1
|
Meng K, Liu Y, Ruan L, Chen L, Chen Y, Liang Y. Suppression of apoptosis in osteocytes, the potential way of natural medicine in the treatment of osteonecrosis of the femoral head. Biomed Pharmacother 2023; 162:114403. [PMID: 37003034 DOI: 10.1016/j.biopha.2023.114403] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/20/2023] [Accepted: 02/09/2023] [Indexed: 04/03/2023] Open
Abstract
OBJECTIVES In the field of orthopedics, osteonecrosis of the femoral head (ONFH) is a common and refractory condition sometimes known as "immortal cancer" due to its complicated etiology, difficult treatment, and high disability rate. This paper's main goal is to examine the most recent literature on the pro-apoptotic effects of traditional Chinese medicine TCM monomers or compounds on osteocytes and to provide a summary of the potential signal routes. METHODS The last ten years' worth of literature on ONFH as well as the anti-ONFH effects of aqueous extracts and monomers from traditional Chinese medicine were compiled. CONCLUSIONS When all the relevant signal pathways are considered, the key apoptotic routes include those mediated by the mitochondrial pathway, the MAPK signaling pathway, the PI3K/Akt signaling pathway, the Wnt/-catenin signaling pathway, the HIF-1 signaling network, etc. As a result, we anticipate that this study will shed light on the value of TCM and its constituent parts for treating ONFH by inducing apoptosis in osteocytes and offer some guidance for the future development of innovative medications as anti-ONFH medications in clinical settings.
Collapse
Affiliation(s)
- Kairui Meng
- Neijiang Hospital of Traditional Chinese Medicine. Chengdu University of Traditional Chinese Medicine, No. 51, Minzu Road, Neijiang 641000, P.R. China
| | - Yicheng Liu
- Neijiang Hospital of Traditional Chinese Medicine, No. 51, Minzu Road, Neijiang 641000, PR China.
| | - Lvqiang Ruan
- Neijiang Hospital of Traditional Chinese Medicine, No. 51, Minzu Road, Neijiang 641000, PR China
| | - Lijuan Chen
- Neijiang Hospital of Traditional Chinese Medicine. Chengdu University of Traditional Chinese Medicine, No. 51, Minzu Road, Neijiang 641000, P.R. China
| | - Ying Chen
- Neijiang Hospital of Traditional Chinese Medicine, No. 51, Minzu Road, Neijiang 641000, PR China
| | - Ying Liang
- Neijiang Hospital of Traditional Chinese Medicine, No. 51, Minzu Road, Neijiang 641000, PR China
| |
Collapse
|
2
|
Li Z, Shao W, Lv X, Wang B, Han L, Gong S, Wang P, Feng Y. Advances in experimental models of osteonecrosis of the femoral head. J Orthop Translat 2023; 39:88-99. [PMID: 36819298 PMCID: PMC9931935 DOI: 10.1016/j.jot.2023.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/02/2023] [Accepted: 01/08/2023] [Indexed: 02/05/2023] Open
Abstract
Background Osteonecrosis of the femoral head (ONFH) is a devastating disease affecting young adults, resulting in significant pain, articular surface collapse, and disabling dysfunction. ONFH can be divided into two broad categories: traumatic and non-traumatic. It has been established that ONFH results from an inadequate blood supply that causes the death of osteocytes and bone marrow cells. Nonetheless, the precise mechanism of ONFH remains to be elucidated. In this regard, preclinical animal and cell models to study ONFH have been established to assess the efficacy of various modalities for preventing and treating ONFH. Nevertheless, it should be borne in mind that many models do not share the same physiologic and metabolic characteristics as humans. Therefore, it is necessary to establish a reproducible model that better mimics human disease. Methods We systematically reviewed the literatures in regard to ONFH experimental models over the past 30 years. The search was performed in PubMed and Web of Science. Original animal, cell studies with available full-text were included. This review summarizes different methods for developing animal and cell experimental models of ONFH. The advantages, disadvantages and success rates of ONFH models are also discussed. Finally, we provide experimental ONFH model schemes as a reference. Results According to the recent literatures, animal models of ONFH include traumatic, non-traumatic and traumatic combined with non-traumatic models. Most researchers prefer to use small animals to establish non-traumatic ONFH models. Indeed, small animal-based non-traumatic ONFH modeling can more easily meet ethical requirements with large samples. Otherwise, gradient concentration or a particular concentration of steroids to induce MSCs or EPCs, through which researchers can develop cell models to study ONFH. Conclusions Glucocorticoids in combination with LPS to induce ONFH animal models, which can guarantee a success rate of more than 60% in large samples. Traumatic vascular deprivation combines with non-traumatic steroids to induce ONFH, obtaining success rates ranging from 80% to 100%. However, animals that undergo vascular deprivation surgery may not survive the glucocorticoid induction process. As for cell models, 10-6mol/L Dexamethasone (Dex) to treat bone marrow stem cells, which is optimal for establishing cell models to study ONFH. The translational potential of this article This review aims to summarize recent development in experimental models of ONFH and recommended the modeling schemes to verify new models, mechanisms, drugs, surgeries, and biomaterials of ONFH to contribute to the prevention and treatment of ONFH.
