1
|
Gao J, Zhou M, Chen D, Xu J, Wang Z, Peng J, Lin Z, Yu S, Lin Z, Dai W. High-throughput screening and investigation of the inhibitory mechanism of α-glucosidase inhibitors in teas using an affinity selection-mass spectrometry method. Food Chem 2023; 422:136179. [PMID: 37119598 DOI: 10.1016/j.foodchem.2023.136179] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/28/2023] [Accepted: 04/14/2023] [Indexed: 05/01/2023]
Abstract
An affinity selection-mass spectrometry method was applied for high-throughput screening of α-glucosidase (AGH) inhibitors from teas. Fourteen out of nineteen screened AGH inhibitor candidates were clustered as galloylated polyphenols (GPs). "AGH-GPs" interaction studies, including enzyme kinetics, fluorescence spectroscopy, circular dichroism, and molecular docking, jointly suggested that GPs noncompetitively inhibit AGH activity by interacting with amino acid residues near the active site of AGH and inducing changes in AGH secondary structure. Representative GPs and white tea extract (WTE) showed comparable AGH inhibition effects in Caco2 cells and postprandial hypoglycemic efficacy in diabetic mice as acarbose. The area under the curve of oral sucrose tolerance test was lower by 8.16%, 6.17%, and 7.37% than control group in 15 mg/kg EGCG, 15 mg/kg strictinin, and 150 mg/kg WTE group, respectively. Our study presents a high-efficiency approach to discover novel AGH inhibitors and elucidates a potential mechanism by which tea decreases diabetes risks.
Collapse
Affiliation(s)
- Jianjian Gao
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mengxue Zhou
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310008, China
| | - Dan Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310008, China
| | - Jiye Xu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhe Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310008, China
| | - Jiakun Peng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhiyuan Lin
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310008, China
| | - Shuai Yu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310008, China.
| | - Weidong Dai
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310008, China.
| |
Collapse
|
2
|
Nguyen VB, Wang SL, Nguyen TH, Nguyen MT, Doan CT, Tran TN, Lin ZH, Nguyen QV, Kuo YH, Nguyen AD. Novel Potent Hypoglycemic Compounds from Euonymus laxiflorus Champ. and Their Effect on Reducing Plasma Glucose in an ICR Mouse Model. Molecules 2018; 23:molecules23081928. [PMID: 30072618 PMCID: PMC6222451 DOI: 10.3390/molecules23081928] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/20/2022] Open
Abstract
α-Glucosidase inhibitors (aGIs) have been used as an effective therapy for type-2 diabetes, which remains a global health issue. The aim of this study was to achieve bioactivity-guided isolation, identification and evaluation of hypoglycemic compounds from Euonymus laxiflorus Champ. trunk bark (ELCTB). Eleven active compounds were isolated and identified as walterolactone A/B β-d-pyranoglucoside (1), 1-β-d-glucopyranosyloxy-3,5-dimethoxy-4-hydroxybenzene (9), (−)-gallocatechin (10), schweinfurthinol 9-O-β-d-pyranoglucoside (11), 1-O-(3-methyl)-butenoyl-myo-inositol (12), leonuriside (14), (+)-catechin (19), methyl galloate (20), (−)-catechin (23), and condensed tannins (5 and 18). Of these 11, novel 4 compounds (1, 11, 12, and 14) were found as new α-glucosidase inhibitors. Notably, in vitro results indicated that compounds 1, 5, 10–12, 18, and 19 showed potent activity (IC50 = 0.076−31 µg/mL), and their activities were at a higher level than that of acarbose, a commercial inhibitor (IC50 = 1345 µg/mL). In animal tests, the major inhibitor, condensed tannin (18), demonstrated significant reduction of plasma glucose in mice with no symptoms of diarrhea at the dose of 100 mg/kg bw. The results suggest that Euonymus laxiflorus Champ. is a rich source of bioactive compounds for development as health food or drugs with potent hypoglycemic effect. The results of this study also enriched the current novel biological activities of constituents from Euonymus laxiflorus species.
Collapse
Affiliation(s)
- Van Bon Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam.
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam.
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan.
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan.
| | - Thi Hanh Nguyen
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam.
| | - Minh Trung Nguyen
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam.
| | - Chien Thang Doan
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam.
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan.
| | - Thi Ngoc Tran
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam.
