pathogenesis. Hairless (HR) encodes a 130-kDa transcription factor that is essential for development and tissue homeostasis. Its role in transcription regulation is partly mediated by its interaction with multiple nuclear receptors, including thyroid hormone receptor, retinoic acid receptor-related orphan receptors, and vitamin D receptor. HR has been studied primarily in epidermal development and homeostasis. Hr-mutant mice are highly susceptible to ultraviolet- or carcinogen-induced skin tumors. Besides its putative tumor suppressor function in skin, loss of HR function has also been implicated in increased leukemia susceptibility and promotes the growth of melanoma and brain cancer cells. HR has also been demonstrated to function as a histone H3 lysine 9 demethylase. Recent genomics studies have identified HR mutations in a variety of human cancers, including breast cancer. The anticancer function and mechanism of action by HR in mammary tissue remains to be investigated. Here, we review the emerging role of HR, its histone demethylase activity and histone methylation in breast cancer development, and potential for epigenetic therapy.
Collapse
Affiliation(s)
- Megan H Trager
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, USA
| | - Bindeshwar Sah
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | - Zhongming Chen
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55912, USA
| | - Liang Liu
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55912, USA
- Correspondence: Liang Liu, PhD, The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA.
| |
Collapse
|
5
|
Vitamin D-vitamin D receptor system down-regulates expression of uncoupling proteins in brown adipocyte through interaction with Hairless protein. Biosci Rep 2020; 40:225002. [PMID: 32452516 PMCID: PMC7286880 DOI: 10.1042/bsr20194294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 11/17/2022] Open
Abstract
Our previous study showed that feeding mice with vitamin D deficiency diet markedly alleviated high-fat-diet-induced overweight, hyperinsulinemia, and hepatic lipid accumulation. Moreover, vitamin D deficiency up-regulated the expression of uncoupling protein 3 (Ucp3) in white adipose tissue (WAT) and brown adipose tissue (BAT). The present study aimed to further investigate the effects of vitamin D and vitamin D receptor (Vdr) on Ucp1–3 (Ucps) expression in brown adipocyte and the mechanism involved in it. Rat primary brown adipocytes were separated and purified. The effects of the 1,25(OH)2D3 (1,25-dihydroxyvitamin D3; the hormonal form of vitamin D) and Vdr system on Ucps expression in brown adipocytes were investigated in basal condition and activated condition by isoproterenol (ISO) and triiodothyronine (T3). Ucps expression levels were significantly down-regulated by 1,25(OH)2D3 in the activated brown adipocyte. Vdr silencing reversed the down-regulation of Ucps by 1,25(OH)2D3, whereas Vdr overexpression strengthened the down-regulation effects. Hairless protein did express in brown adipocyte and was localized in cell nuclei. 1,25(OH)2D3 increased Hairless protein expression in the cell nuclei. Hairless (Hr) silencing notably elevated Ucps expression in activated condition induced by ISO and T3. Moreover, immunoprecipitation results revealed that Vdr could interact with Hairless, which might contribute to decreasing expression of Vdr target gene Ucps. These data suggest that vitamin D suppresses expression of Ucps in brown adipocyte in a Vdr-dependent manner and the corepressor Hairless protein probably plays a role in the down-regulation.
Collapse
|
6
|
Zhu K, Xu C, Zhang J, Chen Y, Liu M. Transgenic mice display hair loss and regrowth overexpressing mutant Hr gene. Exp Anim 2017; 66:379-386. [PMID: 28679963 PMCID: PMC5682350 DOI: 10.1538/expanim.16-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Mutations in the hairless (Hr) gene in both mice and humans have been
implicated in the development of congenital atrichia, but the role of Hr
in skin and hair follicle (HF) biology remains unknown. Here, we established transgenic
mice (TG) overexpressing mutant Hr to investigate its specific role in
the development of HF. Three transgenic lines were successfully constructed, and two of
them (TG3 and TG8) displayed a pattern of hair loss and regrowth with alternation in the
expression of HR protein. The mutant Hr gene inhibited the expression of
the endogenous gene in transgenic individuals, which led to the development of alopecia.
Interestingly, the hair regrew with the increase in the endogenous expression levels
resulting from decreased mutant Hr expression. The findings of our study
indicate that the changes in the expression of Hr result in hair loss or
regrowth.