Collapse
Affiliation(s)
- Zilin Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenkai Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Lv
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Wang
- Department of Rehabilitation, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lizhi Han
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Gong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Feng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Corresponding author.
| |
Collapse
|
3
|
Liu J, Li C, Yang F, Li M, Wu B, Chen H, Li S, Zhang X, Yang J, Xia Y, Wu M, Li Y, Liu B, Zhao D. Effects of angiotensin II combined with asparaginase and dexamethasone on the femoral head in mice: A model of steroid-induced femoral head osteonecrosis. Front Cell Dev Biol 2022; 10:975879. [PMID: 36187471 PMCID: PMC9521711 DOI: 10.3389/fcell.2022.975879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background: To study the pathogenesis of steroid-induced femoral head osteonecrosis, an ideal animal model is very important. As experimental animals, mice are beneficial for studying the pathogenesis of disease. However, there are currently few mouse models of steroid-induced femoral head osteonecrosis, and there are many questions that require further exploration and research.Purposes: The purpose of this study was to establish a new model of osteonecrosis in mice using angiotensin II (Ang II) combined with asparaginase (ASP) and dexamethasone (DEX) and to study the effects of this drug combination on femoral head osteonecrosis in mice.Methods: Male BALB/c mice (n = 60) were randomly divided into three groups. Group A (normal control, NC) was treated with physiological saline and given a normal diet. Group B (DEX + ASP, DA) was given free access to food and water (containing 2 mg/L DEX) and subjected to intraperitoneal injection of ASP (1200 IU/kg twice/week for 8 weeks). Group C (DEX + ASP + Ang II, DAA) was treated the same as group B, it was also given free access to food and water (containing 2 mg/L DEX) and subjected to intraperitoneal injection of ASP (1200 IU/kg twice/week for 8 weeks), but in the 4th and 8th weeks, subcutaneous implantation of a capsule osmotic pump (0.28 mg/kg/day Ang II) was performed. The mice were sacrificed in the 4th and 8th weeks, and the model success rate, mouse mortality rate, body weight, blood lipids, coagulation factors, histopathology, and number of local vessels in the femoral head were evaluated.Results: DAA increased the model success rate [4th week, 30% (DA) vs. 40% (DAA) vs. 0% (NC); 8th week, 40% (DA) vs. 70% (DAA) vs. 0% (NC)]. There was no significant difference in mortality rate between the groups [4th week, 0% (DA) vs. 0% (DAA) vs. 0% (NC); 8th week, 5% (DA) vs. 10% (DAA) vs. 0% (NC)]. DAA affected mouse body weight and significantly affected blood lipids and blood coagulation factors. DAA reduces the number of blood vessels in the femoral head and destroys the local blood supply.Conclusion: Angiotensin II combined with asparaginase and dexamethasone can obviously promote the necrosis of femoral head and provide a new idea for the model and treatment of osteonecrosis.
