1
|
Zhao YJ, Zhou WY, Zhang L, Guo JX, Fan LL, Zhu YT, Ying-Li, Yan BC, Pang HQ. Chemical identification and metabolic profiling of Tongmai granules using UHPLC-QTOF-MS-based molecular networking and modified mass defect filtering techniques. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1262:124669. [PMID: 40424947 DOI: 10.1016/j.jchromb.2025.124669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/01/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025]
Abstract
Ischemic stroke (IS) is a major cause of death and disability worldwide, and its complicated biological processes make developing effective treatments challenging. Tongmai granules, the famous Chinese herbal formula, was good at treating IS. However, the active compounds and their underlying mechanisms are still not well understood. To elucidate the active compounds of Tongmai granules against IS, the chemical compounds of Tongmai granules were characterized using ultra-high performance liquid chromatography (UHPLC) coupled with high-resolution mass spectrometry (HRMS). Using molecular networking (MN) method, a total of 89 compounds were quickly identified. Afterwards, the metabolites profiling of Tongmai granules in the middle cerebral artery occlusion/reperfusion (MCAO/R) rats' plasma and brain were conducted using UHPLC-HRMS and mass defect filtering (MDF) strategy. And 80 metabolites (25 prototypes and 55 metabolites) were characterized in plasma and brain samples. Network pharmacology and molecular docking have identified 8 active components for treating IS, including daidzein, tanshinone IIA, puerarin, cryptotanshinone, tanshinone IIb, butylidenephthalide, senkyunolide A and salvianolic acid A. These components may exert their effects through regulating TP53, SRC, and STAT3. The study provides a comprehensive characterization of Tongmai granules and insights into their therapeutic mechanisms.
Collapse
Affiliation(s)
- Yong-Juan Zhao
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, People's Republic of China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Wen-Yue Zhou
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, People's Republic of China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Lu Zhang
- The Radiology Department of Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan 030001, China
| | - Jia-Xiu Guo
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, People's Republic of China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Lu-Lu Fan
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, People's Republic of China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Yu-Ting Zhu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, People's Republic of China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Ying-Li
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, People's Republic of China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, People's Republic of China
| | - Bing-Chun Yan
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, People's Republic of China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, People's Republic of China.
| | - Han-Qing Pang
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, People's Republic of China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, People's Republic of China.
| |
Collapse
|
2
|
Deng X, Lu Y, Pan J, Qin Q, Deng S, Li Q, Wan L, Cao J. Comprehensive Chemical Profiling and Quality Control of Gegen-Danshen Herb Pair Using Advanced Online Two-Dimensional Liquid Chromatography Coupled With Hybrid Linear Ion Trap Orbitrap Mass Spectrometry. J Sep Sci 2025; 48:e70107. [PMID: 40032636 DOI: 10.1002/jssc.70107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 03/05/2025]
Abstract
The Gegen-Danshen (GD) herb pair is extensively employed in the treatment of cardiovascular diseases, attributed to its wide spectrum of bioactive constituents. This study presented a comprehensive chemical analysis of GD using an advanced analytical platform, which integrated online two-dimensional liquid chromatography (LC × LC) coupled with diode array detector (DAD) and hybrid linear ion trap orbitrap mass spectrometry (LTQ-orbitrap). In this setup, a Hypersil GOLD CN column (150 mm × 2.1 mm, 3 µm) was employed in the first dimension, while an Accucore PFP column (50 mm × 4.6 mm, 2.6 µm) was used in the second dimension. Under optimized conditions, the online LC × LC-DAD-ESI/HRMS/MSn system exhibited high orthogonality (90.20%) and 102 compounds were identified or tentatively characterized based on high-resolution accurate mass and MSn fragmentation data, acquired in both positive and negative ion modes. Furthermore, a quantitative analysis method was developed and validated using LC × LC-DAD contour plots, targeting 26 bioactive components in GD herb pair. This method demonstrated excellent linearity (R2 ≥ 0.9970) and precision with relative standard deviation (RSD) values below 4.95%. The established analytical approach offers robust separation, reliable identification, and precise quantification of chemical constituents in GD herb pair, providing a valuable tool for the study of bioactive compounds in complex herbal matrices.