Collapse
Affiliation(s)
- Kuicheng Zhu
- Key Laboratory for Bioengineering, Henan Normal University, No. 46 East of Construction Road, Xinxiang City, Henan Province 453007, P.R. China.,Laboratory Animal Center of Zhengzhou University, No. 40 University Road, Zhengzhou City, Henan Province 450052, P.R. China
| | - Cunshuan Xu
- Key Laboratory for Bioengineering, Henan Normal University, No. 46 East of Construction Road, Xinxiang City, Henan Province 453007, P.R. China
| | - Jintao Zhang
- Henan Academy of Medical and Pharmaceutical Sciences, No. 40 University Road, Zhengzhou City, Henan Province 450052, P.R. China
| | - Yingying Chen
- Henan Academy of Medical and Pharmaceutical Sciences, No. 40 University Road, Zhengzhou City, Henan Province 450052, P.R. China
| | - Mengduan Liu
- Henan Academy of Medical and Pharmaceutical Sciences, No. 40 University Road, Zhengzhou City, Henan Province 450052, P.R. China
| |
Collapse
|
7
|
Zhu K, Xu C, Liu M, Zhang J. Hairless controls hair fate decision via Wnt/β-catenin signaling. Biochem Biophys Res Commun 2017; 491:567-570. [PMID: 28765044 DOI: 10.1016/j.bbrc.2017.07.164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 07/29/2017] [Indexed: 01/24/2023]
Abstract
The hairless (Hr) gene plays a central role in the hair cycle, considering that mutations in the gene result in hair loss with the exception of a few vibrissae after the first hair growth cycle in both mice and humans. This study examinedthe uncommon phenotype and using microarray analyses and functional studies, we found that β-catenin was mediated by Hr. Progenitor keratinocytes from the bulge region differentiate into both epidermis and sebaceous glands, and fail to adopt the hair keratinocytes fate in the mutant scalp, due to the decreased Wnt/β-catenin signaling in the absence of the hairless protein. This may be attributed to the dysfunction of normal epithelial-mesenchymal interactions in the hair follicle (HF).
Collapse
Affiliation(s)
- Kuicheng Zhu
- College of Life Science and Key Laboratory for Bioengineering, Henan Normal University, Xinxiang 453007, China; Laboratory Animal Center of Zhengzhou University, Zhengzhou 450052, China
| | - Cunshuan Xu
- College of Life Science and Key Laboratory for Bioengineering, Henan Normal University, Xinxiang 453007, China
| | - Mengduan Liu
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Jintao Zhang
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
8
|
Affiliation(s)
- Masanori Fujii
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University
| |
Collapse
|
9
|
Brook L, Whitfield GK, Hsieh D, Bither RD, Hsieh JC. The Mammalian Hairless Protein as a DNA Binding Phosphoprotein. J Cell Biochem 2016; 118:341-350. [PMID: 27355563 DOI: 10.1002/jcb.25641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/28/2016] [Indexed: 11/08/2022]
Abstract
The mammalian hairless (Hr) protein plays critical roles in skin and brain tissues, but how it interacts with DNA and partner protein is only now being defined. Our initial tests of four consensus response elements, revealed that rat Hr can specifically bind to a consensus p53 response element (p53RE), 5'-AGACATGCCTAGACATGCCT-3', but not to response elements for NF-κB, TCF4 or Sp1. We then employed ChIP assays which verified that human HR binds to a p53RE of the GADD45A gene in both HEK293 (embryonic kidney) and U87 (glioblastoma) cells. Further, HR was shown to interact directly with the p53 protein in a co-immunoprecipitation assay. Cotransfections with p53RE reporter gene constructs revealed that rat Hr can boost p53-mediated transactivation of a reporter gene linked to the GADD45A p53RE, but blunts p53-mediated transactivation when the reporter gene is linked to a p21 promoter fragment containing a p53RE, with implications for the regulation of these two cell cycle control genes. Finally, our investigations of HR phosphorylation revealed that rat Hr is a substrate for PKC, but not PKA, and that human HR is phosphorylated in intact U87 cells at Ser-416, located in a highly conserved region which partially fulfills the criteria of a PKC site. We propose that mammalian Hr is a phosphoprotein which can exert cross-talk with the p53 pathway with important implications for the regulation of cell proliferation and differentiation in tissues such as skin and brain where Hr is highly expressed. J. Cell. Biochem. 118: 341-350, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lemlem Brook
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona
| | - G Kerr Whitfield
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona
| | - David Hsieh
- Mount Auburn Hospital, 330 Mt Auburn St, Cambridge, Massachusetts
| | - Ryan D Bither
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona
| | - Jui-Cheng Hsieh
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona
| |
Collapse
|
10
|
Fujii M, Endo-Okuno F, Iwai A, Doi K, Tomozawa J, Kohno S, Inagaki N, Nabe T, Ohya S. Hypomorphic mutation in the hairless gene accelerates pruritic atopic skin caused by feeding a special diet to mice. Exp Dermatol 2016; 25:565-7. [DOI: 10.1111/exd.13015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Masanori Fujii
- Department of Pharmacology; Division of Pathological Sciences; Kyoto Pharmaceutical University; Kyoto Japan