Collapse
Affiliation(s)
- Jiahe Liu
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Chenzhi Li
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Fan Yang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
- Institute of Metal Research Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Minde Li
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Baolin Wu
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Haojie Chen
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Shaopeng Li
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Xiuzhi Zhang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Jiahui Yang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Yan Xia
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Mingjian Wu
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Yancheng Li
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Baoyi Liu
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
- *Correspondence: Baoyi Liu, ; Dewei Zhao,
| | - Dewei Zhao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
- *Correspondence: Baoyi Liu, ; Dewei Zhao,
| |
Collapse
|
4
|
Li G, Huang X. Influence of sodium ferulate on miR-133a and left ventricle remodeling in rats with myocardial infarction. Hum Exp Toxicol 2021; 40:417-424. [PMID: 32873084 DOI: 10.1177/0960327120950006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To explore the influence of sodium ferulate (SF) on miR-133a and left ventricle remodeling (LVR) in rats with myocardial infarction (MI). The left coronary artery was ligated to create 36 ischemia-reperfusion (IR) rat models that were randomly divided into mock surgical group (MSG) (not ligated), model group (MG), and sodium ferulate group (SFG). After the successful modeling, SFG was intravenously injected with SF at the dose of 10 mg/kg, and the other two groups were injected with the same volume of normal saline. After 28 days, cardiac hemodynamic indices of all groups were measured; the myocardial infarction size (MIS), left ventricular mass index (LVMI), and collagen volume fraction (CVF) were calculated, the content of serum malondialdehyde (MDA) and activities of catalase (CAT), superoxide dismutase (SOD) and glutathione catalase (GSH-px) were detected by ELISA, and miR-133a expression in myocardial tissues of the left ventricle (LV) was detected by RT-qPCR. SF improved the cardiac hemodynamic indices of rat model and reduced the MIS, LVMI and CVF. SF decreased the serum MDA level and increased the serum CAT, SOD and GSH-px levels in rat model. SF increased the expression of miR-133a in myocardial tissue of rat model. Therefore, SF could effectively reduce the myocardial injury of IR rats and improve the LVR. Its mechanism may be related to the antioxygenation and upregulation of miR-133a.
Collapse
Affiliation(s)
- Ganyang Li
- Department of Cardiology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian, China
| | - Xiaohong Huang
- Department of Cardiology, 117893Zhangzhou Affiliated Hospital of Fujian Medical University, Xiangcheng District, Zhangzhou, Fujian, China
| |
Collapse
|
5
|
Sun Y, Long D. Preparation, Characterization and in vitro/in vivo Evaluation of Lovastatin-Loaded PLGA Microspheres by Local Administration for Femoral Head Necrosis. Drug Des Devel Ther 2021; 15:601-610. [PMID: 33623369 PMCID: PMC7896741 DOI: 10.2147/dddt.s286306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/18/2021] [Indexed: 12/29/2022] Open
Abstract
Background The present work is an effort to develop a novel locally injection LVTT-loaded PLGA microspheres (LVTT-PLGA-MS) on the treatment of rabbits with femoral head necrosis (FHN). Methods LVTT-loaded PLGA microspheres (LVTT-PLGA MS) were prepared by an emulsion-solvent evaporation method. The physicochemical properties of LVTT-PLGA-MS were investigated to ensure that they have good qualities and are suitable for local delivery. In vitro drug release behavior of MS was also studied compared with free LVTT. In vivo, we also studied the pharmacokinetics and pharmacodynamics of MS in rabbits with the optimized formulation. Results In this study, we used the emulsion-solvent evaporation method to prepare LVTT-PLGA MS. Scanning electron microscopy demonstrated that the LVTT-PLGA MS were regular, round in shape and relatively unified size distributions were selected. The mean PS was 12.3±2.1 µm. The drug-loading rate (27.6% ± 2.9%) was calculated for three batches of MS. The thermogram of LVTT-PLGA MS showed an endothermic peak at 98.3°C, revealing that LVTT existed in MS in an uncrystallized rather than a crystallized form. In the release study, LVTT-PLGA MS is observed linear prolonging drug release rates for more than 21 days without initial burst release. The pharmacodynamic results confirmed that the LVTT-PLGA MS had a good and lasting improvement effect against femoral head necrosis. Conclusion Our results demonstrated that LVTT-PLGA MS has the potential for being a local delivery system.