Collapse
Affiliation(s)
- Xiaohui Deng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Yang Lu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Juan Pan
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Qiubing Qin
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Shuqi Deng
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Qiu Li
- College of Chemistry and Pharmaceutical Sciences & National Joint Local Engineering Laboratory of Agricultural Bio-Pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
| | - Li Wan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiliang Cao
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| |
Collapse
|
3
|
Wang Z, Huo M, Qiao L, Qiao Y, Zhang Y. SYSTCM: A systemic web platform for objective identification of pharmacological effects based on interplay of "traditional Chinese Medicine-components-targets". Comput Biol Med 2024; 179:108878. [PMID: 39043107 DOI: 10.1016/j.compbiomed.2024.108878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
Mechanism analysis is essential for the use and promotion of Traditional Chinese Medicine (TCM). Traditional methods of network analysis relying on expert experience lack an explanatory framework, prompting the application of deep learning and machine learning for objective identification of TCM pharmacological effects. A dataset was used to construct an interacted network graph between 424 molecular descriptors and 465 pharmacological targets to represent the relationship between components and pharmacological effects. Subsequently, the optimal identification model of pharmacological effects (IPE) was established through convolution neural networks of GoogLeNet structure. The AUC values are greater than 0.8, MCC values are greater than 0.7, and ACC values are greater than 0.85 across various test datasets. Subsequently, 18 recognition models of TCM efficacy (RTE) were created using support vector machines (SVM). Integration of pharmacological effects and efficacies led to the development of the systemic web platform for identification of pharmacological effects (SYSTCM). The platform, comprising 70,961 terms, including 636 Traditional Chinese Medicines (TCMs), 8190 components, 40 pharmacological effects, and 18 efficacies. Through the SYSTCM platform, (1) Total 100 components were predicted from TCMs with anti-inflammatory pharmacological effects. (2) The pharmacological effects of complete constituents were predicted from Coptidis Rhizoma (Huang Lian). (3) The principal components, pharmacological effects, and efficacies were elucidated from Salviae Miltiorrhizae radix et rhizome (Dan Shen). SYSTCM addresses subjectivity in pharmacological effect determination, offering a potential avenue for advancing TCM drug development and clinical applications. Access SYSTCM at http://systcm.cn.
Collapse
Affiliation(s)
- Zewen Wang
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mengqi Huo
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Liansheng Qiao
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yanjiang Qiao
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Yanling Zhang
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
4
|
Xu Q, Yu Z, Zhang M, Feng T, Song F, Tang H, Wang S, Li H. Danshen-Shanzha formula for the treatment of atherosclerosis: ethnopharmacological relevance, preparation methods, chemical constituents, pharmacokinetic properties, and pharmacological effects. Front Pharmacol 2024; 15:1380977. [PMID: 38910885 PMCID: PMC11190183 DOI: 10.3389/fphar.2024.1380977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Danshen-Shanzha Formula (DSF) is a well-known herbal combination comprising Radix Salvia Miltiorrhiza (known as Danshen in Chinese) and Fructus Crataegi (known as Shanzha in Chinese), It has been documented to exhibit considerable benefits for promoting blood circulation and removing blood stasis, and was used extensively in the treatment of atherosclerotic cardiac and cerebral vascular diseases over decades. Despite several breakthroughs achieved in the basic research and clinical applications of DSF over the past decades, there is a lack of comprehensive reviews summarizing its features and research, which hinders further exploration and exploitation of this promising formula. This review aims to provide a comprehensive interpretation of DSF in terms of its ethnopharmacological relevance, preparation methods, chemical constituents, pharmacokinetic properties and pharmacological effects. The related information on Danshen, Shanzha, and DSF was obtained from internationally recognized online scientific databases, including Web of Science, PubMed, Google Scholar, China National Knowledge Infrastructure, Baidu Scholar, ScienceDirect, ACS Publications, Online Library, Wan Fang Database as well as Flora of China. Data were also gathered from documentations, printed works and classics, such as the Chinese Pharmacopoeia, Chinese herbal classics, etc. Three essential avenues for future studies were put forward as follows: a) Develop and unify the standard preparation method of DSF as to achieve optimized pharmacological properties. b) Elucidate the functional mechanisms as well as the rationality and rule for the compatibility art of DSF by focusing on the clinic syndromes together with the subsequent development of preclinic study system in vitro and in vivo with consistent pathological features, pharmacokinetical behaviour and biomarkers. c) Perform more extensive clinical studies towards the advancement of mechanism-based on evidence-based medicine on the safety application of DSF. This review will provide substantial data support and broader perspective for further research on the renowned formula.