| | - Fumiko Endo-Okuno
- Department of Pharmacology; Division of Pathological Sciences; Kyoto Pharmaceutical University; Kyoto Japan
| | - Asuka Iwai
- Department of Pharmacology; Division of Pathological Sciences; Kyoto Pharmaceutical University; Kyoto Japan
| | - Keisuke Doi
- Department of Pharmacology; Division of Pathological Sciences; Kyoto Pharmaceutical University; Kyoto Japan
| | - Junko Tomozawa
- Department of Pharmacology; Division of Pathological Sciences; Kyoto Pharmaceutical University; Kyoto Japan
| | - Shigekatsu Kohno
- Department of Pharmacology; Division of Pathological Sciences; Kyoto Pharmaceutical University; Kyoto Japan
| | - Naoki Inagaki
- Laboratory of Pharmacology; Department of Bioactive Molecules; Gifu Pharmaceutical University; Gifu Japan
| | - Takeshi Nabe
- Department of Pharmacology; Division of Pathological Sciences; Kyoto Pharmaceutical University; Kyoto Japan
- Laboratory of Immunopharmacology; Faculty of Pharmaceutical Sciences; Setsunan University; Osaka Japan
| | - Susumu Ohya
- Department of Pharmacology; Division of Pathological Sciences; Kyoto Pharmaceutical University; Kyoto Japan
| |
Collapse
|
11
|
Mehmood S, Jan A, Raza SI, Ahmad F, Younus M, Irfanullah, Shahi S, Ayub M, Khan S, Ahmad W. Disease causing homozygous variants in the human hairless gene. Int J Dermatol 2015; 55:977-81. [DOI: 10.1111/ijd.13109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/25/2015] [Accepted: 05/07/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Sabba Mehmood
- Department of Biochemistry; Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - Abid Jan
- Department of Biochemistry; Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
- Department of Biotechnology & Genetic Engineering; Kohat University of Science & Technology (KUST); Kohat Pakistan
| | - Syed Irfan Raza
- Department of Biochemistry; Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
- Army Medical College; National University of Science & Technology (NUST); Islamabad Pakistan
| | - Farooq Ahmad
- Department of Biochemistry; Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - Muhammad Younus
- Department of Biochemistry; Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - Irfanullah
- Department of Biochemistry; Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - Shamim Shahi
- Department of Biochemistry; Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| | - Muhammad Ayub
- Institute of Biochemistry; University of Baluchistan; Quetta Pakistan
| | - Saadullah Khan
- Department of Biotechnology & Genetic Engineering; Kohat University of Science & Technology (KUST); Kohat Pakistan
| | - Wasim Ahmad
- Department of Biochemistry; Faculty of Biological Sciences; Quaid-i-Azam University; Islamabad Pakistan
| |
Collapse
|
12
|
Mathewson I. Did human hairlessness allow natural photobiomodulation 2 million years ago and enable photobiomodulation therapy today? This can explain the rapid expansion of our genus’s brain. Med Hypotheses 2015; 84:421-8. [DOI: 10.1016/j.mehy.2015.01.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 12/19/2014] [Accepted: 01/21/2015] [Indexed: 12/26/2022]
|
13
|
Delsuc F, Tilak MK. Naked but not Hairless: the pitfalls of analyses of molecular adaptation based on few genome sequence comparisons. Genome Biol Evol 2015; 7:768-74. [PMID: 25714745 PMCID: PMC5322551 DOI: 10.1093/gbe/evv036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The naked mole-rat (Heterocephalus glaber) is the only rodent species that naturally lacks fur. Genome sequencing of this atypical rodent species recently shed light on a number of its morphological and physiological adaptations. More specifically, its hairless phenotype has been traced back to a single amino acid change (C397W) in the hair growth associated (HR) protein (or Hairless). By considering the available species diversity, we show that this specific position is in fact variable across mammals, including in the horse that was misleadingly reported to have the ancestral Cysteine. Moreover, by sequencing the corresponding HR exon in additional rodent species, we demonstrate that the C397W substitution is actually not a peculiarity of the naked mole-rat. Instead, this specific amino acid substitution is present in all hystricognath rodents investigated, which are all fully furred, including the naked mole-rat closest relative, the Damaraland mole-rat (Fukomys damarensis). Overall, we found no statistical correlation between amino acid changes at position 397 of the HR protein and reduced pilosity across the mammalian phylogeny. This demonstrates that this single amino acid change does not explain the naked mole-rat hairless phenotype. Our case study calls for caution before making strong claims regarding the molecular basis of phenotypic adaptation based on the screening of specific amino acid substitutions using only few model species in genome sequence comparisons. It also exposes the more general problem of the dilution of essential information in the supplementary material of genome papers thereby increasing the probability that misleading results will escape the scrutiny of editors, reviewers, and ultimately readers.