Collapse
Affiliation(s)
- Yang Sun
- Department of Orthopaedics, Affiliated Central Hospital of Shenyang Medical College, Shenyang, People's Republic of China
| | - Di Long
- Department of Orthopaedics, Affiliated Central Hospital of Shenyang Medical College, Shenyang, People's Republic of China
| |
Collapse
|
6
|
Jiang GJ, Fan TJ. Novel techniques to prevent apoptosis and improve regeneration in corneal endothelial cells. EXPERT REVIEW OF OPHTHALMOLOGY 2020. [DOI: 10.1080/17469899.2020.1794821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Guo-Jian Jiang
- Laboratory for Corneal Tissue Engineering, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China
| | - Ting-Jun Fan
- Laboratory for Corneal Tissue Engineering, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China
| |
Collapse
|
7
|
Cui D, Zhao D, Huang S. Structural characterization of a safflower polysaccharide and its promotion effect on steroid-induced osteonecrosis in vivo. Carbohydr Polym 2020; 233:115856. [PMID: 32059907 DOI: 10.1016/j.carbpol.2020.115856] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/23/2019] [Accepted: 01/09/2020] [Indexed: 01/24/2023]
Abstract
A water-soluble polysaccharide (SPAW) was purified from Safflower and it was identified to be (1→3)-linked β-d-Glucan. The therapeutic effect and underlying mechanism of SPAW on steroid-induced avascular necrosis of the femoral head (SANFH) in a rabbit model was performed here. The abnormal histopathologic changes and apoptosis of femoral head in model group were significantly reverted after SPAW (25, 100 and 200 mg/kg) administration for 60 days, as evidenced by the a decline of empty lacunae rate, the average bone marrow fat cell size and the proportion of apoptotic cells. Furthermore, administration of SPAW significantly decreased the Bax and caspase-3 protein expression, but increased the protein expression of Bcl-2 when compared these in model rabbits. Meanwhile, increased hydroxyproline (HOP) and decreased serum hexosamine (HOM) concentration in rabbit serum were turned to the opposite way. The present study suggested that SPAW may provide an alternative treatment for the treatment of SANFH.
Collapse
Affiliation(s)
- Daping Cui
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No 6 Jiefang Street, Zhongshan District, Dalian 116001, China
| | - Dewei Zhao
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No 6 Jiefang Street, Zhongshan District, Dalian 116001, China.
| | - Shibo Huang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No 6 Jiefang Street, Zhongshan District, Dalian 116001, China
| |
Collapse
|
8
|
Gharanizadeh K, Aminizadeh S, Molavi N, Darbandi A, Nadjafi S, Fadavighaffari M, Shooshtarizadeh T. Effects of Zoledronic Acid and Vitamin E on Surgical- Induced Osteonecrosis of the Femoral Head in Rabbit. THE ARCHIVES OF BONE AND JOINT SURGERY 2018; 6:547-553. [PMID: 30637311 PMCID: PMC6310187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/02/2017] [Indexed: 06/09/2023]
Abstract
BACKGROUND Femoral head osteonecrosis is a progressive disease with disabling outcomes in hip joint if not treated. This study was designed to compare the effects of zoledronic acid plus vitamin E versus zoledronic acid alone in surgical induced femoral head osteonecrosis in rabbits. METHODS 26 Japanese white adult normal male rabbits at 28-32 weeks old were undertaken surgical femoral dislocation to devastate the femoral neck vessels; the femoral neck vessels were ligated and the hip was relocated. Next, the first 10 rabbits received zoledronic acid injections at 1st and the 4th weeks; the second group (10 rabbits) received zoledronic acid injections at 1st and the 4th week along with daily oral vitamin E for 12 weeks; and the third group was considered as non-treated control group. Radiographic and postmortem pathological assessments including the Ficat classification, epiphyseal quotient (EQ), new bone formation, and residual necrotic bone (RNB) were performed and compared after week 12. RESULTS A significant difference was found between the combination therapy group and the control group in Ficat classification at 12th weeks (P=0.048), but, the difference between monotherapy and combination therapy groups at 12th weeks was nonsignificant (P=0.37). Also, both treated groups had significant difference with the control group for RNB (P=0.015). There were no significant differences between the three groups for Ficat classification at the 6th week (P=0.65); EQ at 6th (P=0.59) and 12th week (P=0.64); and NBF (P=0.55). CONCLUSION Although zoledronic acid therapy along with vitamin E could improve some radiologic and pathological indices related to femoral head osteonecrosis, vitamin E showed a relative impact. LEVEL OF EVIDENCE I.