Collapse
Affiliation(s)
- Qiong Xu
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi’an, China
| | - Zhe Yu
- Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi’an, China
| | - Meng Zhang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi’an, China
- School of Graduate Studies, Air Force Medical University, Xi’an, China
| | - Tian Feng
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi’an, China
| | - Fan Song
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi’an, China
| | - Haifeng Tang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi’an, China
| | - Siwang Wang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi’an, China
| | - Hua Li
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi’an, China
| |
Collapse
|
5
|
Zhang Y, Song H, Liu Z, Ai C, Yan C, Dong X, Song S. Interaction between a Sulfated Polysaccharide from Sea Cucumber and Gut Microbiota Influences the Fat Metabolism in Rats. Foods 2023; 12:4476. [PMID: 38137281 PMCID: PMC10743057 DOI: 10.3390/foods12244476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Due to its significant physiological effects, a sulfated polysaccharide has been considered an important nutrient of sea cucumber, but its metabolism in vivo is still unclear. The present study investigated the metabolism of a sea cucumber sulfated polysaccharide (SCSP) in rats and its influence on the metabolite profiles. The quantification by HPLC-MS/MS revealed that the blood level of SCSP achieved a maximum of 54.0 ± 4.8 μg/mL at 2 h after gavage, almost no SCSP was excreted through urine, and 55.4 ± 29.8% of SCSP was eliminated through feces within 24 h. These results prove the utilization of SCSP by gut microbiota, and a further microbiota sequencing analysis indicated that the SCSP utilization in the gut was positively correlated with Muribaculaceae and Clostridia_UCG-014. In addition, the non-targeted metabolomic analysis demonstrated the significant effects of SCSP administration on the metabolite profiles of blood, urine, and feces. It is worth noting that the SCSP supplement decreased palmitic acid, stearic acid, and oleic acid in blood and urine while increasing stearic acid, linoleic acid, and γ-linolenic acid in feces, suggesting the inhibition of fat absorption and the enhancement of fat excretion by SCSP, respectively. The present study shed light on the metabolism in vivo and the influence on the fat metabolism of SCSP.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shuang Song
- Liaoning Key Laboratory of Food Nutrition and Health, Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Y.Z.); (H.S.); (Z.L.); (C.A.); (C.Y.); (X.D.)
| |
Collapse
|
6
|
Alves-Silva JM, Pedreiro S, Cruz MT, Salgueiro L, Figueirinha A. Exploring the Traditional Uses of Thymbra capitata Infusion in Algarve (Portugal): Anti-Inflammatory, Wound Healing, and Anti-Aging. Pharmaceuticals (Basel) 2023; 16:1202. [PMID: 37765010 PMCID: PMC10538188 DOI: 10.3390/ph16091202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
Inflammation plays a pivotal role in the resolution of infection or tissue damage. In addition, inflammation is considered a hallmark of aging, which in turn compromises wound healing. Thymbra capitata is an aromatic plant, whose infusion is traditionally used as an anti-inflammatory and wound-healing agent. In this study, a T. capitata infusion was prepared and characterized by HPLC-PDA-ESI-MSn and its safety profile determined by the resazurin metabolic assay. The anti-inflammatory potential was revealed in lipopolysaccharide (LPS)-stimulated macrophages by assessing nitric oxide (NO) release and levels of inducible nitric oxide synthase (iNOS) and the interleukin-1β pro-form (pro-IL-1β). Wound-healing capacity was determined using the scratch assay. The activity of senescence-associated β-galactosidase was used to unveil the anti-senescent potential, along with the nuclear accumulation of yH2AX and p21 levels. The antiradical potential was assessed by DPPH and ABTS scavenging assays. The infusion contains predominantly rosmarinic acid and salvianolic acids. The extract decreased NO, iNOS, and pro-IL-1β levels. Interestingly, the extract promoted wound healing and decreased β-galactosidase activity, as well as yH2AX and p21 levels. The present work highlights strong antiradical, anti-inflammatory, and wound healing capacities, corroborating the traditional uses ascribed to this plant. We have described, for the first time for this extract, anti-senescent properties.