Collapse
Affiliation(s)
- Frédéric Delsuc
- Institut des Sciences de l'Evolution, UMR5554, CNRS, IRD, Université de Montpellier, France
| | - Marie-Ka Tilak
- Institut des Sciences de l'Evolution, UMR5554, CNRS, IRD, Université de Montpellier, France
| |
Collapse
|
14
|
Ramot Y, Vardy LA. Commentary on: Hairless and the polyamine putrescine form a negative regulatory loop in the epidermis. Exp Dermatol 2014; 22:697-8. [PMID: 24433178 DOI: 10.1111/exd.12244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2013] [Indexed: 11/29/2022]
Abstract
Polyamines are cationic amines essential for cellular proliferation. Recently, their role in hair follicle (HF) growth has started to be explored, but their exact function is still obscure. In the October issue of Experimental Dermatology, Luke et al. follow the observation that putrescine overproducing mice and hairless (HR) mutant mice show a similar clinical phenotype of hair loss and dermal cyst formation. They show that HR and putrescine form a negative regulatory feedback mechanism, which might regulate hair cycling and therefore control hair growth. This study clearly demonstrates that a strong connection exists between HR and polyamines although there are probably additional molecular pathways involved in the polyamine regulation of hair growth which remain to be discovered.
Collapse
Affiliation(s)
- Yuval Ramot
- Department of Dermatology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | |
Collapse
|
15
|
Xu J, Weng Z, Arumugam A, Tang X, Chaudhary SC, Li C, Christiano AM, Elmets CA, Bickers DR, Athar M. Hair follicle disruption facilitates pathogenesis to UVB-induced cutaneous inflammation and basal cell carcinoma development in Ptch(+/-) mice. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1529-40. [PMID: 24631180 DOI: 10.1016/j.ajpath.2014.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 12/23/2013] [Accepted: 01/23/2014] [Indexed: 01/01/2023]
Abstract
Hairless mice carrying homozygous mutations in hairless gene manifest rudimentary hair follicles (HFs), epidermal cysts, hairless phenotype, and enhanced susceptibility to squamous cell carcinomas. However, their susceptibility to basal cell carcinomas (BCCs), a neoplasm considered originated from HF-localized stem cells, is unknown. To demonstrate the role of HFs in BCC development, we bred Ptch(+/-)/C57BL6 with SKH-1 hairless mice, followed by brother-sister cross to get F2 homozygous mutant (hairless) or wild-type (haired) mice. UVB-induced inflammation was less pronounced in shaved haired than in hairless mice. In hairless mice, inflammatory infiltrate was found around the rudimentary HFs and epidermal cysts. Expression of epidermal IL1f6, S100a8, vitamin D receptor, repetin, and major histocompatibility complex II, biomarkers depicting susceptibility to cutaneous inflammation, was also higher. In these animals, HF disruption altered susceptibility to UVB-induced BCCs. Tumor onset in hairless mice was 10 weeks earlier than in haired littermates. The incidence of BCCs was significantly higher in hairless than in haired animals; however, the magnitude of sonic hedgehog signaling did not differ significantly. Overall, 100% of hairless mice developed >12 tumors per mouse after 32 weeks of UVB therapy, whereas haired mice developed fewer than three tumors per mouse after 44 weeks of long-term UVB irradiation. Tumors in hairless mice were more aggressive than in haired littermates and manifested decreased E-cadherin and enhanced mesenchymal proteins. These data provide novel evidence that disruption of HFs in Ptch(+/-) mice enhances cutaneous susceptibility to inflammation and BCCs.