Collapse
Affiliation(s)
- Kaveh Gharanizadeh
- Research performed at Shaheed Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Rajaie Cardiovascular, Medical and Research Centre, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Sina Aminizadeh
- Research performed at Shaheed Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Rajaie Cardiovascular, Medical and Research Centre, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Nima Molavi
- Research performed at Shaheed Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Rajaie Cardiovascular, Medical and Research Centre, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Amir Darbandi
- Research performed at Shaheed Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Rajaie Cardiovascular, Medical and Research Centre, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Shabnam Nadjafi
- Research performed at Shaheed Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Rajaie Cardiovascular, Medical and Research Centre, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mahsa Fadavighaffari
- Research performed at Shaheed Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Rajaie Cardiovascular, Medical and Research Centre, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Tina Shooshtarizadeh
- Research performed at Shaheed Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Rajaie Cardiovascular, Medical and Research Centre, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
9
|
Wang A, Ren M, Wang J. The pathogenesis of steroid-induced osteonecrosis of the femoral head: A systematic review of the literature. Gene 2018; 671:103-109. [DOI: 10.1016/j.gene.2018.05.091] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 05/14/2018] [Accepted: 05/23/2018] [Indexed: 12/16/2022]
|
10
|
Sodium Ferulate Attenuates Lidocaine-Induced Corneal Endothelial Impairment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4967318. [PMID: 30116483 PMCID: PMC6079406 DOI: 10.1155/2018/4967318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/03/2018] [Indexed: 11/23/2022]
Abstract
The introduction of intracameral anaesthesia by injection of lidocaine has become popular in cataract surgery for its inherent potency, rapid onset, tissue penetration, and efficiency. However, intracameral lidocaine causes corneal thickening, opacification, and corneal endothelial cell loss. Herein, we investigated the effects of lidocaine combined with sodium ferulate, an antioxidant with antiapoptotic and anti-inflammatory properties, on lidocaine-induced damage of corneal endothelia with in vitro experiment of morphological changes and cell viability of cultured human corneal endothelial cells and in vivo investigation of corneal endothelial cell density and central corneal thickness of cat eyes. Our finding indicates that sodium ferulate from 25 to 200 mg/L significantly reduced 2 g/L lidocaine-induced toxicity to human corneal endothelial cells, and 50 mg/L sodium ferulate recovered the damaged human corneal endothelial cells to normal growth status. Furthermore, 100 mg/L sodium ferulate significantly inhibited lidocaine-induced corneal endothelial cell loss and corneal thickening in cat eyes. In conclusion, sodium ferulate protects human corneal endothelial cells from lidocaine-induced cytotoxicity and attenuates corneal endothelial cell loss and central corneal thickening of cat eyes after intracameral injection with lidocaine. It is likely that the antioxidant effect of sodium ferulate reduces the cytotoxic and inflammatory corneal reaction during intracameral anaesthesia.
Collapse
|
11
|
Yazıcı T, Koçer G, Nazıroğlu M, Övey İS, Öz A. Zoledronic Acid, Bevacizumab and Dexamethasone-Induced Apoptosis, Mitochondrial Oxidative Stress, and Calcium Signaling Are Decreased in Human Osteoblast-Like Cell Line by Selenium Treatment. Biol Trace Elem Res 2018; 184:358-368. [PMID: 29081061 DOI: 10.1007/s12011-017-1187-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/03/2017] [Indexed: 10/18/2022]
Abstract
Increased intracellular free calcium ion (Ca2+) concentration induces excessive oxidative stress and apoptosis. Medical procedures such as zoledronic acid (Zol), bevacizumab (Bev), and dexamethasone (Dex) are usually used in the treatment of bone diseases (osteoporosis, Paget's disease, etc.) and to prevent metastasis in the bone although the procedures induce osteonecrosis of the jaw through excessive production of reactive oxygen species (ROS). Recently, we observed regulator roles of selenium (Se) on apoptosis and Ca2+ entry through transient receptor potential vanilloid 1 (TRPV1) channels in the cancer cell lines. Therefore, Se may modulate Zol, Bev, and Dex-induced oxidative stress and apoptosis through regulation of TRPV1 channel. In the current study, we investigated the protective effects of Se on apoptosis and oxidative stress through TRPV1 in Zol, Bev, and Dex-induced osteoblast-like cell line. We used human osteoblast-like cell line (Saos-2), and the cells were divided into 12 groups as control, Zol, Bev, Dex, Se, Zol+Se, Bev+Se, Dex+Se, Zol+Dex, Zol+Dex+Se, Zol+Bev, and Zol+Bev+Se which were incubated with drugs (Zol, Bev, Dex, and Se) for 24 h. The cytosolic free Ca2+ concentration was increased by Zol, Bev, Dex, Zol+Bev, and Zol+Dex, although it was reduced by Se treatment. However, Zol, Bev, and Dex-induced increase in apoptosis, caspase 3, caspase 9, poly (ADP-ribose) polymerase 1 expression levels, and intracellular ROS production values in the cells were decreased by Se treatments. In conclusion, we observed that Zol, Bev, and Dex-induced apoptosis, mitochondrial oxidative stress, and calcium signaling are decreased in human osteoblast-like cell line by the Se treatment. Our findings may be relevant to the etiology and treatment of Zol, Bev, and Dex-induced osteonecrosis by Se.