Collapse
Affiliation(s)
- Jorge Miguel Alves-Silva
- Univ Coimbra, Institute for Clinical and Biomedical Research, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal;
- Univ Coimbra, Faculty of Pharmacy, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (S.P.); (M.T.C.); (A.F.)
| | - Sónia Pedreiro
- Univ Coimbra, Faculty of Pharmacy, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (S.P.); (M.T.C.); (A.F.)
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), University of Porto, 4099-002 Porto, Portugal
| | - Maria Teresa Cruz
- Univ Coimbra, Faculty of Pharmacy, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (S.P.); (M.T.C.); (A.F.)
- Univ Coimbra, Center for Neuroscience and Cell Biology, Faculty of Medicine, Rua Larga, 3004-504 Coimbra, Portugal
| | - Lígia Salgueiro
- Univ Coimbra, Faculty of Pharmacy, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (S.P.); (M.T.C.); (A.F.)
- Univ Coimbra, Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, 3030-790 Coimbra, Portugal
| | - Artur Figueirinha
- Univ Coimbra, Faculty of Pharmacy, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (S.P.); (M.T.C.); (A.F.)
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), University of Porto, 4099-002 Porto, Portugal
| |
Collapse
|
7
|
A Novel Based-Network Strategy to Identify Phytochemicals from Radix Salviae Miltiorrhizae (Danshen) for Treating Alzheimer's Disease. Molecules 2022; 27:molecules27144463. [PMID: 35889336 PMCID: PMC9317794 DOI: 10.3390/molecules27144463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is a common age-related neurodegenerative disease that strikes millions worldwide. Herein, we demonstrate a new approach based on network target to identify anti-AD compounds from Danshen. Network pharmacology and molecular docking were employed to establish the DS-AD network, which mainly involved apoptosis of neuron cells. Then network scoring was confirmed via Connectivity Map analysis. M308 (Danshenxinkun D) was an anti-AD candidate with a high score (p < 0.01). Furthermore, we conducted ex vivo experiments with H2O2-treated PC12 cells to verify the neuroprotective effect of Salvia miltiorrhiza-containing plasma (SMP), and UPLC-Q-TOF/MS and RT-qPCR were performed to demonstrate the anti-AD activity of M308 from SMP. Results revealed that SMP could enhance cell viability and level of acetylcholine. AO/EB staining and Mitochondrial membrane potential (MMP) analysis showed that SMP significantly suppressed apoptosis, which may be due to anti-oxidative stress activity. Moreover, the effects of M308 and SMP on expressions of PSEN1, DRD2, and APP mRNA were consistent, and M308 can significantly reverse the expression of PSEN1 and DRD2 mRNA in H2O2-treated PC12 cells. The strategy based on the network could be employed to identify anti-AD compounds from Chinese herbs. Notably, M308 stands out as a promising anti-AD candidate for development.