Collapse
Affiliation(s)
- Jianmin Xu
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zhiping Weng
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Aadithya Arumugam
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Xiuwei Tang
- Department of Dermatology, Columbia University, New York, New York
| | - Sandeep C Chaudhary
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Changzhao Li
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Craig A Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - David R Bickers
- Department of Dermatology, Columbia University, New York, New York
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
16
|
Liu L, Kim H, Casta A, Kobayashi Y, Shapiro LS, Christiano AM. Hairless is a histone H3K9 demethylase. FASEB J 2013; 28:1534-42. [PMID: 24334705 DOI: 10.1096/fj.13-237677] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The hairless (HR) protein contains a Jumonji C (JmjC) domain that is conserved among a family of proteins with histone demethylase (HDM) activity. To test whether HR possesses HDM activity, we performed a series of in vitro demethylation assays, which demonstrated that HR can demethylate monomethylated or dimethylated histone H3 lysine 9 (H3K9me1 or me2). Moreover, ectopic expression of wild-type HR, but not JmjC-mutant HR, led to pronounced demethylation of H3K9 in cultured human HeLa cells. We also show that two missense mutations in HR, which we and others described in patients with atrichia with papular lesions, abolished the demethylase activity of HR, demonstrating the role of HR demethylase activity in human disease. By ChIP-Seq analysis, we identified multiple new HR target genes, many of which play important roles in epidermal development, neural function, and transcriptional regulation, consistent with the predicted biological functions of HR. Our findings demonstrate for the first time that HR is a H3K9 demethylase that regulates epidermal homeostasis via direct control of its target genes.
Collapse
Affiliation(s)
- Liang Liu
- 2Department of Dermatology, Columbia University, College of Physicians and Surgeons, Russ Berrie Medical Science Pavilion, 1150 St. Nicholas Ave., Rm. 307, New York, NY 10032, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Chen Z, Wang Z, Xu S, Zhou K, Yang G. Characterization of hairless (Hr) and FGF5 genes provides insights into the molecular basis of hair loss in cetaceans. BMC Evol Biol 2013; 13:34. [PMID: 23394579 PMCID: PMC3608953 DOI: 10.1186/1471-2148-13-34] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 01/30/2013] [Indexed: 11/29/2022] Open
Abstract
Background Hair is one of the main distinguishing characteristics of mammals and it has many important biological functions. Cetaceans originated from terrestrial mammals and they have evolved a series of adaptations to aquatic environments, which are of evolutionary significance. However, the molecular mechanisms underlying their aquatic adaptations have not been well explored. This study provided insights into the evolution of hair loss during the transition from land to water by investigating and comparing two essential regulators of hair follicle development and hair follicle cycling, i.e., the Hairless (Hr) and FGF5 genes, in representative cetaceans and their terrestrial relatives. Results The full open reading frame sequences of the Hr and FGF5 genes were characterized in seven cetaceans. The sequence characteristics and evolutionary analyses suggested the functional loss of the Hr gene in cetaceans, which supports the loss of hair during their full adaptation to aquatic habitats. By contrast, positive selection for the FGF5 gene was found in cetaceans where a series of positively selected amino acid residues were identified. Conclusions This is the first study to investigate the molecular basis of the hair loss in cetaceans. Our investigation of Hr and FGF5, two indispensable regulators of the hair cycle, provide some new insights into the molecular basis of hair loss in cetaceans. The results suggest that positive selection for the FGF5 gene might have promoted the termination of hair growth and early entry into the catagen stage of hair follicle cycling. Consequently, the hair follicle cycle was disrupted and the hair was lost completely due to the loss of the Hr gene function in cetaceans. This suggests that cetaceans have evolved an effective and complex mechanism for hair loss.
Collapse
Affiliation(s)
- Zhuo Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | | | | | | | | |
Collapse
|
18
|
Hairless promotes PPARγ expression and is required for white adipogenesis. EMBO Rep 2012; 13:1012-20. [PMID: 22964757 DOI: 10.1038/embor.2012.133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 08/20/2012] [Accepted: 08/21/2012] [Indexed: 01/23/2023] Open
Abstract
Adipose tissue is the largest compartment in the mammalian body for storing energy as fat, providing an important reservoir of fuel for maintaining whole body energy homeostasis. Herein, we identify the transcriptional cofactor hairless (HR) to be required for white adipogenesis. Moreover, forced expression of HR in non-adipogenic precursor cells induces adipogenic gene expression and enhances adipocyte formation under permissive conditions. HR exerts its proadipogenic effects by regulating the expression of PPARγ, one of the central adipogenic transcription factors. In conclusion, our data provide a new mechanism required for white adipogenesis.