Collapse
Affiliation(s)
- Tayfun Yazıcı
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Suleyman Demirel University, Isparta, Turkey.
| | - Gülperi Koçer
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Suleyman Demirel University, Isparta, Turkey
| | - Mustafa Nazıroğlu
- Neuroscience Research Center, Suleyman Demirel University, Isparta, Turkey
- Department of Neuroscience, Institute of Health Sciences, Suleyman Demirel University, Isparta, Turkey
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - İshak Suat Övey
- Department of Physiology, Faculty of Medicine, Alanya Alaaddin Keykubat University, Alanya, Turkey
| | - Ahmi Öz
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
12
|
Uruc V, Duman IG, Davul S, Özden R, Gonenci R, Gokce H, Dokuyucu R, Akdag A. The Effect of Cape on Steroid Induced Osteonecrosis of the Femoral Head in Rat Model. J HARD TISSUE BIOL 2018. [DOI: 10.2485/jhtb.27.237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Vedat Uruc
- Department of Orthopedics and Traumatology, Medical Faculty, Mustafa Kemal University
| | - Ibrahim Gokhan Duman
- Department of Orthopedics and Traumatology, Medical Faculty, Mustafa Kemal University
| | - Serkan Davul
- Department of Orthopedics and Traumatology, Medical Faculty, Mustafa Kemal University
| | - Raif Özden
- Department of Orthopedics and Traumatology, Medical Faculty, Mustafa Kemal University
| | | | - Hasan Gokce
- Department of Pathology, Medical Faculty, Mustafa Kemal University
| | - Recep Dokuyucu
- Department of Physiology, Medical Faculty, Mustafa Kemal University
| | - Abdurrahman Akdag
- Department of Chemistry, Science and Arts Faculty, Mustafa Kemal University
| |
Collapse
|
13
|
Xu J, Gong H, Lu S, Deasey MJ, Cui Q. Animal models of steroid-induced osteonecrosis of the femoral head-a comprehensive research review up to 2018. INTERNATIONAL ORTHOPAEDICS 2018; 42:1729-1737. [PMID: 29705870 DOI: 10.1007/s00264-018-3956-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/17/2018] [Indexed: 01/11/2023]
Abstract
Osteonecrosis of the femoral head (ONFH) is a significant cause of both pain and disability that often affects young adults during what ought to be their most productive age. Two broad categories of ONFH exist: traumatic and non-traumatic. Traumatic ONFH results from acute mechanical disruption of the femoral head's blood supply. Many factors that increase the risk of non-traumatic osteonecrosis have been identified. Steroid-induced osteonecrosis of the femoral head (SONFH) is the most common form of non-traumatic ONFH. Many hypotheses as to the pathogenesis of SONFH have been proposed, including intravascular thrombosis, abnormal fat metabolism, intramedullary adipocyte hypertrophy, and osteoporosis; however, the exact mechanism of SONFH is still not clearly understood. Animal models using rats, mice, rabbits, chickens, pigs, and emus have been used to study SONFH. Unfortunately, these models each have limitations. Therefore, it is necessary to establish a reproducible model that better simulates human disease. The present review is intended to summarize the currently available models, evaluative indicators, and application of current understanding to both the prevention and treatment of SONFH.