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan.
| | - Zhi-Hu Lin
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Taipei 11221, Taiwan.
| | - Quang Vinh Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam.
| | - Yao-Haur Kuo
- Division of Chinese Materia Medica Development, National Research Institute of Chinese Medicine, Taipei 11221, Taiwan.
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam.
| |
Collapse
|
3
|
Hao W, Wang M, Lv M. The Inhibitory Effects of Yixing Black Tea Extracts on A-Glucosidase. J Food Biochem 2016. [DOI: 10.1111/jfbc.12269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenxing Hao
- Food Biotechnology Center; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University; 1800 Lihu Avenue Wuxi Jiangsu 214122 China
| | - Miao Wang
- Food Biotechnology Center; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University; 1800 Lihu Avenue Wuxi Jiangsu 214122 China
| | - Mengxian Lv
- Food Biotechnology Center; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University; 1800 Lihu Avenue Wuxi Jiangsu 214122 China
| |
Collapse
|
4
|
Satoh T, Igarashi M, Yamada S, Takahashi N, Watanabe K. Inhibitory effect of black tea and its combination with acarbose on small intestinal α-glucosidase activity. JOURNAL OF ETHNOPHARMACOLOGY 2015; 161:147-155. [PMID: 25523370 DOI: 10.1016/j.jep.2014.12.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE It is said that black tea is effective against type 2 diabetes mellitus because it can help modulate postprandial hyperglycemia. However, the mechanism underlying its therapeutic and preventive effects on type 2 diabetes mellitus is unclear. In this study, we focused on the effect of black tea on the carbohydrate digestion and absorption process in the gastrointestinal tract. We examined whether black tea can modulate postprandial hyperglycemia. MATERIALS AND METHODS The freeze-dried powder of the aqueous extract of black tea leaves (JAT) was used for in vitro studies of α-amylase activity, α-glucosidase activity, and glucose uptake by glucose transporters in Caco-2 cells; ex vivo studies of small intestinal α-glucosidase activity; and in vivo studies of oral sugar tolerance in GK rats, an animal model of nonobese type 2 diabetes mellitus. RESULTS Half maximal inhibitory concentration values indicated that JAT significantly reduced α-glucosidase activity, but weakly reduced α-amylase activity. Kinetic studies of rat small intestinal α-glucosidase activity revealed that the combination of JAT and the α-glucosidase inhibitor, acarbose, showed a mixed-type inhibition. JAT had no effect on the uptake of 2'-deoxy-d-glucose by glucose transporter 2 (GLUT2) and the uptake of α-methyl-d-glucose by sodium-dependent glucose transporter 1 (SGLT1). In the oral sucrose tolerance test in GK rats, JAT reduced plasma glucose levels in a dose-dependent manner compared with the control group. The hypoglycemic action of JAT was also confirmed: JAT, in combination with acarbose, produced a synergistic inhibitory effect on plasma glucose levels in vivo. In contrast to the oral sucrose tolerance test, JAT showed no effect in the oral glucose tolerance test. CONCLUSIONS JAT was demonstrated to inhibit the degradation of disaccharides into monosaccharides by α-glucosidase in the small intestine. Thereby indirectly preventing the absorption of the dietary source of glucose mediated by SGLT1 and GLUT2 transporters localized at the apical side of enterocytes in the small intestine. The results indicate that black tea could be useful as a functional food in the dietary therapy for borderline type 2 diabetes mellitus that could modulate postprandial hyperglycemia.
Collapse
Affiliation(s)
- Takashi Satoh
- Hokkaido Pharmaceutical University School of Pharmacy, 7-1 Katsuraoka-cho, Otaru, Hokkaido 047-0264, Japan.
| | - Masaki Igarashi
- Hokkaido Pharmaceutical University School of Pharmacy, 7-1 Katsuraoka-cho, Otaru, Hokkaido 047-0264, Japan
| | - Shogo Yamada
- Hokkaido Pharmaceutical University School of Pharmacy, 7-1 Katsuraoka-cho, Otaru, Hokkaido 047-0264, Japan
| | - Natsuko Takahashi
- Hokkaido Pharmaceutical University School of Pharmacy, 7-1 Katsuraoka-cho, Otaru, Hokkaido 047-0264, Japan
| | - Kazuhiro Watanabe
- Hokkaido Pharmaceutical University School of Pharmacy, 7-1 Katsuraoka-cho, Otaru, Hokkaido 047-0264, Japan
| |
Collapse
|