Collapse
|
19
|
Kim H, Casta A, Tang X, Luke CT, Kim AL, Bickers DR, Athar M, Christiano AM. Loss of hairless confers susceptibility to UVB-induced tumorigenesis via disruption of NF-kappaB signaling. PLoS One 2012; 7:e39691. [PMID: 22761871 PMCID: PMC3382590 DOI: 10.1371/journal.pone.0039691] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 05/29/2012] [Indexed: 12/27/2022] Open
Abstract
In order to model squamous cell carcinoma development in vivo, researchers have long preferred hairless mouse models such as SKH-1 mice that have traditionally been classified as ‘wild-type’ mice irrespective of the genetic factors underlying their hairless phenotype. The work presented here shows that mutations in the Hairless (Hr) gene not only result in the hairless phenotype of the SKH-1 and Hr−/− mouse lines but also cause aberrant activation of NFκB and its downstream effectors. We show that in the epidermis, Hr is an early UVB response gene that regulates NFκB activation and thereby controls cellular responses to irradiation. Therefore, when Hr expression is decreased in Hr mutant animals there is a corresponding increase in NFκB activity that is augmented by UVB irradiation. This constitutive activation of NFκB in the Hr mutant epidermis leads to the stimulation a large variety of downstream effectors including the cell cycle regulators cyclin D1 and cyclin E, the anti-apoptosis protein Bcl-2, and the pro-inflammatory protein Cox-2. Therefore, Hr loss results in a state of uncontrolled epidermal proliferation that promotes tumor development, and Hr mutant mice should no longer be considered merely hairless 'wild-type' mice. Instead, Hr is a crucial UVB response gene and its loss creates a permissive environment that potentiates increased tumorigenesis.
Collapse
Affiliation(s)
- Hyunmi Kim
- Department of Genetics & Development, Columbia University, College of Physicians & Surgeons, New York, New York, United States of America
- Department of Dermatology, Columbia University, College of Physicians & Surgeons, New York, New York, United States of America
| | - Alexandre Casta
- Institute of Human Nutrition, Columbia University, College of Physicians & Surgeons, New York, New York, United States of America
| | - Xiuwei Tang
- Department of Dermatology, Columbia University, College of Physicians & Surgeons, New York, New York, United States of America
| | - Courtney T. Luke
- Department of Dermatology, Columbia University, College of Physicians & Surgeons, New York, New York, United States of America
| | - Arianna L. Kim
- Department of Dermatology, Columbia University, College of Physicians & Surgeons, New York, New York, United States of America
| | - David R. Bickers
- Department of Dermatology, Columbia University, College of Physicians & Surgeons, New York, New York, United States of America
| | - Mohammad Athar
- Department of Dermatology, Columbia University, College of Physicians & Surgeons, New York, New York, United States of America
| | - Angela M. Christiano
- Department of Genetics & Development, Columbia University, College of Physicians & Surgeons, New York, New York, United States of America
- Department of Dermatology, Columbia University, College of Physicians & Surgeons, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
20
|
Casta A, Kim H, Luke CT, Bachelor MA, Engelhard A, Owens DM, Christiano AM. Hairless and NFκB form a positive feedback loop after UVB and TNFα stimulation. Photochem Photobiol 2012; 88:1173-83. [PMID: 22329811 DOI: 10.1111/j.1751-1097.2012.01110.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Hairless (HR) is a nuclear protein with corepressor activity whose exact function in the skin remains to be determined. Mutations in both human and mouse Hairless lead to hair loss accompanied by the appearance of papules, a disorder called atrichia with papular lesions. Furthermore, mice with mutations in HR are known to have a higher susceptibility to ultraviolet radiation-induced tumorigenesis, suggesting that HR plays a crucial role in the epidermal UVB response. Using normal human keratinocytes (NHKs) and keratinocytes containing a mutation in HR, we found that HR is an early UVB response gene that negatively regulates NFκB mRNA expression. HR mutant keratinocytes have a dysregulated UVB response that includes increased proliferation and the aberrant activation of NFκB effector genes. Additionally, we show that another UVB response gene, TNFα, negatively regulates HR mRNA expression. TNFα-induced negative regulation of HR occurs through a direct interaction of the p65 subunit with a single NFκB-binding domain located in the HR promoter region. Therefore, we show for the first time that HR and NFκB participate in a positive feedback loop that can be initiated either by UVB or TNFα.