Collapse
Affiliation(s)
- Jianzhong Xu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, People's Republic of China
| | - Hanpu Gong
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, People's Republic of China
| | - Shitao Lu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, People's Republic of China
| | - Matthey J Deasey
- Department of Orthopaedic Surgery, University of Virginia School of Medicine, 400 Ray C. Hunt Drive, Suite 330, Charlottesville, VA 22903, USA
| | - Quanjun Cui
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, People's Republic of China.
- Department of Orthopaedic Surgery, University of Virginia School of Medicine, 400 Ray C. Hunt Drive, Suite 330, Charlottesville, VA 22903, USA.
| |
Collapse
|
14
|
Murad HAS. L-Carnitine, but not coenzyme Q10, enhances the anti-osteoporotic effect of atorvastatin in ovariectomized rats. J Zhejiang Univ Sci B 2016; 17:43-53. [PMID: 26739525 DOI: 10.1631/jzus.b1500065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Statins' therapy in osteoporosis can aggravate muscle damage. This study was designed to assess which agent, L-carnitine or coenzyme Q10, could enhance the anti-osteoporotic effect of atorvastatin while antagonizing myopathy in ovariectomized rats. METHODS Forty-eight female Sprague Dawley rats were used; forty rats were ovariectomized while eight were sham-operated. Eight weeks post-ovariectomy, rats were divided into ovariectomized-untreated group and four ovariectomized-treated groups (n=8) which received by gavage (mg/(kg∙d), for 8 weeks) 17β-estradiol (0.1), atorvastatin (50), atorvastatin (50)+L-carnitine (100), or atorvastatin (50)+coenzyme Q10 (20). At the end of therapy, bone mineral density (BMD), bone mineral content (BMC), and serum levels of bone metabolic markers (BMMs) and creatine kinase (CK) were measured. Femurs were used for studying the breaking strength and histopathological changes. RESULTS Treatment with atorvastatin+L-carnitine restored BMD, BMC, and bone strength to near normal levels. Estrogen therapy restored BMD and BMC to near normal levels, but failed to increase bone strength. Although atorvastatin and atorvastatin+coenzyme Q10 improved BMD, BMC, and bone strength, they failed to restore levels to normal. All treatments decreased BMMs and improved histopathological changes maximally with atorvastatin+L-carnitine which restored levels to near normal. Atorvastatin aggravated the ovariectomy-induced increase in CK level while estrogen, atorvastatin+L-carnitine, and atorvastatin+coenzyme Q10 decreased its level mainly with atorvastatin+L-carnitine which restored the level to near normal. CONCLUSIONS Co-administration of L-carnitine, but not coenzyme Q10, enhances the anti-osteoporotic effect of atorvastatin while antagonizing myopathy in ovariectomized rats. This could be valuable in treatment of osteoporotic patients. However, further confirmatory studies are needed.
Collapse
Affiliation(s)
- Hussam A S Murad
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia.,Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11562, Egypt
| |
Collapse
|
15
|
Wu J, Yao L, Wang B, Liu Z, Ma K. Tao-Hong-Si-Wu Decoction ameliorates steroid-induced avascular necrosis of the femoral head by regulating the HIF-1α pathway and cell apoptosis. Biosci Trends 2016; 10:410-417. [DOI: 10.5582/bst.2016.01099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jian Wu
- Department of Joint Surgery, The First People's Hospital of Lianyungang
| | - Li Yao
- Department of Joint Surgery, The First People's Hospital of Lianyungang
| | - Bing Wang
- Department of Joint Surgery, The First People's Hospital of Lianyungang
| | - Zhen Liu
- Department of Rehabilitation, The First People's Hospital of Lianyungang
| | - Keyong Ma
- Department of Joint Surgery, The First People's Hospital of Lianyungang
| |
Collapse
|
16
|
Mont MA, Cherian JJ, Sierra RJ, Jones LC, Lieberman JR. Nontraumatic Osteonecrosis of the Femoral Head: Where Do We Stand Today? A Ten-Year Update. J Bone Joint Surg Am 2015; 97:1604-27. [PMID: 26446969 DOI: 10.2106/jbjs.o.00071] [Citation(s) in RCA: 342] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
➤ Although multiple theories have been proposed, no one pathophysiologic mechanism has been identified as the etiology for the development of osteonecrosis of the femoral head. However, the basic mechanism involves impaired circulation to a specific area that ultimately becomes necrotic.➤ A variety of nonoperative treatment regimens have been evaluated for the treatment of precollapse disease, with varying success. Prospective, multicenter, randomized trials are needed to evaluate the efficacy of these regimens in altering the natural history of the disease.➤ Joint-preserving procedures are indicated in the treatment of precollapse disease, with several studies showing successful outcomes at mid-term and long-term follow-up.➤ Studies of total joint arthroplasty, once femoral head collapse is present, have described excellent outcomes at greater than ten years of follow-up, which is a major advance and has led to a paradigm shift in treating these patients.➤ The results of hemiresurfacing and total resurfacing arthroplasty have been suboptimal, and these procedures have restricted indications in patients with osteonecrosis of the femoral head.