Collapse
|
8
|
Aihaiti K, Li J, Yaermaimaiti S, Liu L, Xin X, Aisa HA. Non-volatile compounds of Hyssopus cuspidatus Boriss and their antioxidant and antimicrobial activities. Food Chem 2021; 374:131638. [PMID: 34839965 DOI: 10.1016/j.foodchem.2021.131638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/24/2021] [Accepted: 11/15/2021] [Indexed: 11/04/2022]
Abstract
Hyssopus cuspidatus is a famous spice and an aromatic vegetable. Few information could be available concerning its non-volatile chemical composition and bioactivities. Preliminary bioactive evaluations on the crude ethanol extract and its four fractions disclosed that the ethyl acetate fraction (EAF) exhibited antioxidant and antimicrobial bioactivities. LC-MS/MS analysis of EAF helped to identify sixty-four compounds, and phenolic compounds were the dominant components. Systematic separation and purification of EAF led to the isolation of thirty-four compounds. Six compounds were identified to be new and eighteen compounds were discovered from H. cuspidatus for the first time. Rosmarinic acid, methyl rosmarinate, butyl rosmarinate and salvigenin were the major components of EAF and their contents were determined. Most of isolated compounds exhibited significant or moderate antioxidant and antimicrobial activities. This research supported the edible application of H. cuspidatus and disclosed the potency of it as a natural antioxidant and antimicrobial food additive.
Collapse
Affiliation(s)
- Kariyemu Aihaiti
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Jun Li
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China
| | - Saimijiang Yaermaimaiti
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Liu Liu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China
| | - Xuelei Xin
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China; University of Chinese Academy of Sciences, Beijing 100039, PR China.
| |
Collapse
|
9
|
Yu S, Liu H, Li K, Qin Z, Qin X, Zhu P, Li Z. Rapid characterization of the absorbed constituents in rat serum after oral administration and action mechanism of Naozhenning granule using LC–MS and network pharmacology. J Pharm Biomed Anal 2019; 166:281-290. [DOI: 10.1016/j.jpba.2019.01.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/01/2018] [Accepted: 01/12/2019] [Indexed: 12/20/2022]
|
10
|
Mi N, Cheng T, Li H, Yang P, Mu X, Wang X, Zu X, Qi X, Guo X, Ye J, Zhang W. Metabolite profiling of traditional Chinese medicine formula Dan Zhi Tablet: An integrated strategy based on UPLC-QTOF/MS combined with multivariate statistical analysis. J Pharm Biomed Anal 2018; 164:70-85. [PMID: 30359841 DOI: 10.1016/j.jpba.2018.10.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/10/2018] [Accepted: 10/13/2018] [Indexed: 12/28/2022]
Abstract
Metabolites derived from traditional Chinese medicine (TCM) are becoming active substances of pharmacologically as well as promising sources for discovering new drugs. However, detection and identification of constituents in vivo remains a challenge for TCM, due to massive endogenous interference and low abundance of metabolites in biological matrix. Traditional Chinese medicine formula Dan Zhi Tablet (DZT), a well-established TCM formula developed based on years of clinical experiences, was widely used to treat cerebral infraction disease. In this study, an integrated strategy based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) was adopted to comprehensively identify the prototype and metabolite constituents of DZT. The potential constituents were screened by cross orthogonal partial least-squares discriminant analysis (OPLS-DA). Automatic matching analysis was performed on UNIFI platform based on the function of predicting metabolites. Using this strategy, a total of 170 compounds, including 51 prototype constituents and 119 metabolites were unambiguously or tentatively identified in rat plasma. Furthermore, 31 compounds have also been detected in rat cerebrospinal fluid. The metabolism reactions included phase I reactions (hydroxylation, hydrolysis, deglycosylation, hydrogenation, demethylation and dehydroxylation) and phase II reactions (conjugation with glutatione, cysteine, acetylcysteine, glucuronide, sulfate). It is the first systematic metabolic study of DZT in vivo and some metabolites were also reported for the first time, which could provide a scientific basis for explaining the multiple functions of DZT. More importantly, the integrated strategy also shows promising perspectives in the identification of the metabolites in TCM from a complicated biological matrix.
Collapse
Affiliation(s)
- Nan Mi
- Innovation Center of Chinese Medicine, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Taofang Cheng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huiliang Li
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Peiming Yang
- Innovation Center of Chinese Medicine, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Xuemei Mu
- Innovation Center of Chinese Medicine, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Xinyu Wang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xianpeng Zu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xiaopo Qi
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xin Guo
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Ji Ye
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Weidong Zhang
- Innovation Center of Chinese Medicine, China State Institute of Pharmaceutical Industry, Shanghai 201203, China; School of Pharmacy, Second Military Medical University, Shanghai 200433, China; School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|