Collapse
Affiliation(s)
- Alexandre Casta
- Department of Dermatology, Columbia University, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Melvin A, Rocha S. Chromatin as an oxygen sensor and active player in the hypoxia response. Cell Signal 2012; 24:35-43. [PMID: 21924352 PMCID: PMC3476533 DOI: 10.1016/j.cellsig.2011.08.019] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 08/29/2011] [Indexed: 12/28/2022]
Abstract
Changes in the availability or demand for oxygen induce dramatic changes at the cellular level. Primarily, activation of a family of oxygen labile transcription factors, Hypoxia Inducible Factor (HIF), initiates a variety of cellular processes required to re-instate oxygen homeostasis. Oxygen is sensed by molecular dioxygenases in cells, such as the prolyl-hydroxylases (PHDs), enzymes which are responsible for the oxygen-dependent regulation of HIF. As HIF is a transcription factor it must bind DNA sequences of its target genes possibly in the context of a complex chromatin structure. How chromatin structure changes in response to hypoxia is currently unknown. However, the identification of a novel class of histone demethylases as true dioxygenases suggests that chromatin can act as an oxygen sensor and plays an active role in the coordination of the cellular response to hypoxia. This review will discuss the current knowledge on how hypoxia engages with different proteins involved in chromatin organisation and dynamics.
Collapse
Key Words
- hif, hypoxia inducible factor
- arnt, aryl hydrocarbon nuclear translocator
- vhl, von hippel lindau
- phd, prolyl-hydroxylase
- fih, factor inhibiting hif
- chip, chromatin immunoprecipitation
- swi/snf, switch/sucrose nonfermentable
- iswi, imitation switch
- chd, chromodomain helicase dna-binding
- nurf, nucleosome remodelling factor
- chrac, chromatin remodelling and assembly complex
- acf, atp-utilising chromatin remodelling and assembly factor
- norc, nucleolar remodelling complex
- rsf, remodelling and spacing factor
- wich, wstf–iswi chromatin remodelling complex
- nurd, nucleosome remodelling and histone deacetylase
- srcap, snf2-related cbp activator protein
- trrap, transformation/transcription domain-associated protein/tip60
- hat, histone acetyl transferase
- hdac, histone deacetylase
- lsd1, lysine-specific demethylase-1
- jmjc, jumonji c domain
- hypoxia
- chromatin
- hif
- transcription
- chromatin remodellers
- jmjc demethylases
Collapse
Affiliation(s)
| | - Sonia Rocha
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, MSI/WTB/JBC Complex, Dow Street, University of Dundee, Dundee, DD1 5EH, Scotland, United Kingdom
| |
Collapse
|
22
|
Mi Y, Zhang Y, Shen YF. Mechanism of JmjC-containing protein Hairless in the regulation of vitamin D receptor function. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1675-80. [PMID: 21982945 DOI: 10.1016/j.bbadis.2011.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 08/22/2011] [Accepted: 09/23/2011] [Indexed: 11/28/2022]
Abstract
The JmjC-domain-containing protein Hairless (HR) and the vitamin D receptor (VDR) play a critical role in the maintenance of hair growth. Mutations in HR or VDR cause alopecia in humans and mice. Here we show that HR interacts with VDR and induces VDR relocalization in the nuclei. HR associates and colocalizes with nuclear receptor co-repressor (N-CoR) which is localized to subnuclear structures termed matrix-associated deacetylase (MAD) bodies. It is found that the HR mutants (C622G, N970S, D1012N, V1136D), associated with alopecia universalis congenita (AUC) or atrichia with papular lesions (APL), exhibit an abnormal subcellular distribution in addition to the impaired co-repressor activity with VDR. Studies on deletion mutants of HR indicate that the JmjC domain contributes to the co-repressor activity of HR. Our work provides new clues and evidence for the understanding on the role of HR in hair growth.
Collapse
Affiliation(s)
- Yang Mi
- Department of Biochemistry and Molecular Biology, Chinese Academy of Medical Sciences, China
| | | | | |
Collapse
|
23
|
Flores AM, Gurevich I, Zhang C, Ramirez VP, Devens TR, Aneskievich BJ. TNIP1 is a corepressor of agonist-bound PPARs. Arch Biochem Biophys 2011; 516:58-66. [PMID: 21967852 DOI: 10.1016/j.abb.2011.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 08/03/2011] [Accepted: 08/17/2011] [Indexed: 11/18/2022]
Abstract
Nuclear receptor (NR) coregulators include coactivators, contributing to holoreceptor transcriptional activity, and corepressors, mediating NR target gene silencing in the absence of hormone. We identified an atypical NR coregulator, TNFα-induced protein 3-interacting protein 1 (TNIP1), from a peroxisome proliferator activated receptor (PPAR) α screen of a human keratinocyte cDNA library. TNIP1's complex nomenclature parallels its additional function as an NF-κB inhibitor. Here we show TNIP1 is an atypical NR corepressor using two-hybrid systems, biochemical studies, and receptor activity assays. The requirements for TNIP1-PPAR interaction are characteristic for coactivators; however, TNIP1 partially decreases PPAR activity. TNIP1 has separable transcriptional activation and repression domains suggesting a modular nature to its overall effect. It may provide a means of lowering receptor activity in the presence of ligand without total loss of receptor function. TNIP1's multiple roles and expression in several cell types suggest its regulatory effect depends on its expression level and the expression of other regulators in NR and/or NF-κB signaling pathways. As a NR coregulator, TNIP1 targeting agonist-bound PPAR and reducing transcriptional activity offers control of receptor signaling not available from typical corepressors and may contribute to combinatorial regulation of transcription.