Collapse
Affiliation(s)
- Michael A Mont
- Rubin Institute for Advanced Orthopedics, Center for Joint Preservation and Replacement, Sinai Hospital of Baltimore, 2401 West Belvedere Avenue, Baltimore, MD 21215. E-mail address for M.A. Mont:
| | - Jeffrey J Cherian
- Rubin Institute for Advanced Orthopedics, Center for Joint Preservation and Replacement, Sinai Hospital of Baltimore, 2401 West Belvedere Avenue, Baltimore, MD 21215. E-mail address for M.A. Mont:
| | - Rafael J Sierra
- Mayo Clinic, 200 First Street S.W., Gonda 14 South, Rochester, MN 55905
| | - Lynne C Jones
- Department of Orthopaedic Surgery, Johns Hopkins University, 601 North Caroline Street, JHOC 5245, Baltimore, MD 21287
| | - Jay R Lieberman
- Keck Medical Center of University of Southern California, 1520 San Pablo Street, Suite 2000, Los Angeles, CA 90033
| |
Collapse
|
17
|
Li P, Zhou Z, Shi C, Hou J. Downregulation of basic fibroblast growth factor is associated with femoral head necrosis in broilers. Poult Sci 2015; 94:1052-9. [DOI: 10.3382/ps/pev071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2015] [Indexed: 12/14/2022] Open
|
18
|
Fan L, Li J, Yu Z, Dang X, Wang K. Hypoxia-inducible factor prolyl hydroxylase inhibitor prevents steroid-associated osteonecrosis of the femoral head in rabbits by promoting angiogenesis and inhibiting apoptosis. PLoS One 2014; 9:e107774. [PMID: 25244080 PMCID: PMC4171501 DOI: 10.1371/journal.pone.0107774] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 08/14/2014] [Indexed: 12/31/2022] Open
Abstract
The purpose of this study was to investigate the preventive effect of ethyl 3,4-dihydroxybenzoate(EDHB) on steroid-associated femoral head osteonecrosis(ONFH) in a rabbit model. New Zealand white rabbits were randomly divided into two groups (prevention group and model group), each containing 24 rabbits. Osteonecrosis was induced by lipopolysaccharide(LPS) combined with methylprednisolone(MPS). The prevention group received an intraperitoneal injection of EDHB at 50 mg/kg body weight every other day starting three days before establishing rabbit models of osteonecrosis, for a total of nine doses. Osteonecrosis was verified by haematoxylin-eosin (HE) staining. The expression of HIF-1α and VEGF was analyzed by immunohistochemistry. Angiogenesis, apoptosis and microstructural parameters were also analyzed. The rabbit models of osteonecrosis were successfully established and observed by HE staining. Histopathological observations indicated that EDHB reduced the rate of empty lacunae and the incidence of osteonecrosis. Immunohistochemical staining for HIF-1α and VEGF suggested that EDHB therapy inhibited degradation of HIF-1α and promoted expression of VEGF. Ink artery infusion angiography and microvessel density analysis revealed that there were more microvessels in the prevention group than in the model group. The TUNEL apoptosis assay suggested that EDHB intervention could reduce the number of apoptotic cells in avascular osteonecrosis of the femoral head. Micro-CT scanning indicated that the treatment group had better microstructural parameters than the model group. EDHB prevents steroid-associated osteonecrosis of the femoral head in rabbits by promoting angiogenesis and inhibiting apoptosis of bone cells and hematopoietic tissue.
Collapse
Affiliation(s)
- Lihong Fan
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jia Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zefeng Yu
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaoqian Dang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Kunzheng Wang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- * E-mail:
| |
Collapse
|