Collapse
Affiliation(s)
- Anthony M Flores
- Graduate Program in Pharmacology & Toxicology, University of Connecticut, Storrs, 06269-3092, USA
| | | | | | | | | | | |
Collapse
|
24
|
Molecular evolution of HR, a gene that regulates the postnatal cycle of the hair follicle. Sci Rep 2011; 1:32. [PMID: 22355551 PMCID: PMC3216519 DOI: 10.1038/srep00032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 06/23/2011] [Indexed: 01/21/2023] Open
Abstract
Hair is a unique mammalian trait that is absent in all other animal forms. Hairlessness is rare in mammals and humans are exceptional among primates in lacking dense layer of hair covering. HR was the first gene identified to be implicated in hair-cycle regulation. Point mutations in HR lead to congenital human hair loss, which results in the complete loss of body and scalp hairs. HR functions are indispensable for initiation of postnatal hair follicular cycling. This study investigates the phylogenetic history and analyzes the protein evolutionary rate to provide useful insight into the molecular evolution of HR. The data demonstrates an acceleration of HR sequence evolution in human branch and suggests that the ability of HR protein to mediate postnatal hair-cycling has been altered in the course of human evolution. In particular those residues were pinpointed which should be regarded as target of positive Darwinian selection during human evolution.
Collapse
|
25
|
Flowers MT, Paton CM, O'Byrne SM, Schiesser K, Dawson JA, Blaner WS, Kendziorski C, Ntambi JM. Metabolic changes in skin caused by Scd1 deficiency: a focus on retinol metabolism. PLoS One 2011; 6:e19734. [PMID: 21573029 PMCID: PMC3090422 DOI: 10.1371/journal.pone.0019734] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 04/06/2011] [Indexed: 01/28/2023] Open
Abstract
We previously reported that mice with skin-specific deletion of stearoyl-CoA desaturase-1 (Scd1) recapitulated the skin phenotype and hypermetabolism observed in mice with a whole-body deletion of Scd1. In this study, we first performed a diet-induced obesity experiment at thermoneutral temperature (33°C) and found that skin-specific Scd1 knockout (SKO) mice still remain resistant to obesity. To elucidate the metabolic changes in the skin that contribute to the obesity resistance and skin phenotype, we performed microarray analysis of skin gene expression in male SKO and control mice fed a standard rodent diet. We identified an extraordinary number of differentially expressed genes that support the previously documented histological observations of sebaceous gland hypoplasia, inflammation and epidermal hyperplasia in SKO mice. Additionally, transcript levels were reduced in skin of SKO mice for genes involved in fatty acid synthesis, elongation and desaturation, which may be attributed to decreased abundance of key transcription factors including SREBP1c, ChREBP and LXRα. Conversely, genes involved in cholesterol synthesis were increased, suggesting an imbalance between skin fatty acid and cholesterol synthesis. Unexpectedly, we observed a robust elevation in skin retinol, retinoic acid and retinoic acid-induced genes in SKO mice. Furthermore, SEB-1 sebocytes treated with retinol and SCD inhibitor also display an elevation in retinoic acid-induced genes. These results highlight the importance of monounsaturated fatty acid synthesis for maintaining retinol homeostasis and point to disturbed retinol metabolism as a novel contributor to the Scd1 deficiency-induced skin phenotype.
Collapse
Affiliation(s)
- Matthew T Flowers
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
AZEEM Z, WASIF N, BASIT S, RAZAK S, WAHEED RA, ISLAM A, AYUB M, KAFAITULLAH, KAMRAN-UL-HASSAN NAQVI S, ALI G, AHMAD W. Congenital atrichia with papular lesions resulting from novel mutations in human hairless gene in four consanguineous families. J Dermatol 2011; 38:755-60. [DOI: 10.1111/j.1346-8138.2010.01151.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|